
Homomorphisms Are a Good Basis for
Counting Small Subgraphs∗

Radu Curticapean
†

Institute for Computer Science and

Control, Hungarian Academy of

Sciences (MTA SZTAKI)

Budapest, Hungary

radu.curticapean@gmail.com

Holger Dell

Saarland University and

Cluster of Excellence (MMCI)

Saarbrücken, Germany

hdell@mmci.uni-saarland.de

Dániel Marx
‡

Institute for Computer Science and

Control, Hungarian Academy of

Sciences (MTA SZTAKI)

Budapest, Hungary

dmarx@cs.bme.hu

ABSTRACT
We introduce graph motif parameters, a class of graph parame-

ters that depend only on the frequencies of constant-size induced

subgraphs. Classical works by Lovász show that many interesting

quantities have this form, including, for �xed graphs H , the number

of H -copies (induced or not) in an input graph G, and the number

of homomorphisms from H to G.

We use the framework of graph motif parameters to obtain faster

algorithms for counting subgraph copies of �xed graphs H in host

graphs G. More precisely, for graphs H on k edges, we show how

to count subgraph copies of H in time kO (k) · n0.174k+o(k) by a sur-

prisingly simple algorithm. This improves upon previously known

running times, such as O(n0.91k+c) time for k-edge matchings or

O(n0.46k+c) time for k-cycles.

Furthermore, we prove a general complexity dichotomy for eval-

uating graph motif parameters: Given a class C of such parameters,

we consider the problem of evaluating f ∈ C on input graphs G,

parameterized by the number of induced subgraphs that f depends

upon. For every recursively enumerable class C, we prove the above

problem to be either FPT or #W[1]-hard, with an explicit dichotomy

criterion. This allows us to recover known dichotomies for counting

subgraphs, induced subgraphs, and homomorphisms in a uniform

and simpli�ed way, together with improved lower bounds.

Finally, we extend graph motif parameters to colored subgraphs

and prove a complexity trichotomy: For vertex-colored graphs H
and G, where H is from a �xed class H , we want to count color-

preserving H -copies in G. We show that this problem is either

polynomial-time solvable or FPT or #W[1]-hard, and that the FPT

cases indeed need FPT time under reasonable assumptions.

∗
Part of this work was done while the authors were visiting the Simons Institute for

the Theory of Computing, and at the Dagstuhl Seminar 17041 – “Randomization in

Parameterized Complexity”.

†
Dr. Curticapean was supported by ERC grant PARAMTIGHT (No. 280152).

‡
Dr. Marx was supported by ERC grant PARAMTIGHT (No. 280152).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

STOC’17, Montreal, Canada
© 2017 ACM. 978-1-4503-4528-6/17/06. . . $15.00

DOI: 10.1145/3055399.3055502

CCS CONCEPTS
• Mathematics of computing → Graph algorithms; • Theory
of computation → Problems, reductions and completeness;
Fixed parameter tractability;

KEYWORDS
counting subgraphs, homomorphisms, �xed-parameter tractability,

exponential time hypothesis

ACM Reference format:
Radu Curticapean, Holger Dell, and Dániel Marx. 2017. Homomorphisms

Are a Good Basis for Counting Small Subgraphs. In Proceedings of 49th
Annual ACM SIGACT Symposium on the Theory of Computing, Montreal,
Canada, June 2017 (STOC’17), 14 pages.

DOI: 10.1145/3055399.3055502

1 INTRODUCTION
Deciding the existence of subgraph patterns H in input graphs G
constitutes the classical subgraph isomorphism problem [13, 49],

which generalizes NP-complete problems like the Hamiltonian

cycle problem or the clique problem. In some applications however,

it is not su�cient to merely know whether H occurs in G, but

instead one wishes to determine the number of such occurrences.

This is clearly at least as hard as deciding their existence, but it can

be much harder: The existence of perfect matchings can be tested

in polynomial time, but the counting version is #P-hard [50].

Subgraph counting problems have applications in areas like sta-

tistical physics, probabilistic inference, and network analysis. In

particular, in network analysis, such problems arise in the context

of discovering network motifs. These are small patterns that occur

more often in a network than would be expected if the network

was random. Through network motifs, the problem of counting

subgraphs has found applications in the study of gene transcription

networks, neural networks, and social networks [42], and there

is a large body of work dedicated to the algorithmic discovery of

network motifs [2, 10, 24, 32, 33, 45–47, 51].

Inspired by these applications, we study the algorithmic problem

of counting occurrences of small patterns H in large host graphs G .

The abstract notion of a “pattern occurrence” may be formalized

in various ways, which may result in vastly di�erent problems:

To state only some examples, we may be interested in counting

subgraph copies of a graph H , or induced subgraph copies of H , or

homomorphisms from H to G, and we can also consider settings

210

STOC’17, June 2017, Montreal, Canada Radu Curticapean, Holger Dell, and Dániel Marx

where both pattern H and host graph G are colored and we wish to

count subgraphs of G that are color-preserving isomorphic to H .

It may seem daunting at �rst to try to deal with all di�erent

types of pattern occurrences. Fortunately, Lovász [38, 39] de�ned a

framework that allows us to express virtually all kinds of pattern

types in a uni�ed way. As it turns out, graph parameters such as

the number of subgraph copies of H (induced or not) in a host

graph G , or the number of graph homomorphisms from H to G are

actually just “linear combinations” of each other in a well-de�ned

sense. We build on this and de�ne a general framework of so-called

graph motif parameters to capture counting linear combinations of

small patterns, into which (induced) subgraph or homomorphism

numbers embed naturally as special cases.

In the remainder of the introduction, we �rst discuss algorithmic

and complexity-theoretic aspects of counting (induced) subgraphs

and homomorphisms in §1.1–§1.3 and state the results we derive

for these special cases. In §1.4, we then give an introduction into

the general framework of graph motif parameters, our interpreta-

tion of Lovász’s uni�ed framework, which also provides the main

techniques for our proofs. Finally, in §1.5 we give an exposition of

our results for vertex-colored subgraphs.

1.1 Counting Small Subgraphs
For any �xed k-vertex pattern graph H , we can count all subgraph

copies of H in an n-vertex host graph G using brute-force for a

running time of O(nk). While this running time is polynomial for

any �xed H , it quickly becomes infeasible as k grows. Fortunately

enough, non-trivial improvements on the exponent are known,

albeit only for speci�c classes of patterns:

For instance, we can count triangles in the same time O(nω)
that it takes to multiply two (n × n)-matrices [27]. It is known

that ω < 2.373 holds [23, 52]. This approach can be generalized

from triangles to k-cliques with k ∈ N [43], for a running time of

nωk/3+O (1). Fast matrix multiplication is also used to improve on

exhaustive search for counting cycles of length at most seven [3]

and various other problems [21, 34].

Secondly, for k-edge paths or generally any pattern of bounded

pathwidth, a “meet in the middle” approach yields nk/2+O (1) time

algorithms [4, 35]. For a while, this approach appeared to be a barrier

for faster algorithms, until Björklund et al. [5] gave an algorithm

for counting k-paths, matchings on k vertices, and other k-vertex

patterns of bounded pathwidth in time n0.455k+O (1).
Finally, if vc(H) is the vertex-cover number of H , that is, the size

of its smallest vertex-cover, then we can count H -copies in time

nvc(H)+O (1) [54] (also cf. [15, 36]). Essentially, one can exhaustively

iterate over the image of the minimum vertex-cover in G, which

gives rise to nvc(G) choices; the rest of H can then be embedded by

dynamic programming. Note that vc(H) may be constant even for

large graphs H , e.g., if H is a star.

In this paper, we unify some of the algorithms above and gen-

eralize them to arbitrary subgraph patterns; in many cases our

algorithms are faster. For two graphs H andG , let #Sub

(
H → G

)
be

the number of subgraphs of G that are isomorphic to H . Our main

algorithmic result states that #Sub

(
H → G

)
can be determined in

time O(nt+1), where t is the maximum treewidth (a very popular

measure of tree-likeness) among the homomorphic images of H .

For our purposes, a homomorphic image of H is any simple graph

that can be obtained from H by possibly merging non-adjacent

vertices. For instance, identifying the �rst and the last vertex in

the 4-path yields the 4-cycle , and further identifying

two non-adjacent vertices in the 4-cycle yields the 2-path .

We de�ne the spasm of H as the set of all homomorphic images

of H , that is, as the set of “all possible non-edge contractions” of H .

As an example, for the 4-path, we have

Spasm

()
=

{
, , , , (1)

, , ,
}
.

Our main algorithmic result can then be stated as follows:

Theorem 1.1. Given a k-edge graph H and an n-vertex graph G,
we can compute #Sub

(
H → G

)
in time kO (k) · nt+1, where t is the

maximum treewidth in the spasm of H .

As an example, for the 4-path, the largest treewidth among the

graphs in the spasm is 2, and so Theorem 1.1 yields a running time

of O(n3) for counting 4-paths. In fact, even the 6-path has only

graphs with treewidth at most 2 in its spasm, so the same cubic

running time applies.

Theorem 1.1 generalizes the vertex-cover based algorithm [54]

mentioned before: Merging vertices can never increase the size of

the smallest vertex-cover, and so the maximum treewidth in the

spasm of H is bounded by vc(H), since the vertex-cover number

is an upper bound for the treewidth of a graph. Note that, while

contracting edges cannot increase the treewidth of a graph, it is ap-

parent from (1) that contracting non-edges might. In fact, if H is the

k-edge matching, all k-edge graphs can be obtained by contracting

non-edges, including expander graphs with treewidth Ω(k). How-

ever, Scott and Sorkin [48, Corollary 21] proved that every graph

with at most k edges has treewidth at most 0.174 · k + o(k). This

bound enables the following immediate corollary to Theorem 1.1.

Corollary 1.2. Given a k-edge graphH and an n-vertex graphG ,
we can compute #Sub

(
H → G

)
in time kO (k) · n0.174·k+o(k).

Our exponent is obviously smaller than the previously known

0.455 · |V (H)| = 0.91 · k for the k-edge matching and 0.455 · k
for the k-path, but somewhat surprisingly, our algorithm is also

signi�cantly simpler than its predecessors.

When H is the triangle , the algorithm from Theorem 1.1

matches the running time O(n3) of the exhaustive search method.

To achieve a smaller constant in the exponent, we have to use

matrix multiplication, since faster triangle detection is equivalent

to faster Boolean matrix multiplication [53]. Indeed, we are able

to generalize the O(nω)-time algorithm for counting triangles to

arbitrary graphs H whose spasm has treewidth at most 2.

Theorem 1.3. If all graphs in the spasm of H have treewidth at
most two, then we can compute #Sub

(
H → G

)
in time f (H) · |V (G)|ω ,

where f (H) is a function that only depends on H .

This algorithm applies, for example, to paths of length at most 6,

thus providing an alternative and simpli�ed way to obtain the

corresponding results of [3].

We now turn to hardness results for counting subgraphs. Here,

the vertex-cover number of the pattern H plays a special role:

211

Homomorphisms Are a Good Basis for Counting Small Subgraphs STOC’17, June 2017, Montreal, Canada

When it is bounded by a �xed constant b ∈ N, we have an nb+O (1)

time algorithm even when the size of the pattern is otherwise un-

bounded. However when it is unbounded, e.g., for k-paths, the best

known running times are of the form nϵk for some ϵ ∈ (0, 1). Given

these modest improvements for counting subgraph patterns of un-

bounded vertex-cover number, it is tempting to conjecture that “the

exponent cannot remain constant” for such patterns. A result by a

subset of the authors [15] shows that this conjecture is indeed true–

for an appropriate formalization of the respective computational

problem and under appropriate complexity-theoretic assumptions.

The counting exponential time hypothesis (#ETH) by Impagliazzo

and Paturi [26], adapted to the counting setting [18], states that

there is no exp(o(n)) · poly(m)-time algorithm to count all satisfy-

ing assignments of a given 3-CNF formula with n variables and

m clauses. More convenient for us is the following consequence

of #ETH: There is no f (k) ·no(k) time algorithm to count all cliques

of size exactly k in a given n-vertex graph [9] — thus, the k-clique

problem is a hard special case of the subgraph counting problem

and clearly k-cliques have large vertex-cover number. Of course,

this worst-case hardness of the most general subgraph counting

problem does not directly help us understand the complexity of

particular cases, such as counting k-matchings or k-paths.

We can model our interest in special cases by restricting the

pattern graphs H to be from a �xed classH of graphs: The compu-

tational problem #Sub(H) is to compute the number #Sub

(
H → G

)
of H -copies in G when given two graphs H ∈ H and G as in-

put. To prove that #ETH implies that no �xed-parameter tractable

algorithm can exist for #Sub(H), one ultimately establishes a pa-
rameterized reduction from the k-clique problem to the H -subgraph

counting problem, which has the important property that vc(H) is

bounded by д(k), a function only depending on k .

The parameterized reduction in [15] was very complex with

various special cases and a Ramsey argument that made д a very

large function. While it was su�cient to conditionally rule out

f (k) ·nc time algorithms for #Sub(H) for any constant c and graph

classH of unbounded vertex-cover number, it left open the possibil-

ity of, for example, n
√
vc(H)

time algorithms. Running times of the

form no(k/logk) could be ruled out under #ETH only for certain spe-

cial cases, such as counting k-matchings or k-paths. In this paper,

we obtain the stronger hardness result for all hard familiesH . For

technical reasons, we assume thatH can be recursively enumer-

ated; without this assumption, we would however obtain a similar

result under a non-uniform version of #ETH.

Theorem 1.4. LetH be a recursively enumerable class of graphs
of unbounded vertex-cover number. If #ETH holds, then #Sub(H)
cannot be computed in time f (H) · no(vc(H)/log vc(H)).

The log-factor here is related to an open problem in parameter-

ized complexity, namely whether you can “beat treewidth” [40],

i.e., whether there is an algorithm to �nd H as a subgraph in time

f (H) · no(tw(H)), or whether such an algorithm is ruled out by ETH
for every graph classH of unbounded treewidth. Indeed, replacing

vc(H) with tw(H) in Theorem 1.4 essentially yields the hardness

result in [40, Corollary 6.3], and since tw(H) ≤ vc(H), our theorem

can be seen as a strengthening of this result in the counting world.

In fact, our hardness proof is based on this weaker version.

Instead of relying on #ETH, we can also consider #Sub(H) from

the viewpoint of �xed-parameter tractability. In this framework, the

problem is parameterized by |V (H)|. A problem is #W[1]-complete

if it is equivalent under parameterized reductions to the problem

of counting k-cliques, where the allowed reductions are Turing

reductions that run in time f (k) ·poly(n). As mentioned before, it is

known that #ETH implies FPT , #W[1]. In this setting, Theorem 1.4

takes on the following form:

Theorem 1.5 ([15]). LetH be a recursively enumerable class of
graphs. If H has bounded vertex-cover number, then #Sub(H) is
polynomial-time computable. Otherwise, it is #W[1]-complete when
parameterized by |V (H)|.

The original proof of Theorem 1.5 relied on the #W[1]-complete-

ness of counting k-matchings, which was nontrivial on its own [6,

14]. Then an extensive graph-theoretic analysis was used to �nd

“k-matching gadgets” in any graph classH of unbounded vertex-

cover number. These gadgets enable a parameterized reduction from

counting k-matchings to #Sub(H), but they are also responsible

for the uncontrollable blowup in the parameter that lead to highly

non-tight results under #ETH. We obtain a much simpler proof of

Theorem 1.5 that does not assign a special role to k-matchings.

Interestingly, Theorem 1.5 implies that there is no problem of the

form #Sub(H) that is “truly” FPT– every such problem that is not

#W[1]-complete is in fact already polynomial-time solvable. Thus, if

we assume the widely-believed claim that FPT , #W[1] holds, then

Theorem 1.5 exhaustively classi�es the polynomial-time solvable

problems #Sub(H). Indeed, such a sweeping dichotomy would not

have been possible by merely assuming that P , P#P, since there

exist arti�cial classesH with #P-intermediate [12] #Sub(H).
We remark that a decision version of Theorem 1.5 is an open

problem. It is known only for graph classes that are hereditary,

that is, closed under induced subgraphs [28], where the dichotomy

criterion is di�erent. Moreover, certain non-hereditary cases, such

as the W[1]-completeness of deciding the existence of a bipartite

clique or a grid, have been resolved only recently [11, 37].

1.2 Counting Small Homomorphisms
Similar classi�cations as Theorem 1.5 for counting subgraphs were

previously known for counting homomorphisms [17] from a given

classH . Recall that a homomorphism from a pattern H to a host G
is a mapping f : V (H) → V (G) such that uv ∈ E(H) implies

f (u)f (v) ∈ E(G); we write #Hom

(
H → G

)
for the number of

such homomorphisms. In the context of pattern counting problems,

we can interpret homomorphisms as a relaxation of the subgraph

notion: If a homomorphism f from H to G is injective, then it

constitutes a subgraph embedding from H to G . However, since we

generally do not require injectivity in homomorphisms, these may

well map into other homomorphic images. (Recall that the spasm

of H contains exactly the loop-free homomorphic images of H .)

From an algorithmic viewpoint, not requiring injectivity makes

counting patterns easier: One can now use separators to divide H
into subpatterns and compose mappings of di�erent subpatterns to

a global one for H via dynamic programming. In this process, only

the locations of separators under the subpattern mapping need to

be memorized, while non-separator vertices of subpatterns may

212

STOC’17, June 2017, Montreal, Canada Radu Curticapean, Holger Dell, and Dániel Marx

be forgotten. As an example, note that counting k-paths is #W[1]-
complete by Theorem 1.5, but counting homomorphisms from a

k-path to a host graph G is polynomial-time solvable. Indeed, the

latter problem amounts to counting k-walks in G, which can be

achieved easily by taking the k-th power of the adjacency matrix

of G, a process that can be interpreted as a dynamic programming

algorithm: Given a table with the number of `-walks from s to u for

each u, we can compute a table with the number of (` + 1)-walks

from s to v for all v . That is, we only need to store the last vertex

seen in a walk. This idea can be generalized easily to graphs of

bounded treewidth using a straightforward dynamic programming

approach on the tree decomposition of H .

Proposition 1.6 (Díaz et al. [19]). There is a deterministic
exp(O(k))+poly(k) ·ntw(H)+1 time algorithm to compute the number
of homomorphisms from a given graph H to a given graph G, where
k = |V (H)|, n = |V (G)|, and tw(H) denotes the treewidth of H .

This proposition is the basis of our main algorithmic result for

subgraphs (Theorem 1.1) and other graph motif parameters. For

graphs H of treewidth at most two, we can speed up the dynamic

programming algorithm by using fast matrix multiplication:

Theorem 1.7. If H has treewidth at most 2, we can compute
#Hom

(
H → G

)
in time poly(|V (H)|) · |V (G)|ω .

Apart from being more well-behaved than subgraphs in terms

of algorithmic tractability, homomorphisms also allow for simpler

hardness proofs: Several constructions are signi�cantly easier to

analyze for homomorphisms than for subgraphs, as we will see

in our proofs. This might explain why a dichotomy for counting

homomorphisms from a �xed classH was obtained an entire decade

before its counterpart for subgraphs; it establishes the treewidth

ofH as the tractability criterion for the problems #Hom(H).

Theorem 1.8 (Dalmau and Jonsson [17]). LetH be a recursively
enumerable class of graphs. If H has bounded treewidth, then the
problem #Hom(H) of counting homomorphisms from graphs inH
into host graphs is polynomial-time solvable. Otherwise, it is #W[1]-
complete when parameterized by |V (H)|.

We also need the following hardness under #ETH, the proof of

which is a simple corollary of [40, Corollary 6.2 and 6.3].

Proposition 1.9. Let H be a recursively enumerable class of
graphs of unbounded treewidth. If #ETH holds, then there is no f (H) ·
|V (G)|o(tw(H)/log tw(H)) time algorithm to compute #Hom(H) for
given graphs H ∈ H and G.

Finally, we remark that the decision version of Theorem 1.8,

that is, the dichotomy theorem for deciding the existence of a

homomorphism from H ∈ H to G is known and has a di�erent

criterion [25]: The decision problem is polynomial-time computable

even when only the homomorphic cores of all graphs inH have

bounded treewidth, and it is W[1]-hard otherwise.

1.3 Counting Small Induced Subgraphs
Let us also address the problem of counting small induced sub-

graphs from a classH . This is a natural and well-studied variant

of counting subgraph copies [12, 29–31, 34, 41], and for several

applications it represents a more appropriate notion of “pattern

occurrence”. From the perspective of dichotomy results however, it

is less intricate than subgraphs or homomorphisms: Counting in-

duced subgraphs is known to be #W[1]-hard for any in�nite pattern

classH , and even the corresponding decision version is W[1]-hard.

Theorem 1.10 ([12]). LetH be a recursively enumerable class of
graphs. IfH is �nite, then the problem #Ind(H) of counting induced
subgraphs fromH is polynomial-time solvable. Otherwise, it is #W[1]-
complete when parameterized by |V (H)|.

Jerrum and Meeks [29–31, 41] introduced the following gen-

eralization of the problems #Ind(H) to �xed graph properties Φ:

Given a graph G and k ∈ N, the task is to compute the number of

induced k-vertex subgraphs that have property Φ. Let us call this

problem #IndProp(Φ). They identi�ed some classes of properties Φ
that render this problem #W[1]-hard. Using our machinery, we get

a full dichotomy theorem for this class of problems.

Theorem 1.11 (simple version). If Φ is a decidable graph prop-
erty, then #IndProp(Φ) is �xed-parameter tractable or #W[1]-hard
when parameterized by |V (H)|.

1.4 A Uni�ed View: Graph Motif Parameters
We now discuss our proof techniques on a high level. From a con-

ceptual perspective, our most important contribution lies in �nding

a framework for understanding the parameterized complexity of

subgraphs, induced subgraphs, and homomorphisms in a uniform

context. Note that we quite literally �nd this framework: That is, we

do not develop it ourselves, but we rather adapt works by Lovász et

al. dating back to the 1960s [7, 38]. The most important observation

is the following:

Many counting problems are actually linear combi-
nations of homomorphisms in disguise!

That is, there are elementary transformations to express, say, linear

combinations of subgraphs as linear combinations of homomor-

phisms, and vice versa.

The algorithms for subgraphs (Theorem 1.1 and Corollary 1.2)

are based on a reduction from subgraph counting to homomor-

phism counting, so we want to �nd relations between the number

of subgraphs and the number of homomorphisms. To get things

started, note that injective homomorphisms fromH toG , also called

embeddings, correspond to a subgraph F of G that is isomorphic

to H , and in fact, the number #Emb

(
H → G

)
of embeddings is

equal to the number #Sub

(
H → G

)
of subgraphs times #Aut(H),

the number of automorphisms of H .

Homomorphisms cannot map two adjacent vertices of H to the

same vertex of G, assuming that G does not have any loops. For

instance, every homomorphism from to G must be injective,

and therefore the number of triangles in G is equal to the number

of such homomorphisms, up to a factor of 6: the number of auto-

morphisms of the triangle. Formally, we have #Sub

(
→ G

)
=

1

6
· #Hom

(
→ G

)
for every graph G that does not have loops.

Cases where homomorphisms from H to G are not automati-

cally injective are more interesting. Clearly, the set of all homo-

morphisms contains the injective ones, which suggests we should

simply count all homomorphisms and then subtract the ones that

are not injective. Any non-injective homomorphism h from H to G
has the property that there are at least two (non-adjacent) vertices

213

Homomorphisms Are a Good Basis for Counting Small Subgraphs STOC’17, June 2017, Montreal, Canada

that it maps to the same vertex; in other words, its image h(H) is

isomorphic to some member of Spasm(H) other than H itself. For

example, #Hom

(
→ G

)
− #Hom

(
→ G

)
is the number

of injective homomorphisms from to G since the only way

for such a homomorphism to be non-injective is that it merges the

two degree-1 vertices.

In general, the number #Emb

(
H → G

)
of injective homomor-

phisms is #Hom

(
H → G

)
−∑F ∈Spasm(H)\{H } #Emb

(
F → G

)
. Since

each such F is strictly smaller than H , this fact yields a recursive

procedure to compute #Emb

(
H → G

)
. However, there is a better

way: We can use Möbius inversion over the partition lattice to ob-

tain a closed formula. We already mentioned that the spasm of H
can be obtained by consolidating non-adjacent vertices of H in all

possible ways. This means that we consider partitions ρ ofV (H) in

which each block is an independent set, and then form the quotient
graph H/ρ obtained from H by merging each block of ρ into a sin-

gle vertex. To express the injective homomorphisms from H to G
(and hence the number of H -subgraphs) as a linear combination

of homomorphisms, we consider all possible types in which a ho-

momorphism h from H to G can fail to be injective. More precisely,

we de�ne this type ρh of h to be the partition of V (H), where each

block is the set of vertices of H that map to the same vertex of G
under h. The homomorphism h is injective if and only if ρh is the

�nest partition, i.e., the partition where each block has size one.

The homomorphisms from H/ρ to G are precisely those homo-

morphisms from H to G that fail to be injective “at least as badly

as ρ”, that is, those homomorphisms f whose type ρf is a coars-

ening of ρ. As remarked by Lovász et al. [7, 38], one can then

use Möbius inversion, a generalization of the inclusion–exclusion

principle, to turn this observation into the “inverse” identity

#Sub

(
H → G

)
=

∑
ρ
µρ · #Hom

(
H/ρ → G

)
,where (2)

µρ =
(−1) |V (H) |− |V (H/ρ) | ·∏B∈ρ (|B | − 1)!

#Aut(H) . (3)

The sum in (2) ranges over all partitions ρ of V (H). Hence, the

number of H -subgraphs inG is equal to a linear combination of the

numbers of homomorphisms from graphs H/ρ to G. Each H/ρ is

isomorphic to a graph in Spasm(H), and so by collecting terms for

isomorphic graphs, (2) represents the number of H -subgraphs as a

linear combination of homomorphism numbers from graphs F in

the spasm of H ; see Figure 1 for an example.

The identity (2) can be viewed as a basis transformation in a

certain vector space of graph parameters, and we formalize this

perspective in §3. A similar identity turns out to hold for counting

induced subgraphs as well, so all three graph parameter types

can we written as �nite linear combinations of each other. This

motivates the notion of a graph motif parameter, which is any graph

parameter f that is a �nite linear combination of induced subgraph

numbers. That is, there are coe�cients α1, . . . ,αt ∈ Q and graphs

H1, . . . ,Ht such that, for all graphs G, we have

f (G) =
t∑
i=1

αi · #IndSub
(
Hi → G

)
. (4)

We study the problem of computing graph motif parameters f .

For our results in parameterized complexity, we parameterize this

Sub

(
→ ?

)
=

1

2
Hom

(
→ ?

)
− Hom

(
→ ?

)
− Hom

(
→ ?

)
− 1

2
Hom

(
→ ?

)
− 1

2
Hom

(
→ ?

)
+ 3

2
Hom

(
→ ?

)
+ 5

2
Hom

(
→ ?

)
− Hom

(
→ ?

)
.

Figure 1: An example for (2), where H is the path
with four edges. The number of subgraphs is represented
as a linear combination of homomorphisms from graphs
F ∈ Spasm(H). Each such F has treewidth at most two, so we
can compute the homomorphismnumbers in timeO(n3) via
Proposition 1.6. Computing the linear combination on the
right side yields an O(n3)-time algorithm to count 4-paths,
and in fact this is the algorithm in Theorem 1.1.

problem by the description length k of α1, . . . ,αt and H1, . . . ,Ht .

Due to the basis transformation between induced subgraphs, sub-

graphs, and homomorphisms, writing #Hom

(
Hi → G

)
instead of

#IndSub

(
Hi → G

)
in (4) yields an equivalent class of problems —

switching bases only leads to a factor д(k) overhead in the running

time for some computable function д, which we can mostly neglect

for our purposes.

Our main result is that the complexity of computing any graph

parameter f is exactly governed by the maximum complexity of

counting the homomorphisms occurring in its representation over

the homomorphism basis. More precisely, let α1, . . . ,αt ∈ Q and

H1, . . . ,Ht be graphs such that f (G) = ∑
i αi · #Hom

(
Hi → G

)
holds for all graphs G. Our algorithmic results are based on the

following observation: If each #Hom

(
Hi → G

)
can be computed

in time O(nc) for n = |V (G)| and some constant c ≥ 0, then the

linear combination f (G) can be computed in time O(nc) for the

same constant c . However, we show that the reverse direction also

holds: If f can be computed in time O(nc) for some c ≥ 0, then

each #Hom

(
Hi → G

)
with αi , 0 can be computed in time O(nc)

for the same constant c . The reduction that establishes this �ne-

grained equivalence gives rise to our results under #ETH and our

new #W[1]-hardness proof.

Note that such an equivalence is not true for linear combinations

of embedding numbers, as can be seen from the following example.

Example 1.12. Consider the following linear combination:

Emb

(
→ ?

)
+ Emb

(
→ ?

)
+ Emb

(
→ ?

)
+ 2 · Emb

(
→ ?

)
+ 2 · Emb

(
→ ?

)
+ 3 · Emb

(
→ ?

)
+ 4 · Emb

(
→ ?

)
+ Emb

(
→ ?

)
.

When this linear combination of embeddings is transformed into

the homomorphism basis via (2), most terms cancel, and it turns out

that it is equal to Hom

(
→ ?

)
, that is, it counts the number of

walks of length 4. Counting 4-walks can be done in time O(n2) via

Proposition 1.6, but counting, for example, triangles is not known

to be possible faster than O(nω). More generally, counting walks of

214

STOC’17, June 2017, Montreal, Canada Radu Curticapean, Holger Dell, and Dániel Marx

length k is in O(n2)-time, but counting paths of length k is #W[1]-
hard and not in time д(k) · no(k/logk) under #ETH.

Thus, even a linear combination of subgraph numbers that looks

complex at �rst and contains as summands embedding numbers

that are fairly hard to compute can actually be quite a bit easier

due to cancellation e�ects that occur when rewriting it as linear

combination of homomorphism numbers.

As in the case of subgraphs in §1.1, we consider classes A of

linear combinations to get more expressive hardness results. That is,

each element ofA is a pattern-coe�cient list (α1,H1), . . . , (αt ,Ht)
as above. The graph motif problem #Ind(A) is then given a pattern-

coe�cient list from A and a graph G, and is supposed to compute

the linear combination (4). We have the following result for the

complexity of computing graph motif parameters.

Theorem 1.13 (intuitive version). Let A be a recursively enu-
merable class of pattern-coe�cient lists. If the linear combinations (4)

re-expressed as linear combinations of homomorphisms contain non-
zero coe�cients only for graphs of treewidth at most t , the problem
#Ind(A) can be computed in time f (α) ·nt+1. Otherwise, the problem
is #W[1]-hard parameterized by |α | and does not have f (α)·no(t/log t)
time algorithms under #ETH.

With respect to �xed-parameter tractability vs. #W[1]-hardness,

this theorem fully classi�es the problems #Ind(A) for �xed classes

of linear combinations A. Of course we have similar (equivalent)

formulations for #Sub(A) and #Hom(A), and thus we generalize

the dichotomy theorems for subgraphs (Theorem 1.5), homomor-

phisms (Theorem 1.8), and induced subgraphs (Theorem 1.10). The

dichotomy criterion is somewhat indirect; it addresses A only

through its representation as a linear combination of homomor-

phism numbers. However, we do not believe that there is a more

’native’ dichotomy criterion on A since seemingly complicated

linear combinations can turn out to be easy – Example 1.12 gives

an indication of this phenomenon; perturbing the coe�cients just

a tiny bit can turn a computationally easy linear combination into

one that is hard.

Nevertheless, we can exhibit some interesting su�cient condi-

tions. For example, for the problem #Sub(A), if all linear combi-

nations of A in fact feature exactly one pattern (so we are in the

situation of Theorem 1.5), then the linear combination re-expressed

over homomorphisms uses graphs of unbounded treewidth if and

only if the patterns in A have bounded vertex-cover number. We

can hence recover Theorem 1.5 from Theorem 1.13.

1.5 Counting Vertex-colored Subgraphs
The techniques introduced above are su�ciently robust to handle

generalizations to, e.g., the setting of vertex-colored subgraphs,

where the vertices of H and G have colors and we count only

subgraphs of G with isomorphisms to H that respect colors. A

dichotomy for the special case of colorful patterns, where every

vertex of the pattern H has a di�erent color, follows from earlier

results by observing that embeddings and homomorphisms are the

same for colorful patterns. For colorful patterns, bounded treewidth

is the tractability criterion.

Theorem 1.14 ([15, 17, 41]). LetH be a recursively enumerable
class of colorful vertex-colored graphs. IfH has bounded treewidth,

then the problem #Sub(H) of counting colorful subgraphs fromH in
vertex-colored host graphs is polynomial-time solvable. Otherwise, it
is #W[1]-complete when parameterized by |V (H)|.

Theorems 1.5 and 1.14 characterize the two extreme cases of

counting colored subgraphs: the uncolored and the fully color-

ful cases. But there is an entire spectrum of colored problems in

between these two extremes. What happens when we consider

vertex-colored graphs with some colors appearing on more than one

vertex? As we gradually move from colorful to uncolored graphs,

where exactly is the point when a jump in complexity occurs?

Answering such questions can be nontrivial even for simple

patterns such as paths and matchings and can depend very much on

how the colors appear on the pattern. Fortunately, by a basis change

to (vertex-colored) homomorphisms via (2), we can answer such

questions as easily as in the uncolored setting. The only technical

change required is that we should consider only partitions ρ that

respect the coloring ofH , that is, the vertices ofH that end up in the

same block should have the same color. With these modi�cations,

we can derive the following corollary from Theorem 1.13

Theorem 1.15. LetH be a recursively enumerable class of vertex-
colored patterns (or linear combinations thereof) and letAhom be the
class of linear combinations of homomorphisms derived fromH by
the identity (2) as discussed above. If there is a �nite bound on the
treewidth of graphs in Ahom, then #Sub(H) is FPT. Otherwise, the
problem is #W[1]-hard when parameterized by |V (H)|.

Theorem 1.15 raises a number of questions. First, being a corol-

lary of Theorem 1.13, the tractability criterion is quite indirect,

whereas we may want to have a more direct structural under-

standing of the FPT cases. Secondly, Theorem 1.15 does not tell us

whether the FPT cases are actually polynomial-time solvable or

not. It is quite remarkable that in Theorems 1.5 and 1.14, all FPT

cases are actually polynomial-time solvable, leaving no room for

“true” FPT cases that are not polynomial-time solvable. It turns out

however that, if we consider vertex-colored patterns in their full

generality, then such pattern classes actually do appear. A prime

example of this phenomenon is the case of half-colorful matchings,
which are vertex-colored k-matchings such that one endpoint of

each edge ei for i ∈ {1, . . . ,k} is colored with 0, while the other is

colored with i . Since counting perfect matchings in bipartite graphs

is #P-hard, a trivial argument shows that counting half-colorful

matchings is also #P-hard: if a bipartite graph with n +n vertices is

colored such that one part has color 0 and each vertex of the other

part has a distinct color from 1 ton, then the number of half-colorful

matchings of size n is exactly the number of perfect matchings. On

the other hand, it is not di�cult to show that counting the number

of half-colorful matchings of size k in a graph colored with colors 0,

1, . . . , k is �xed-parameter tractable. It is essentially a dynamic pro-

gramming exercise: for any subgraph H ′ ⊆ H of the half-colorful

matching and for any integer i , we want to compute the number of

subgraphs of G isomorphic to H ′ that are allowed to use only the

�rst i vertices of color class 0.

We give a complete classi�cation of the polynomial-time solvable

cases of counting colored patterns from a classH . For classes of pat-

terns (but not linear combinations thereof), we re�ne the FPT cases

of Theorem 1.15 into two classes: those that are polynomial-time

215

Homomorphisms Are a Good Basis for Counting Small Subgraphs STOC’17, June 2017, Montreal, Canada

solvable, and those that are not polynomial-time solvable under the

complexity assumption Nonuniform Counting Exponential Time

Hypothesis. This shows that the existence of half-colorful match-

ings is the canonical reason why certain classes of patterns require

dynamic programming and therefore the full power given by the

de�nition of FPT: those cases are polynomial where the size of the

largest half-colorful matching appearing as a subgraph is at most

logarithmic in the size of the pattern.

1.6 Organization of the Paper
In §2, we provide basics on parameterized complexity and the graph-

theoretical notions used in this paper. We formalize graph motif
parameters in §3, and in §3.1 we show how to switch between

di�erent useful representations of graph motif parameters. In §3.2,

we then address computational aspects of graph motif parameters.

These results are �rst put to use in §4, where we count subgraph

patterns by reduction to homomorphisms. In §5, we prove hardness

results for linear combinations of subgraphs and induced subgraphs

under #ETH and FPT , #W[1]. Due to space constraints, the colored

subgraph problems are deferred to the full version.

2 PRELIMINARIES
For a proposition P , we use the Iverson bracket [P] ∈ {0, 1} to

indicate whether P is satis�ed. For a potentially in�nite matrix M ,

a principal submatrix MS is a submatrix of M where the selected

row and column index sets are the same set S .

2.1 Parameterized Complexity Theory
We refer to the textbooks [16, 22, 44] for background on parameter-

ized complexity theory. Brie�y, a parameterized counting problem is

a function Π : {0, 1}∗ → N that is endowed with a parameterization
κ : {0, 1}∗ → N; it is �xed-parameter tractable (FPT) if there is a

computable function f : N→ N and an algorithm to compute Π(x)
in time f (k) · poly(n), where n = |x | and k = κ(x).

A parameterized Turing reduction is a Turing reduction from

a problem (Π,κ) to a problem (Π′,κ ′) such that the reduction

runs in f (κ(x)) · poly(|x |) time on instances Π(x) and each oracle

query Π′(y) satis�es κ ′(y) ≤ д(k). Here, both f and д are com-

putable functions. A parameterized problem is #W[1]-hard if there

is a parameterized Turing reduction from the problem of counting

the k-cliques in a given graph; since it is believed that the latter does

not have an FPT-algorithm, #W[1]-hardness is a strong indicator

that a problem is not FPT.

The exponential time hypothesis (ETH) by Impagliazzo and Pa-

turi [26] asserts that satis�ability of 3-CNF formulas cannot be

decided substantially faster than by trying all possible assignments.

The counting version of this hypothesis [18] states that there is a

constant c > 0 such that no deterministic algorithm can compute

#3-SAT in time exp(c · n), where n is the number of variables.

Chen et al. [9] proved that ETH implies the hypothesis that there is

no f (k)·no(k)-time algorithm to decide whether ann-vertex graphG
contains a k-clique. Their reduction is parsimonious, so #ETH rules

out f (k) · no(k)-time algorithms for counting k-cliques.

2.2 Graphs, Subgraphs, and Homomorphisms
Let G be the set of all labeled, �nite, undirected, and simple graphs;

in particular, these graphs contain neither loops nor parallel edges.

That is, there is a suitable �xed and countably in�nite universe U ,

and G contains all �nite graphs G with vertex set V (G) ⊆ U and

edge set E(G) ⊆
(V (G)

2

)
.

Subgraphs. If G is a graph, a subgraph F of G is a graph with

V (F) ⊆ V (G) and E(F) ⊆ E(G), and F is an induced subgraph ofG if

it is a subgraph with the additional property that, for all uv < E(F)
we haveuv < E(G). The set of subgraphs ofG that are isomorphic to

H is denoted with Sub

(
H → G

)
, and the set of induced subgraphs

of G that are isomorphic to H is denoted with IndSub

(
H → G

)
.

Homomorphisms and related notions. If H andG are graphs, a ho-
momorphism from H to G is a function f : V (H) → V (G) such that

edges map to edges under f . That is, for all {u,v} ∈ E(H), we have

{ f (u), f (v)} ∈ E(G). The set of all homomorphisms from H to G is

denoted with Hom

(
H → G

)
. Embeddings are injective homomor-

phisms, and we denote the corresponding set with Emb

(
H → G

)
.

Strong embeddings are embeddings with the additional property

that non-edges map to non-edges, that is, { f (u), f (v)} < E(G) holds

for all {u,v} < E(G). We denote the set of strong embeddings with

StrEmb

(
H → G

)
. A homomorphism f ∈ Hom

(
H → G

)
is surjec-

tive if it hits all vertices and edges of G, that is, f (V (H)) = V (G)
and f (E(H)) = E(G) hold. An isomorphism from H to G is a strong

embedding from H to G that is also surjective, and it is an automor-
phism if additionally H = G holds. We write H ' G if H and G are

isomorphic.

Colored graphs. We also use vertex-colored graphsG , where each

vertex has a color from a �nite set C of colors via a function f :

V (G) → C . We note that such a coloring is not necessarily proper,

in the sense that any two adjacent vertices need to receive distinct

colors. Each set Vi (G) := f −1(i) for i ∈ C is a color class of G. A

subgraph H of G is called (vertex-)colorful if V (H) intersects each

color class in exactly one vertex.

Treewidth. A tree decomposition of a graph G is a pair (T , β),
where T is a tree and β is a mapping from V (T) to 2

V (G)
such

that, for all vertices v ∈ V (G), the set { t ∈ V (T) : v ∈ β(t) } is

nonempty and connected in T , and for all edges e ∈ E(G), there is

some node t ∈ V (T) such that e ⊆ β(t). The set β(t) is the bag at t .
The width of (T , β) is the integer max{ |β(t)| − 1 : t ∈ V (T) }, and

the treewidth tw(G) of a graph G is the minimum possible width of

any tree decomposition of G.

3 THE SPACE OF GRAPH MOTIF
PARAMETERS

We develop our interpretation of the general setup of Lovász [39].

To this end, it will be useful to consider unlabeled graphs: For con-

creteness, we say that a graph H ∈ G is unlabeled if it is canonically
labeled, that is, if it is the lexicographically �rst graph that is iso-

morphic to H . Then the set G∗ of unlabeled graphs is the subset

of G that contains exactly the canonically labeled graphs. Graph
parameters are functions f : G → Q that are invariant under

isomorphisms, and we view them as functions f : G∗ → Q.

216

STOC’17, June 2017, Montreal, Canada Radu Curticapean, Holger Dell, and Dániel Marx

For all H ,G ∈ G∗, we de�ne IndSub(H ,G) as the number of

(labeled) induced subgraphs of G that are isomorphic to H . We can

view this function as an in�nite matrix with indices from G∗ × G∗
and entries from N. The matrix indices are ordered according to

some �xed total order on G∗ that respects the total size |V (F)| +
|E(F)| of the graphs F ∈ G∗. Among graphs of the same total size,

ties may be broken arbitarily. If H and G are graphs such that H
has larger total size than G , then H cannot be an induced subgraph

ofG , that is, IndSub(H ,G) = 0. We conclude that IndSub is an upper

triangular matrix.

We de�ne graph motif parameters as graph parameters that can

be expressed as �nite linear combinations of induced subgraph

numbers. To obtain a clean formulation in terms of linear algebra,

we represent these linear combinations as in�nite vectors α ∈ QG∗

of �nite support. Here, the support supp(α) of a vector α is the set

of all graphs F ∈ G∗ with αF , 0.

De�nition 3.1. A graph parameter f : G∗ → Q is a graph motif
parameter if there is a vector α ∈ QG∗ with �nite support such that

f (G) = ∑
F ∈G∗ αF · IndSub(F ,G) holds for all G ∈ G∗.

If we interpret f and α as row vectors, this de�nition can also

be phrased as requiring f = α · IndSub for α of �nite support.

Here, for two vectors α , β ∈ QG
∗
, we de�ne the scalar product

(α , β) as

∑
F ∈G∗ αF · βF if this sum is de�ned.

1
The de�nition of

the matrix-vector and matrix-matrix products is then as usual.

The set of all graph motif parameters, endowed with the oper-

ations of scalar multiplication and pointwise addition, forms an

in�nite-dimensional vector space. More speci�cally, it is the �nitely

supported row-span of the matrix IndSub. We remark that even if

we drop the condition of α being �nitely supported, the scalar prod-

uct α · IndSub remains well-de�ned, since every column of IndSub

has �nite support (as a consequence of every graph G having only

�nitely many induced subgraphs H). In fact, it can be veri�ed that

every graph parameter f can be written as α · IndSub for some α .

3.1 Relations between Graph Motif Parameters
One may wonder why we chose induced subgraph numbers for our

de�nition of graph motif parameters and not, say, the numbers of

subgraphs or homomorphisms. It turns out that all of these choices

lead to the same vector space: Subgraph and homomorphism num-

bers are graph motif parameters themselves, and indeed they also

span the space of graph motif parameters.

Since some properties of graph motif parameters, such as their

computational complexity, turn out to be easier to understand over

the homomorphism basis, we show explicitly how to perform basis

transformations. To this end, we �rst present the basis transforma-

tion between subgraphs and induced subgraphs, then we proceed

with the basis transformation between subgraphs and homomor-

phisms.

Subgraphs and induced subgraphs. For graphsH ,G ∈ G∗, we �rst

show how to express Sub(H ,G) as a linear combination of numbers

IndSub(F ,G). To this end, note that every subgraph copy of H in G
is contained in some induced subgraph F of G on |V (H)| vertices.

This induced subgraph F is isomorphic to a supergraph of H , and

1
In this paper, all such scalar products degenerate into �nite sums, since the support

of at least one of the vectors will be �nite.

we call these supergraphs F extensions. More precisely, an extension
of H is a (labeled) supergraph X of H with V (X) = V (H).

Note that H might have di�erent extensions that are isomorphic.

Thus, given a graph F , let Ext(H , F) be the number of extensions X
of H that are isomorphic to F ; equivalently, we have

Ext(H , F) = [|V (H)| = |V (F)|] · Sub(H , F) ,
and we thus obtain

Sub(H ,G) =
∑
F ∈G∗

Ext(H , F) · IndSub(F ,G) . (5)

Every graph H admits only �nitely many extensions, and so the

function Sub(H ,?) is a graph motif parameter for every �xed H . In

matrix notation, the identity (5) takes on the concise form

Sub = Ext · IndSub . (6)

Since Sub, Ext, and IndSub are upper triangular matrices whose

diagonal entries are all equal to 1, every �nite principal submatrix

of any of these triangular matrices is invertible; indeed the entire

matrix Ext has an inverse with IndSub = Ext
−1 · Sub. This implies

that Sub also spans the space of graph motif parameters: We can

express every function IndSub(H ,?) as a linear combination of

functions Sub(F ,?) with coe�cients Ext
−1(H , F).

We remark that the values of the coe�cients Ext
−1(H , F) are

actually well understood: The identity (5) can be interpreted as a

zeta transform over the subset lattice [7, eq. (13) and (14)], so we

can perform Möbius inversion to prove that

Ext
−1(H , F) = (−1) |E(F) |− |E(H) | · Ext(H , F) (7)

holds for all graphs H and F . We will use this identity later to check

that Ext
−1(H , F) , 0 holds for speci�c pairs (H , F) of graphs.

Homomorphisms and subgraphs. We wish to express Hom(H ,G)
as a �nitely supported linear combination

∑
F αF Sub(F ,G) of sub-

graph numbers. For a homomorphism h from H to G, let I be

the image of h, that is, the graph with vertex set f (V (H)) and

edge set f (E(H)); we observe that h is a surjective homomorphism

from H to I and I is a subgraph ofG . That is, every homomorphism

from H to G can be written as a surjective homomorphism into a

subgraph F of G. Writing Surj(H , F) for the number of surjective

homomorphisms from H to F , we have

Hom(H ,G) =
∑
F ∈G∗

Surj(H , F) · Sub(F ,G) . (8)

Note that Surj(H , F) = 0 holds if H is smaller than F in total size.

Thus, analogously to the case of subgraphs, for each �xed H , we

have Surj(H , F) , 0 only for �nitely many F ∈ G∗. Therefore

Hom(H ,?) is indeed a graph motif parameter for every �xed H . In

matrix notation, we have

Hom = Surj · Sub , (9)

where Surj is a lower triangular matrix. Moreover, the diagonal

entries of Surj satisfy Surj(F , F) = Aut(F) , 0, and hence each

�nite principal submatrix is invertible. In fact the entire matrix has

an inverse Surj
−1

satisfying Sub = Surj
−1 ·Hom, and so Hom spans

the space of graph motif parameters as well.

The inverse of Surj can be understood in terms of a Möbius

inversion on a partition lattice. To this end, let us �rst consider

the support of the vector Surj(H ,?), that is, the set of all unlabeled

217

Homomorphisms Are a Good Basis for Counting Small Subgraphs STOC’17, June 2017, Montreal, Canada

graphs that are homomorphic images of H . This set will play an

important role throughout this paper, and we call it the spasm of H :

Spasm(H) =
{
F ∈ G∗ : Surj(H , F) > 0

}
. (10)

In a more graph-theoretical interpretation, the elements in the

spasm of H can also be understood as the unlabeled representatives

of all graphs that can be obtained from H by merging independent

sets. We make this more formal in the following de�nition. For

each H ∈ G, let Part(H) be the set of all partitions of V (H), where

a partition is a set of disjoint non-empty subsets B ⊆ V (H) whose

union equals V (H).

De�nition 3.2. For a graph H ∈ G and a partition ρ ∈ Part(H),
the quotient H/ρ is the graph obtained by identifying, for each

block B ∈ ρ, the vertices in B to a single vertex. This process may

create loops or parallel edges; we keep loops intact in H/ρ, and we

turn parallel edges into simple edges.

We get that F ∈ Spasm(H) for F ∈ G∗ if and only if there is a

partition ρ ∈ Part(H) with F ' H/ρ. Note that F ∈ G∗ does not

have loops, since we restricted the graphs in G∗ to be simple. Con-

sequently, F ' H/ρ can only hold if all blocks of ρ are independent

sets of H , that is, if ρ represents a proper coloring of H .

Every surjective homomorphism from H to F can be interpreted

as a pair (ρ,π) where H/ρ ' F and π ∈ Aut(F). Hence we have

Surj(H , F) = #Aut(F) ·
∑

ρ ∈Part(H)
[H/ρ ' F] , (11)

For two partitions ρ, ρ ′ ∈ Part(H), we write ρ ≥ ρ ′ if ρ is

coarser than ρ ′, that is, if every block of ρ ′ is contained in a block

of ρ. This partial order gives rise to the partition lattice (Part(H), ≥)
whose minimal element ⊥ is the �nest partition, i.e., the partition

whose blocks all have size one. Now (8) can be viewed as a zeta-

transformation on the partition lattice: Let H andG be �xed graphs.

Let f (ρ) = #Emb

(
H/ρ → G

)
. Then consider its upwards zeta-

transform on the partition lattice, i.e., the function
ˆf de�ned by

ˆf (ρ) =
∑
ρ′≥ρ

f (ρ ′) .

We observe that Hom(H ,G) = ˆf (⊥). By Möbius inversion, we get

(see also [7, eq. (15)]):

f (ρ) =
∑
ρ′≥ρ
(−1) |ρ |− |ρ′ | ·

(∏
B∈ρ′
(λ(ρ, ρ ′,B) − 1)!

)
· ˆf (ρ ′) ,

where λ(ρ, ρ ′,B) is the number of blocksC ∈ ρ withC ⊆ B. We set

ρ = ⊥ and collect terms ρ ′ that lead to isomorphic graphs H/ρ ′.
Note that, for a given graph isomorphism type, all terms leading to

this type are non-zero and have the same sign. We obtain

Surj
−1(H , F) = (−1)

|V (H) |− |V (F) |

#Aut(H) ·
∑

ρ ∈Part(H)
H/ρ'F

∏
B∈ρ
(|B | − 1)! . (12)

In particular, this yields Surj
−1(H , F) , 0 if and only Surj(H , F) , 0;

that is, F ∈ Spasm(H) is equivalent to Surj
−1(H , F) , 0. This obser-

vation will be crucial in the proof of our hardness result.

While we established before that Hom spans the space of graph

motif parameters, it is not immediately clear that the homomor-

phism numbers form a basis, that is, that the rows of Hom are

2 4 6 6

2 6 12 10

0 0 6 0

2 8 24 16

©«
ª®®®®®¬
=

2 0 0 0

2 2 0 0

0 0 6 0

2 4 6 2

©«
ª®®®®®®¬
·

1 2 3 3

0 1 3 2

0 0 1 0

0 0 0 1

©«
ª®®®®®®¬

Figure 2: The matrix identity HomS = SurjS · SubS , where S

is the spasm of the path , consisting of the four graphs
, , , .

linearly independent. The following proposition on the invertibility

of certain principal submatrices will be important for our hardness

results, and it implies that the rows ofHom are linearly independent

with respect to �nite linear combinations.

Lemma 3.3 (Proposition 5.43 in [39]). Let S ⊆ G∗ be a �nite
set of graphs that is closed under surjective homomorphisms, that is,
we have Spasm(H) ⊆ S for all H ∈ S . Then the principal submatrix
HomS of Hom is invertible and satis�es HomS = SurjS · SubS .

Proof. Let F ,G ∈ S and consider the expansion of Hom(H ,G)
from (8). Since S is closed under surjective homomorphisms, only

terms with F ∈ S contribute to the sum. Hence we have HomS =

SurjS · SubS . Since SurjS and SubS are triangular matrices with non-

zero diagonal entries, they are both invertible and so is HomS . �

See Figure 2 for an example of Lemma 3.3. Let us also note three

simple and useful properties that Spasm(H) inherits from H .

Fact 3.4. For all graphs H , the following properties hold:

(1) Every graph F ∈ Spasm(H) has at most |V (H)| vertices and
at most |E(H)| edges.

(2) If H has a vertex-cover of size b ∈ N, then every graph
F ∈ Spasm(H) has a vertex-cover of size b.

(3) IfH contains a matching with k ∈ N edges, then every graph
with k edges (and no isolated vertices) can be found as a
minor of some graph in Spasm(H).

Proof. Only the third claim merits some explanation. If Mk is

the (not necessarily induced) k-matching in H and F is the k-edge

graph we want to �nd, then we determine an arbitrary surjective

homomorphism д : V (Mk) → V (F), which hits every edge of F .

We are allowed to contract edges (due to the minor operation)

or consolidate non-edges of H (due to the quotient operation) to

build F . To this end, we simply identify all vertices of д−1(i), for

each i ∈ V (F), and delete all vertices in V (H) \V (Mk). �

Embeddings and strong embeddings. For completeness, we de�ne

matrices for embeddings and strong embeddings. For H ,G ∈ G∗,
let Emb(H ,G), StrEmb(H ,G), and Iso(H ,G) be the number of em-

beddings, strong embeddings, and isomorphisms from H to G, re-

spectively. Clearly Iso is a diagonal matrix with Iso(F , F) = Aut(F).
We have Emb = Iso · Sub and StrEmb = Iso · IndSub.

218

STOC’17, June 2017, Montreal, Canada Radu Curticapean, Holger Dell, and Dániel Marx

3.2 The Complexity of Graph Motif Parameters
Several computational problems can be associated with graph motif

parameters, but perhaps the most natural one is the evaluation
problem: Given as input a graph motif parameter f : G∗ → Q and

a graph G ∈ G∗, compute the value f (G).
This problem requires a suitable representation of the input f ,

and while we could choose any basis to represent f , the homo-

morphism basis turns out to be particularly useful for algorithmic

purposes. That is, in this subsection, we represent graph motif

parameters f as vector-matrix products f = α · Hom for �nitely

supported row vectors α ∈ QG∗ . The input is then the coe�cient

vector α , encoded as a list of pairs (F ,αF) for F ∈ supp(α). Let |α |
be the description length of α , and let tw(α) be the maximum

treewidth tw(F) among all graphs F ∈ supp(α). The following

lemma is immediate:

Lemma 3.5 (Algorithm). There is a deterministic algorithm that
is given α and G to compute (α · Hom)(G) in time д(α) + poly(|α |) ·
|V (G)|tw(α)+1 for some computable function д depending only on α .

Proof. For each F ∈ supp(α), run the algorithm from Propo-

sition 1.6 to compute the number Hom(F ,G) in time exp(O(k)) +
poly(k) · ntw(F)+1 where k = |V (F)| and n = |V (G)|. Then output

the sum

∑
F αF Hom(F ,G). �

We could choose other representations for f , such as coe�cient

vectors α with f = α · Sub or f = α · IndSub. However, switching

between these representations only adds an overhead of д(α) in the

running time, as can be seen from §3.1.

It is clear that the generic evaluation problem for graph motif

parameters is #W[1]-hard, since it subsumes counting k-cliques as a

special case. The following reduction shows that evaluating f with

f = α · Hom is at least as hard as every individual homomorphism

problemHom(F ,?) for F ∈ supp(α). That is, if a linear combination

of homomorphisms contains a “hard” pattern graph, then the entire

linear combination is “hard”.

Lemma 3.6 (Extracting summands). There is a deterministic
Turing reduction that is given a �nitely supported vector α ∈ QG∗ ,
a graph F ∈ supp(α), and a graph G ∈ G∗ to compute the num-
ber Hom(F ,G) with an oracle for the function (α · Hom)(?). The
reduction runs in time д(α) · poly(|V (G)|) for some computable func-
tion д, makes at most д(α) queries to (α · Hom)(?), and each queried
graph has at most maxH ∈supp(α) |V (H)| · |V (G)| vertices.

Proof. On input (α , F ,G), the reduction only makes queries

of the form (α · Hom)(G × X) for graphs X , where G × X is the

categorical product, that is, the graph with vertex set V (G) ×V (X)
such that (v,x) and (v ′,x ′) are adjacent in G × X if and only if

vv ′ ∈ E(G) and xx ′ ∈ E(X). The following holds [39, (5.30)]:

Hom(F ,G × X) = Hom(F ,G) · Hom(F ,X) . (13)

Using this identity for various X , we aim at setting up a linear

equation system that can be solved uniquely for Hom(F ,G). We

expand the sum (α · Hom)(G × X) and apply (13) to obtain∑
H
αH · Hom(H ,G) · Hom(H ,X) = (α · Hom)(G × X) . (14)

For each graph X , the reduction can compute the right side of this

linear equation using the oracle, and it can determine the num-

bers αH and Hom(H ,X) in some time f (α). It remains to choose

a suitable set S of graphs X so that the resulting system of linear

equations can be uniquely solved for Hom(F ,G).
Let S =

⋃
H ∈supp(α) Spasm(H) be the closure of supp(α) under

spasms. By Lemma 3.3, the matrix HomS is invertible. Moreover,

we have α · Hom = αS · HomS . We rewrite (14) as HomS ·x = b
where b ∈ QS and HomS ∈ QS×S represent the known quantities

with bX = (α · Hom)(G × X) and HomS (H ,X) = Hom(H ,X), and

the vector x ∈ QS represents the indeterminates with xH = αH ·
Hom(H ,G). We have x = (HomS)−1 · b, so we can solve uniquely

for the indeterminates. In particular, we can compute Hom(F ,G) =
xF /αF , since αF , 0 holds by assumption.

The set S and the matrices HomS and (HomS)−1 can be com-

puted in time д(α) for some computable function д. For the vector b,

we need to compute the product graphs and query the oracle. The

number of queries is |S | and thus bounded by д(α). Overall, the

reduction takes time д(α) · poly(|V (G)|). �

Analogously to the problems #Sub(H) in §1.1, we consider re-

stricted classes of graph motif parameters (represented as linear

combinations of homomorphism numbers) to obtain more expres-

sive hardness results.

De�nition 3.7. LetA ⊆ QG∗ be a set of �nitely supported vectors.

We let #Hom(A) be the computational problem whose task is to

compute (α · Hom)(G) on input α ∈ A and G ∈ G∗.

We apply Lemma 3.6 to establish the hard cases of #Hom(A).

Lemma 3.8 (Hardness). Let A ⊆ QG∗ be a recursively enu-
merable class of �nitely supported vectors. If A contains vectors
of arbitrarily large treewidth tw(α), then #Hom(A) is #W[1]-hard
when parameterized by |α |. Moreover, the problem does not have
д(α) · |V (G)|o(tw(α)/log tw(α)) time algorithms if #ETH holds.

Proof. For each α ∈ A, we select a graph Fα ∈ supp(α) of

maximum treewidth. Then the set F with F = { Fα : α ∈ A } has

unbounded treewidth. To prove the hardness, we provide a param-

eterized Turing reduction from #Hom(F) to #Hom(A). Since F
has unbounded treewidth, Theorem 1.8 implies that #Hom(F) is

#W[1]-hard when parameterized by |V (F)| and Proposition 1.9 im-

plies it cannot be computed in time д(F) · |V (G)|o(tw(F)/log tw(F))
for any computable д if #ETH holds.

Let (F ,G) with F ∈ F be an input for the reduction, whose goal

is to compute Hom(F ,G) with oracle access to #Hom(A). First the

reduction computes some α ∈ A with Fα = F . This is possible,

since A is recursively enumerable. The reduction then applies the

algorithm from Lemma 3.6 on input (α , F ,G). The algorithm runs

in time д(α) · poly(|V (G)|) for a computable function д and makes

queries to the function (α ·Hom)(?); its output is the desired number

Hom(F ,G).
For the running time of the reduction, note that �nding α takes

time h(k) for some computable function h, where k = |V (F)|. The

algorithm from Lemma 3.6 runs in some time д(α) · poly(n) ≤
h(k) · poly(n). Hence we indeed obtain a parameterized reduction

from #Hom(F) to #Hom(A), which proves that #Hom(A) is #W[1]-
hard when parameterized by |α |. Finally, we have tw(α) = tw(F), so

219

Homomorphisms Are a Good Basis for Counting Small Subgraphs STOC’17, June 2017, Montreal, Canada

if #Hom(A) can be computed in time f (α) ·no(tw(α)/log tw(α)), then

#Hom(F) can be solved in time f (F) · no(tw(F)/log tw(F)), which by

Proposition 1.9 is impossible if #ETH holds. �

From the perspective of �ne-grained complexity, for every �xed
graph motif parameter f , Lemma 3.5 yields an algorithm for evalu-

ating f on n-vertex graphs in some timeO(nc). Here, c is a constant

that depends on the largest treewidth in the homomorphism repre-

sentation of f . To express this connection more precisely, given a

graph motif parameter f , we de�ne the constant

C(f) = inf{ c ∈ R : f can be computed in time O(nc) } . (15)

In particular, we can consider this constant for the graph parameters

Hom(F ,?) for �xed graphs F . Then the constant C(Hom(F ,?)) is

the smallest possible exponent required for computing Hom(F ,G)
on n-vertex graphs G. The proof of Lemma 3.5 implies

C(f) ≤ max

F ∈supp(α)
C(Hom(F ,?)) ,

where α ∈ QG∗ is the representation of f over the homomorphism

basis, that is, the vector α with f = α · Hom. Lemma 3.6 implies

the corresponding lower bound, so in fact we have

C(f) = max

F ∈supp(α)
C(Hom(F ,?)) , (16)

Proposition 1.9 implies that C(Hom(F ,?)) ≤ tw(F) + 1 holds.

Under the assumption FPT , #W[1], Theorem 1.8 implies that

C(Hom(F ,?)) cannot be bounded by a universal constant, and un-

der the stronger assumption #ETH, Proposition 1.9 implies that

C(Hom(F ,?)) is not bounded by o(tw(F)/log tw(F)), even when F
is restricted to be from any �xed family F of graphs of unbounded

treewidth. The k-clique hypothesis is that the current fastest al-

gorithm for k-clique is optimal [1], which can be formalized as

C(Hom(Kk ,?)) = ωk/3. These facts suggest that the representa-

tion of a graph motif parameter f in the homomorphism basis

and your favorite complexity hypotheses are all that is needed to

understand the complexity of f (concerning the exponent of n).

Remark 3.9. Lovász’s framework is easily adapted to the setting

of vertex-colored pattern and host graphs. Here, we only wish

to count homomorphisms (or embeddings, or strong embeddings)

from H into G that map vertices of H to vertices of G of the same

colors. In the de�nition of the spasm of H , one is then only allowed

to identify non-adjacent vertices of the same color, that is, the

allowed partitions ρ are those where each block is a monochromatic

independent set. The algorithm (Lemma 3.5) and hardness result

(Lemma 3.8) can also be adapted to the setting of vertex-colored

homomorphisms without modi�cations. We excluded these variants

from the main text to simplify the presentation.

4 ALGORITHMS FOR COUNTING
SUBGRAPHS

In this section, we obtain algorithms for counting subgraphs and em-

beddings by expressing these quantities over the homomorphism

basis via (8) and running an algorithm for counting homomor-

phisms. More concretely, recall that

Sub(H ,G) =
∑
F

Surj
−1(H , F) · Hom(F ,G) . (17)

We know from (12) that Surj
−1(H , F) , 0 is equivalent to F ∈

Spasm(H). Hence for �xed patternsH , if we can compute the homo-

morphism numbers Hom(F ,G) for all F ∈ Spasm(H) in time O(nc)
onn-vertex graphsG , then we can compute Sub(H ,G) in timeO(nc).
When using the basic treewidth-based algorithm from Proposi-

tion 1.6, this running time O(nc) is governed by the maximum

treewidth among the graphs in Spasm(H).

Theorem 1.1 (restated). There is a deterministic algorithm that

is given a k-edge graph H and an n-vertex graph G to compute

#Sub

(
H → G

)
in timekO (k)nt+1, where t is the maximum treewidth

among all graphs in Spasm(H).

Proof. We obtain #Sub

(
H → G

)
by evaluating the right side

of (17) in the straightforward manner: First compute the spasm ofH
and all coe�cients Surj

−1(H , F) for F ∈ Spasm(H) by �rst comput-

ing Surj
Spasm(H) via brute-force and then inverting this triangular

matrix. Then, for each F ∈ Spasm(H), compute #Hom

(
F → G

)
via Proposition 1.6. Finally, we compute the sum on the right side

of (17) to obtain #Sub

(
H → G

)
.

For the running time claim, note that the size of Spasm(H) is

bounded by the number of partitions of the setV (H), which in turn

can be bounded crudely by kO (k). Each term #Hom

(
F → G

)
can

be computed in time exp(O(k)) · nt+1 by Proposition 1.6. �

Theorem 1.1 is particularly useful for sparse pattern graphs H :

We mentioned in Fact 3.4 that any k-edge graph H only contains

graphs with at most k edges in its spasm. Using this fact, we can

exploit known bounds on the treewidth of sparse graphs to bound

the running time guaranteed by Theorem 1.1: If F has k edges, then

tw(F) ≤ ck + o(k) is known to hold for fairly small constants c < 1.

Furthermore, there are k-edge graphs F with tw(F) = Θ(k). Since

the best known upper and lower bounds on the treewidth of k-

edge graphs are not tight, it will be useful to dedicate a universal

constant ξ to the linear coe�cient in the treewidth bound.

De�nition 4.1. For k ∈ N, let tw
∗(k) be de�ned as the maximum

treewidth among all graphs with k edges. We de�ne the constant

ξ ∈ R as the limit superior

ξ = lim sup

k→∞

tw
∗(k)
k
.

Using the existence of good 3-regular expanders, Dvořák and

Norin [20, Corollary 7] �nd a family of 3-regular graphs on k edges

and n = 2

3
k vertices with treewidth at least

1

24
n − 1 = 1

36
k − 1

for all large enough k . On the other hand, Scott and Sorkin [48,

Corollary 21] prove that tw
∗(k) ≤ 13

75
k+o(k) holds. Collecting these

two results, we get the following bounds on ξ .

Theorem 4.2 ([20, 48]). We have 1

36
≤ ξ ≤ 13

75
.

Since ξ ≤ 13

75
< 0.174, this immediately implies upper bounds

on the running times obtained from Theorem 1.1.

Corollary 1.2 (restated). There is a deterministic algorithm that

is given H and G to compute #Sub

(
H → G

)
. The algorithm runs in

time f (H) · |V (G)|ξ ·k+o(k), where k = |E(H)| and ξ < 0.174 is the

constant from De�nition 4.1.

220

STOC’17, June 2017, Montreal, Canada Radu Curticapean, Holger Dell, and Dániel Marx

Instead of relying on Proposition 1.6 to count homomorphisms

in Theorem 1.1, we can use more sophisticated methods where

available. For instance, in the full version, we use fast matrix multi-

plication to count homomorphisms from patterns H of treewidth

at most two, thus proving Theorem 1.3.

5 COMPLEXITY OF LINEAR COMBINATION
PROBLEMS

5.1 Linear Combinations of Subgraphs
We prove the dichotomy stated in Theorems 1.4 and 1.5. Recall

that due to the basis transformation (17), we can express linear

combinations of subgraph numbers as equivalent linear combina-

tions of homomorphism numbers. By Lemma 3.8, the most di�cult

homomorphism number in this linear combination governs the

complexity of the problem. Since the hardness criterion for homo-

morphisms is treewidth, and expressing subgraph numbers in the

homomorphism basis yields terms for all graphs in the spasm, we

�rst make the following observation.

Fact 5.1. Let H be a graph. If H has a maximum matching of
sizek , the maximum treewidth among all graphs in Spasm(H) isΘ(k).

Proof. Let k be the size of a maximum matching of H . Then

the vertex-cover number of H is at least k and at most 2k . By the

second item of Fact 3.4, the vertex-cover number and thus the

treewidth of graphs in the spasm of H is then also at most 2k .

For the lower bound, we use the third item of Claim 3.4: Since H
contains a matching of size k , every k-edge graph occurs as a minor

of some graph in Spasm(H). By Theorem 4.2, there exist k-edge

graphs F with treewidth tw
∗(k) ≥ Ω(k). Moreover, taking minors

does not increase the treewidth, so there is a graph in Spasm(H)
with treewidth at least Ω(k). �

Let A ⊆ QG∗ be a family of �nitely supported vectors, and

recall the matrices Sub and Surj from Section 3.1. We de�ne the set

A · Surj−1 as the set of all vectors α · Surj−1 for α ∈ A. That is, for

each α ∈ A, the graph motif parameter α · Sub appears in the set

A · Surj−1 via its representation in the homomorphism basis.

Theorem 5.2. Let A ⊆ QG∗ be a recursively enumerable fam-
ily of �nitely supported vectors. If there is a constant t ∈ N such
that all vectors β ∈ A · Surj−1 have treewidth tw(β) ≤ t , then the
problem #Sub(A) to compute∑

H ∈G∗
αH · #Sub

(
H → G

)
,

on input α ∈ A and an n-vertex graph G, admits an algorithm with
running time д(α) · nt+1. Otherwise, it is #W[1]-hard parameterized
by the description length of α , and it cannot be computed in time
д(α) · no(t/log t) for t = tw(α · Surj−1) unless #ETH fails.

Proof. Recall that Sub = Surj
−1

Hom holds by (9), so we have

α Sub = α Surj
−1

Hom for all α ∈ A. This implies the algorithmic

claim via Lemma 3.5 and the hardness claims via Lemma 3.8. �

Since any family of subgraph patternsH can be represented as a

family A of linear combinations in which each vector has support

one, we obtain Theorem 1.4 and Theorem 1.5 as a special case.

The quantitative lower bound regarding the vertex-cover number

follows from the relationship between the vertex-cover number

and the largest treewidth in the spasm via Fact 5.1.

Proof of Theorems 1.4 and 1.5. Let H be a graph family of

unbounded vertex-cover number. Its closure

⋃
H ∈H Spasm(H) has

unbounded treewidth by Fact 5.1. We want to apply Theorem 5.2.

Let A be the set of all αH where αHF = [H = F] holds for some

graph H ∈ H . That is, αH contains H with coe�cient 1, and no

other graphs. Clearly #Sub(A) is equivalent to #Sub(H).
Now consider the set B with B = A · Surj−1. We need to prove

that the graph class

⋃
β ∈B supp(β) has unbounded treewidth. We

do so by showing that this class is in fact equal to

⋃
H ∈H Spasm(H).

By de�nition, for each H ∈ H , the set B contains a vector βH with

βH = αH · Surj−1. Expanding this vector-matrix product, we get

βHF =
∑
J ∈G∗

αHJ · Surj
−1(J , F) .

Since αHJ = [H = J], we have βHF = Surj
−1(H , F). By (12), the latter

is non-zero if and only if F ∈ Spasm(H), so the claim follows. �

We present an example that does not directly follow from [15],

but that does follow from Theorem 5.2. The following statement

was proved recently using a more complicated method.

Corollary 5.3 ([8]). Given k and G, counting all trees with k
vertices in G is #W[1]-hard when parameterized by k .

Proof. The number of k-vertex trees can be seen as a linear

combination of subgraph numbers; for each �xed k , we set αF = 1

for all unlabeled graphs F ∈ G∗ such that F is a k-vertex tree,

and αF = 0 otherwise. Let A be the family of all such α over

all k ∈ N. Since the class of all trees has unbounded vertex cover

number, Fact 5.1 shows that the union of spasms of k-vertex trees

has unbounded treewidth as k grows.

Write Tk for the set of all k-vertex trees. For each k ∈ N, pick

a graph Fk ∈ Spasm(Tk) such that the sequence F1, F2, . . . has

unbounded treewidth. In order to apply Theorem 5.2, we need to

prove that some vector β ∈ A · Surj−1 indeed has Fk in its support:

To this end, let α ∈ A be the vector corresponding to all k-vertex

trees and let β = α · Surj−1. We claim that Fk is contained in the

support of β . To see this, we expand the matrix-vector product:

βFk = (α · Surj
−1)Fk =

∑
T ∈Tk

Surj
−1(T , Fk) . (18)

Recall from (12) that Surj
−1(T , Fk) , 0 if and only if Fk ∈ Spasm(T).

The same equation implies that the sign of Surj
−1(T , Fk) is equal

to (−1) |V (T) |− |V (Fk) | for all T ∈ Tk with Fk ∈ Spasm(T). Since

|V (T)| = k holds for all T ∈ Tk , the sign is in fact (−1)k−|V (Fk) | .
Therefore, all terms in the sum of (18) have the same sign and at

least one term is non-zero; thus βFk , 0 holds as claimed. �

The preceding corollary also holds for counting k-vertex forests,

and can be generalized to families A where each linear combina-

tion α contains only graphs with the same number of vertices, and

where A contains graphs of unbounded vertex-cover number in

their support. In fact, the graphs in supp(α) do not even need to

have the same number of vertices, but the same parity of number

of vertices su�ces. The proof is analogous to that of Corollary 5.3.

221

Homomorphisms Are a Good Basis for Counting Small Subgraphs STOC’17, June 2017, Montreal, Canada

5.2 Linear Combinations of Induced Subgraphs
Chen, Thurley, and Weyer [12] consider the restriction of comput-

ing #StrEmb

(
H → G

)
, parameterized by k = |V (H)|, when the

graphs H are chosen from some classH . They prove that the prob-

lem is #W[1]-hard ifH is in�nite, otherwise it is polynomial-time

computable. Recall that counting strong embeddings is equivalent

to counting induced subgraphs. In full analogy to Theorem 5.2, we

can generalize their result to a classi�cation of linear combinations

of induced subgraph numbers. For the following statement, recall

the matrices Ext and Surj from Section 3.1.

Theorem 1.13 (restated). Let A ⊆ QG∗ be a recursively enumer-

able family of �nitely supported vectors. If there is a constant t ∈ N
such that all vectors β ∈ A·Ext−1 · Surj−1 have treewidth tw(β) ≤ t ,
then the problem #Ind(A) to compute∑

H ∈G∗
αH · #IndSub

(
H → G

)
,

on input α ∈ A and an n-vertex graphG , admits an algorithm with

running time д(α) ·nt+1. Otherwise, it is #W[1]-hard parameterized

by the description length of α , and it cannot be solved in time

д(α) · no(t/log t) for t = tw(α · Ext−1 · Surj−1) unless #ETH fails.

The proof is analogous to that of Theorem 5.2, using the basis

change matrix Ext
−1 · Surj−1 rather than Surj

−1
.

On a related note, Jerrum and Meeks [29–31, 41] introduced the

following generalization of counting induced subgraphs: Let Φ be

some graph property. The problem #IndProp(Φ) is, given a graphG
and an integer k , to compute the number of induced k-vertex sub-

graphs that have property Φ. Let us write this number as IΦ,k (G).
Since IΦ,k (G) can be expressed as a sum

∑
H IndSub(H ,G) over all

k-vertex graphsH that satisfy Φ, Theorem 1.13 immediately implies

a complexity dichotomy for these problems.

Corollary 1.11 (restated). Let Φ be any decidable graph property.

The problem #IndProp(Φ) is �xed-parameter tractable if all IΦ,k
can be represented as linear combinations of homomorphisms from

graphs of bounded treewidth. Otherwise, the problem is #W[1]-hard

when parameterized by k .

Finally, let us sketch how to recover the hardness result of Chen,

Thurley, and Weyer [12] for counting induced subgraphs from a

�xed classH as a special case of Corollary 1.11: When representing

#IndSub

(
H → G

)
for a k-vertex graph H as a linear combination of

subgraph numbers #Sub

(
H ′ → G

)
via (5), this linear combination

has a non-zero coe�cient Ext
−1(H ,H ′) for the clique H ′ = Kk .

Indeed, the k-clique extends every graph on k vertices, so we have

Ext(H ,H ′) , 0, which in turn implies Ext
−1(H ,H ′) , 0 by (7).

When further writing each term #Sub

(
H ′ → G

)
as a linear combi-

nation of homomorphisms #Hom

(
H ′′ → G

)
for H ′′ ∈ Spasm(H ′),

we get exactly one term for H ′′ = H ′ = Kk , since Kk only oc-

curs in its own spasm, and we have Surj
−1(H ′,H ′′) = 1/#Aut(H ′).

Hence the coe�cient of #Hom

(
Kk → G

)
in the representation of

#IndSub

(
H → G

)
is non-zero. Thus, ifH contains in�nitely many

graphs, we have unbounded cliques in the homomorphism repre-

sentation, and the problem of counting induced subgraphs fromH
is #W[1]-hard by Corollary 1.11.

6 OPEN PROBLEMS
We have de�ned the space of graph motif parameters and explored

three useful bases thereof, namely, Hom, Sub, and IndSub. These

bases capture well-studied classes of counting problems, and we

could use basis changes to transfer results between these classes.

Are there other computationally interesting bases? Moreover, are

there other interesting subspaces of the space of all graph parame-

ters other than the graph motif parameters?

ACKNOWLEDGMENTS
Thanks a lot to Édouard Bonnet for pointing out [48] and [20].

REFERENCES
[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current

clique algorithms are optimal, so is Valiant’s parser. In Proceedings of the 56th
Annual Symposium on Foundations of Computer Science (FOCS), pages 98–117,

2015.

[2] Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and

S Cenk Sahinalp. Biomolecular network motif counting and discovery by color

coding. Bioinformatics, 24(13):i241–i249, 2008.

[3] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length

cycles. Algorithmica, 17(3):209–223, 1997.

[4] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Count-

ing paths and packings in halves. In Proceedings of the 17th Annual European
Symposium on Algorithms (ESA), pages 578–586, 2009.

[5] Andreas Björklund, Petteri Kaski, and Lukasz Kowalik. Counting thin subgraphs

via packings faster than meet-in-the-middle time. In Proceedings of the 25th
Annual Symposium on Discrete Algorithms (SODA), pages 594–603, 2014.

[6] Markus Bläser and Radu Curticapean. Weighted counting of k-matchings is

#W[1]-hard. In Proceedings of the 7th International Symposium on Parameterized
and Exact Computation (IPEC), pages 171–181, 2012.

[7] Christian Borgs, Jennifer Chayes, László Lovász, Vera T Sós, and Katalin Veszter-

gombi. Counting graph homomorphisms. In Topics in discrete mathematics,
pages 315–371. Springer, 2006.

[8] Cornelius Brand and Marc Roth. Parameterized counting of trees, forests and ma-

troid bases. In Proceedings of the 12th International Computer Science Symposium
in Russia (CSR), 2017 (to appear).

[9] Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A.

Kanj, and Ge Xia. Tight lower bounds for certain parameterized NP-hard prob-

lems. Information and Computation, 201(2):216–231, 2005.

[10] Jin Chen, Wynne Hsu, Mong Li Lee, and See-Kiong Ng. Nemo�nder: Dissecting

genome-wide protein-protein interactions with meso-scale network motifs. In

Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 106–115. ACM, 2006.

[11] Yijia Chen, Martin Grohe, and Bingkai Lin. The hardness of embedding grids

and walls. arXiv preprint arXiv:1703.06423, 2017.

[12] Yijia Chen, Marc Thurley, and Mark Weyer. Understanding the complexity

of induced subgraph isomorphisms. In Proceedings of the 35th International
Colloquium on Automata, Languages and Programming (ICALP), pages 587–596,

2008.

[13] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the 3rd Annual Symposium on Theory of Computing (STOC), pages 151–158,

1971.

[14] Radu Curticapean. Counting matchings of size k is W[1]-hard. In Proceedings
of the 40th International Conference on Automata, Languages, and Programming
(ICALP), pages 352–363, 2013.

[15] Radu Curticapean and Dániel Marx. Complexity of counting subgraphs: Only

the boundedness of the vertex-cover number counts. In Proceedings of the 55th
Annual Symposium on Foundations of Computer Science (FOCS), pages 130–139,

2014.

[16] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,

Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

[17] Víctor Dalmau and Peter Jonsson. The complexity of counting homomorphisms

seen from the other side. Theoretical Computer Science, 329(1):315–323, 2004.

[18] Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlén.

Exponential time complexity of the permanent and the Tutte polynomial. ACM
Transactions on Algorithms, 10(4):21:1–21:32, 2014.

[19] Josep Díaz, Maria J. Serna, and Dimitrios M. Thilikos. Counting H-colorings of

partial k-trees. Theoretical Computer Science, 281(1-2):291–309, 2002.

[20] Zdeněk Dvořák and Sergey Norin. Strongly sublinear separators and polynomial

expansion. SIAM Journal on Discrete Mathematics, 30(2):1095–1101, 2016.

222

STOC’17, June 2017, Montreal, Canada Radu Curticapean, Holger Dell, and Dániel Marx

[21] Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of �xed pa-

rameter clique and dominating set. Theoretical Computer Science, 326(1):57–67,

2004.

[22] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theo-

retical Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2006.

[23] François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings
of the 39th International Symposium on Symbolic and Algebraic Computation
(ISSAC), pages 296–303, 2014.

[24] Joshua A Grochow and Manolis Kellis. Network motif discovery using subgraph

enumeration and symmetry-breaking. In Annual International Conference on
Research in Computational Molecular Biology, pages 92–106. Springer, 2007.

[25] Martin Grohe. The complexity of homomorphism and constraint satisfaction

problems seen from the other side. Journal of the ACM, 54(1):1:1–1:24, 2007.

[26] Russell Impagliazzo and Ramamohan Paturi. On the complexity ofk -SAT. Journal
of Computer and System Sciences, 62(2):367–375, 2001.

[27] Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM
Journal on Computing, 7(4):413–423, 1978.

[28] Bart M. P. Jansen and Dániel Marx. Characterizing the easy-to-�nd subgraphs

from the viewpoint of polynomial-time algorithms, kernels, and turing kernels.

In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 616–629, 2015.

[29] Mark Jerrum and Kitty Meeks. The parameterised complexity of counting even

and odd induced subgraphs. CoRR, abs/1410.3375, 2014.

[30] Mark Jerrum and Kitty Meeks. The parameterised complexity of counting

connected subgraphs and graph motifs. Journal of Computer and System Sciences,
81(4):702–716, 2015.

[31] Mark Jerrum and Kitty Meeks. Some hard families of parameterized counting

problems. ACM Transactions on Computation Theory, 7(3):11, 2015.

[32] Zahra Razaghi Moghadam Kashani, Hayedeh Ahrabian, Elahe Elahi, Abbas

Nowzari-Dalini, Elnaz Saberi Ansari, Sahar Asadi, Shahin Mohammadi, Falk

Schreiber, and Ali Masoudi-Nejad. Kavosh: A new algorithm for �nding network

motifs. BMC bioinformatics, 10(1):318, 2009.

[33] Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. E�cient sampling

algorithm for estimating subgraph concentrations and detecting network motifs.

Bioinformatics, 20(11):1746–1758, 2004.

[34] Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small induced

subgraphs e�ciently. Information Processing Letters, 74(3):115–121, 2000.

[35] Ioannis Koutis and Ryan Williams. LIMITS and applications of group algebras

for parameterized problems. ACM Transactions on Algorithms, 12(3):31:1–31:18,

2016.

[36] Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Counting and

detecting small subgraphs via equations. SIAM Journal on Discrete Mathematics,
27(2):892–909, 2013.

[37] Bingkai Lin. The parameterized complexity of k-biclique. In Proceedings of
the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

605–615, 2015.

[38] László Lovász. Operations with structures. Acta Mathematica Hungarica, 18(3-

4):321–328, 1967.

[39] László Lovász. Large networks and graph limits, volume 60. American Mathe-

matical Society Providence, 2012.

[40] Dániel Marx. Can you beat treewidth? Theory of Computing, 6(1):85–112, 2010.

[41] Kitty Meeks. The challenges of unbounded treewidth in parameterised subgraph

counting problems. Discrete Applied Mathematics, 198:170–194, 2016.

[42] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,

and Uri Alon. Network motifs: Simple building blocks of complex networks.

Science, 298(5594):824–827, 2002.

[43] Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph

problem. Commentationes Mathematicae Universitatis Carolinae, 26(2):415–419,

1985.

[44] Rolf Niedermeier. Invitation to �xed-parameter algorithms, volume 31 of Oxford
Lecture Series in Mathematics and its Applications. Oxford University Press,

Oxford, 2006.

[45] Saeed Omidi, Falk Schreiber, and Ali Masoudi-Nejad. MODA: An e�cient al-

gorithm for network motif discovery in biological networks. Genes & genetic
systems, 84(5):385–395, 2009.

[46] Benjamin Schiller, Sven Jager, Kay Hamacher, and Thorsten Strufe. Stream - A

stream-based algorithm for counting motifs in dynamic graphs. In Proceedings of
the 2nd International Conference on Algorithms for Computational Biology (AlCoB),
pages 53–67, 2015.

[47] Falk Schreiber and Henning Schwöbbermeyer. Frequency concepts and pattern

detection for the analysis of motifs in networks. In Transactions on computational
systems biology III, pages 89–104. Springer, 2005.

[48] Alexander D. Scott and Gregory B. Sorkin. Linear-programming design and

analysis of fast algorithms for Max 2-CSP. Discrete Optimization, 4(3-4):260–287,

2007.

[49] Julian R Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM,

23(1):31–42, 1976.

[50] Leslie G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8(2):189–201, 1979.

[51] Sebastian Wernicke. E�cient detection of network motifs. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, 3(4), 2006.

[52] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-

Winograd. In Proceedings of the 44th Symposium on Theory of Computing Confer-
ence (STOC), pages 887–898, 2012.

[53] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences be-

tween path, matrix and triangle problems. In Proceedings of the 51st Annual
Symposium on Foundations of Computer Science (FOCS), pages 645–654, 2010.

[54] Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and

counting weighted subgraphs. SIAM Journal on Computing, 42(3):831–854, 2013.

223

	Abstract
	1 Introduction
	1.1 Counting Small Subgraphs
	1.2 Counting Small Homomorphisms
	1.3 Counting Small Induced Subgraphs
	1.4 A Unified View: Graph Motif Parameters
	1.5 Counting Vertex-colored Subgraphs
	1.6 Organization of the Paper

	2 Preliminaries
	2.1 Parameterized Complexity Theory
	2.2 Graphs, Subgraphs, and Homomorphisms

	3 The Space of Graph Motif Parameters
	3.1 Relations between Graph Motif Parameters
	3.2 The Complexity of Graph Motif Parameters

	4 Algorithms for Counting Subgraphs
	5 Complexity of Linear Combination Problems
	5.1 Linear Combinations of Subgraphs
	5.2 Linear Combinations of Induced Subgraphs

	6 Open Problems
	References

