
A Framework for ETH-Tight Algorithms and Lower Bounds in
Geometric Intersection Graphs∗†

Mark de Berg
Eindhoven University of Technology

Eindhoven, The Netherlands
M.T.d.Berg@tue.nl

Hans L. Bodlaender
Utrecht University and

Eindhoven University of Technology
Utrecht, The Netherlands
H.L.Bodlaender@uu.nl

Sándor Kisfaludi-Bak
Eindhoven University of Technology

Eindhoven, The Netherlands
S.Kisfaludi.Bak@tue.nl

Dániel Marx
Hungarian Academy of Sciences

(MTA SZTAKI)
Budapest, Hungary
DMarx@cs.bme.hu

Tom C. van der Zanden
Utrecht University

Utrecht, The Netherlands
T.C.vanderZanden@uu.nl

ABSTRACT

We give an algorithmic and lower-bound framework that facili-
tates the construction of subexponential algorithms and matching
conditional complexity bounds. It can be applied to a wide range
of geometric intersection graphs (intersections of similarly sized
fat objects), yielding algorithms with running time 2O (n1−1/d) for
any fixed dimension d ≥ 2 for many well known graph problems,
including Independent Set, r -Dominating Set for constant r , and
Steiner Tree. For most problems, we get improved running times
compared to prior work; in some cases, we give the first known
subexponential algorithm in geometric intersection graphs. Addi-
tionally, most of the obtained algorithms work on the graph itself,
i.e., do not require any geometric information. Our algorithmic
framework is based on a weighted separator theorem and various
treewidth techniques.

The lower bound framework is based on a constructive embed-
ding of graphs into d-dimensional grids, and it allows us to derive
matching 2Ω(n1−1/d) lower bounds under the Exponential Time Hy-
pothesis even in the much more restricted class of d-dimensional
induced grid graphs.

CCS CONCEPTS

• Theory of computation → Computational geometry; Pa-
rameterized complexity and exact algorithms;

∗This work was supported by the NETWORKS project, funded by the Netherlands
Organization for Scientific Research NWO under project no. 024.002.003 and by the
ERC Consolidator Grant SYSTEMATICGRAPH (No. 725978) of the European Research
Council.
†The full version is available at [9] (http://arxiv.org/abs/1803.10633).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
STOC’18, June 25–29, 2018, Los Angeles, CA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5559-9/18/06. . . $15.00
https://doi.org/10.1145/3188745.3188854

KEYWORDS

Geometric intersection graphs, Subexponential algorithms, Geo-
metric separator, Treewidth, Graph minors

ACM Reference Format:

Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx,
and Tom C. van der Zanden. 2018. A Framework for ETH-Tight Algorithms
and Lower Bounds in Geometric Intersection Graphs. In Proceedings of 50th

Annual ACM SIGACT Symposium on the Theory of Computing (STOC’18).

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3188745.3188854

1 INTRODUCTION

Many hard graph problems that seem to require 2Ω(n) time on gen-
eral graphs, where n is the number of vertices, can be solved in
subexponential time on planar graphs. In particular, many of these
problems can be solved in 2O (

√
n) time on planar graphs. Examples

of problems for which this so-called square-root phenomenon [21]
holds include Independent Set, Vertex Cover, Hamiltonian
Cycle. The great speed-ups that the square-root phenomenon of-
fers lead to the question: are there other graph classes that also
exhibit this phenomenon, and is there an overarching framework
to obtain algorithms with subexponential running time for these
graph classes? The planar separator theorem [19, 20] and treewidth-
based algorithms [8] offer a partial answer to this question. They
give a general framework to obtain subexponential algorithms on
planar graphs or, more generally, on H -minor free graphs. It builds
heavily on the fact that H -minor free graphs have treewidthO(

√
n)

and, hence, admit a separator of size (
√
n). A similar line of work is

emerging in the area of geometric intersection graphs, with run-
ning times of the form nO (n1−1/d), or in one case 2O (n1−1/d) in the
d-dimensional case [23, 25]. The main goal of our paper is to estab-
lish a framework for a wide class of geometric intersection graphs
that is similar to the framework known for planar graphs, while
guaranteeing the running time 2O (n1−1/d).

The intersection graphG[F] of a set F of objects inRd is the graph
whose vertex set is F and in which two vertices are connected when
the corresponding objects intersect. (Unit-)disk graphs, where F
consists of (unit) disks in the plane are a widely studied class of
intersection graphs. Disk graphs form a natural generalization of

574

http://arxiv.org/abs/1803.10633
https://doi.org/10.1145/3188745.3188854
https://doi.org/10.1145/3188745.3188854

STOC’18, June 25–29, 2018, Los Angeles, CA, USA de Berg, Bodlaender, Kisfaludi-Bak, Marx, and van der Zanden

planar graphs, since any planar graph can be realized as the inter-
section graph of a set of disks in the plane. In this paper we consider
intersection graphs of a set F of fat objects, where an object o ⊆ Rd

is α-fat, for some 0 < α ⩽ 1 if there are balls Bin and Bout in Rd
such that Bin ⊆ o ⊆ Bout and radius(Bin)/radius(Bout) ⩾ α . For
example, disks are 1-fat and squares are (1/

√
2)-fat. From now on

we assume that α is an absolute constant, and often simply speak
of fat objects. Note that we do not require the objects in F to be
convex, or even connected. Thus our definition is very general. In
particular, it does not imply that F has near-linear union complexity,
as is the case for so-called locally-fat objects [2]. In most of our
results we furthermore assume that the objects in F are similarly

sized, meaning that the ratio of their diameters is bounded by a
fixed constant.

Several important graph problems have been investigated for
(unit-)disk graphs or other types of intersection graphs [1, 4, 11,
12, 23]. However, an overarching framework that helps designing
subexponential algorithms has remained elusive. A major hurdle to
obtain such a framework is that even unit-square graphs can already
have arbitrarily large cliques and so they do not necessarily have
small separators or small treewidth. One may hope that intersection
graphs have low cliquewidth or rankwidth—this has proven to be
useful for various dense graph classes [7, 24]—but unfortunately this
is not the case even when considering only unit interval graphs [14].
One way to circumvent this hurdle is to restrict the attention to
intersection graphs of disks of bounded ply [3, 15]. This prevents
large cliques, but the restriction to bounded-ply graphs severely
limits the inputs that can be handled. A major goal of our work is
thus to give a framework that can even be applied when the ply is
unbounded.

Our first contribution: an algorithmic framework for geometric

intersection graphs of fat objects. As mentioned, many subexponen-
tial results for planar graphs rely on planar separators. Our first
contribution is a generalization of this result to intersection graphs
of (arbitrarily-sized) fat objects in Rd . Since these graphs can have
large cliques we cannot bound the number of vertices in the sepa-
rator. Instead, we build a separator consisting of cliques. We then
define a weight function γ on these cliques—in our applications it
suffices to define the weight of a clique C as γ (|C |) := log(|C | + 1).
We define the weight of a separator as the sum of the weights of
its constituent cliques Ci , which is useful since for many problems
a separator can intersect the solution vertex set in 2O (

∑
i γ (|Ci |))

many ways. Formally, the theorem can be stated this way:
Theorem 1.1. Let F be a set of n α-fat objects in Rd and let γ be

a weight function such that γ (t) = O(t1−1/d−ε), for constants d ⩾ 2,
α > 0, and ε > 0. Then the intersection graphG[F] has a (6d/(6d+1))-
balanced separator and a clique partition C(Fsep) of Fsepwith weight

O(n1−1/d). Such a separator and a clique partition C(Fsep) can be

computed in O(nd+2) time if the objects have constant complexity.

A direct application of our separator theorem is a 2O (n1−1/d)

algorithm for Independent Set. For general fat objects, only the
2-dimensional case was known to have such an algorithm [22].

Our separator theorem can be seen as a generalization of the
work of Fu [13] who considers a weighting scheme similar to ours.
However, Fu’s result is significantly less general as it only applies

to unit balls and his proof is arguably more complicated. Our result
can also be seen as a generalization of the separator theorem of Har-
Peled and Quanrud [15] which gives a small separator for constant
ply—indeed, our proof borrows some ideas from theirs.

Finally, the technique employed by Fomin et al. [11] in two
dimensions has also similar qualities; in particular, the idea of using
cliques as a basis for a separator can also be found there, and leads to
subexponential parameterized algorithms, even for some problems
that we do not tackle here.

After proving the weighted separator theorem for arbitrarily-
sized fat objects, we switch to similarly-sized objects. Here the idea
is as follows: We find a suitable clique-decomposition P of the inter-
section graphG[F], contract each clique to a single vertex, and then
work with the contracted graphGP where the node corresponding
to a clique C gets weight γ (|C |). We then prove that the graph GP

has constant degree and, using our separator theorem, we prove
thatGP has weighted treewidthO(n1−1/d). Moreover, we can com-
pute a tree decomposition of this weight in 2O (n1−1/d) time. Thus
we obtain a framework that gives 2O (n1−1/d)-time algorithms for
intersection graphs of similarly-sized fat objects for many problems
for which treewidth-based algorithms are known. Our framework
recovers and often slightly improves the best known results for
several problems,1 including Independent Set, Hamiltonian Cy-
cle and Feedback Vertex Set. Our framework also gives the first
subexponential algorithms in geometric intersection graphs for,
among other problems, r -Dominating Set for constant r , Steiner
Tree and Connected Dominating Set. See the full version for
more details. (The full version also contains the proofs of theorems
and lemmas whose proofs have been omitted from this extended
abstract.)

Furthermore, we show that our approach can be combined with
the rank-based approach [5], a technique to speed up algorithms for
connectivity problems. Table 1 summarizes the results we obtain
by applying our framework; in each case we have matching upper
and lower bounds on the time complexity of 2Θ(n1−1/d) (where the
lower bounds are conditional on the Exponential Time Hypothesis).

A desirable property of algorithms for geometric graphs is that
they are robust, meaning that they can work directly on the graph
without knowledge of the underlying geometry. Most of the known
algorithms are in fact non-robust, which could be a problem in
applications, since finding a geometric representation of a given
geometric intersection graph is NP-hard [6] (and many recognition
problems for geometric graphs are ER-complete [17]). One of the
advantages of our framework is that it yields robust algorithms
for many problems. To this end we need to generalize our scheme
slightly: We no longer work with a clique partition to define the
contracted graph GP , but with a partition whose classes are the
union of constantly many cliques.We show that such a partition can
be found efficiently without knowing the set F defining the given
intersection graph. Thus we obtain robust algorithms for many of
the problems mentioned above, in contrast to known results which
almost all need the underlying set F as input.

1Note that most of the earlier results are in the parameterized setting, but we do not
consider parameterized algorithms here.

575

A Framework for ETH-Tight Algorithms and Lower Bounds in ... STOC’18, June 25–29, 2018, Los Angeles, CA, USA

Table 1: Summary of our results. In each case we list the most inclusive class where our framework leads to algorithms with

2O (n1−1/d)
running time, and the most restrictive class for which we have a matching lower bound. We also list whether the

algorithm is robust.

Problem Algorithm class Robust Lower bound class
Independent Set Fat no Unit Ball, d ≥ 2
Independent Set Sim. sized fat yes Unit Ball, d ≥ 2
r -Dominating Set, r = const Sim. sized fat yes Induced Grid, d ≥ 2
Steiner Tree Sim. sized fat yes Induced Grid, d ≥ 2
Feedback Vertex Set Sim. sized fat yes Induced Grid, d ≥ 2
Conn. Vertex Cover Sim. sized fat yes Unit Ball, d ≥ 2 or Induced Grid, d ≥ 3
Conn. Dominating Set Sim. sized fat yes Induced Grid, d ≥ 2
Conn. Feedback Vertex Set Sim. sized fat yes Unit Ball, d ≥ 2 or Induced Grid, d ≥ 3
Hamiltonian Cycle/Path Sim. sized fat no Induced Grid, d ≥ 2

Our second contribution: a framework for lower bounds under ETH.

The 2O (n1−1/d)-time algorithms that we obtain for many problems
immediately lead to the question: is it possible to obtain even faster
algorithms? For many problems on planar graphs, and for certain
problems on ball graphs the answer is no, assuming the Exponential
Time Hypothesis (ETH) [16]. However, these lower bound results
in higher dimensions are scarce, and often very problem-specific.
Our second contribution is a framework to obtain tight ETH-based
lower bounds for problems ond-dimensional grid graphs (which are
a subset of intersection graphs of similarly-sized fat objects). The
obtained lower bounds match the upper bounds of the algorithmic
framework. Our lower bound technique is based on a constructive
embedding of graphs into d-dimensional grids, for d ⩾ 3, thus
avoiding the invocation of deep results from Robertson and Sey-
mour’s graph minor theory. This Cube Wiring Theorem implies that
for any constant d ≥ 3, any connected graph on m edges is the
minor of the d-dimensional grid hypercube of side length O(m

1
d−1)

(see Theorem 3.8). Ford = 2, we give a lower bound for a customized
version of the 3-SAT problem. Now, these results make it possi-
ble to design simple reductions for our problems using just three
custom gadgets per problem; the gadgets model variables, clauses,
and connections between variables and clauses, respectively. By
invoking Cube Wiring or our custom satisfiability problem, the
wires connecting the clause and variable gadgets can be routed in
a very tight space. Giving these three gadgets immediately yields
the tight lower bound in d-dimensional grid graphs (under ETH)
for all d ≥ 2. Naturally, the same conditional lower bounds are
implied in all containing graph classes, such as unit ball graphs,
unit cube graphs and also in intersection graphs of similarly sized
fat objects. Similar lower bounds are known for various problems
in the parameterized complexity literature[4, 23]. The embedding
in [23] in particular has a denser target graph than a grid hypercube,
where the “edge length” of the cube contains an extra logarithmic
factor compared to ours (see Theorem 2.17 in [23]) and thereby
gives slightly weaker lower bounds.

2 THE ALGORITHMIC FRAMEWORK

2.1 Separators for Arbitrarily-Sized Fat Objects

Let F be a set of n α-fat objects in Rd for some constant α > 0,
and let G[F] = (F ,E) be the intersection graph induced by F . We
say that a subset Fsep ⊆ F is a β-balanced separator for G[F] if
F \ Fsep can be partitioned into two subsets F1 and F2 with no
edges between them and with max(|F1 |, |F2 |) ⩽ βn. For a given
decomposition C(Fsep) of Fsep into cliques and a given weight func-
tion γ we define the weight of Fsep, denoted by weight(Fsep), as
weight(Fsep) :=

∑
C ∈C(Fsep) γ (|C |). Next we prove that G[F] admits

a balanced separator of weight O(n1−1/d) for any cost function
γ (t) = O(t1−1/d−ε) with ε > 0. Our approach borrows ideas from
Har-Peled and Quanrud [15], who show the existence of small sep-
arators for low-density sets of objects, although our arguments are
significantly more involved.

Step 1: Finding candidate separators. Let H0 be a minimum-size
hypercube containing at least n/(6d +1) objects from F , and assume
without loss of generality that H0 is the unit hypercube centered at
the origin. Let H1, . . . ,Hm be a collection ofm := n1/d hypercubes,
all centered at the origin, where Hi has edge length 1 + 2i

m . Note
that the largest hypercube, Hm , has edge length 3, and that the
distance between consecutive hypercubes Hi and Hi+1 is 1/n1/d .

Each hypercube Hi induces a partition of F into three subsets:
a subset Fin(Hi) containing all objects that lie completely in the
interior of Hi , a subset F∂(Hi) containing all objects that intersect
the boundary ∂Hi ofHi , and a subset Fout(Hi) containing all objects
that lie completely in the exterior of Hi . Obviously an object from
Fin(Hi) cannot intersect an object from Fout(Hi), and so F∂(Hi)

defines a separator in a natural way. It will be convenient to add
some more objects to these separators, as follows. We call an object
large when its diameter is at least 1/4, and small otherwise. We will
add all large objects that intersect Hm to our separators. Thus our
candidate separators are the sets Fsep(Hi) := F∂(Hi)∪ Flarge, where
Flarge is the set of all large objects intersecting Hm . We show that
our candidate separators are balanced:

Lemma 2.1. For any 0 ⩽ i ⩽m we have

max
(
|Fin(Hi) \ Flarge |, |Fout(Hi) \ Flarge |

)
<

6d

6d + 1
n.

576

STOC’18, June 25–29, 2018, Los Angeles, CA, USA de Berg, Bodlaender, Kisfaludi-Bak, Marx, and van der Zanden

Proof. Consider a hypercube Hi . Because H0 contains at least
n/(6d + 1) objects from F , we immediately obtain��F ∩ (Fout(Hi) \ Flarge)

�� ⩽ |F ∩ Fout(H0)| ⩽ |F \ Fin(H0)|

<

(
1 − 1

6d + 1

)
n =

6d

6d + 1
n.

To bound
��Fin(Hi) \ Flarge

��, consider a subdivision of Hi into 6d

sub-hypercubes of edge length 1
6 (1 +

2i
m) ⩽ 1/2. We claim that

any sub-hypercube Hsub intersects fewer than n/(6d + 1) small
objects from F . To see this, recall that small objects have diameter
less than 1/4. Hence, all small objects intersecting Hsub are fully
contained in a hypercube of edge length less than 1. Since H0 is
a smallest hypercube containing at least n/(6d + 1) objects from
F , Hsub must thus contain fewer than n/(6d + 1) objects from F ,
as claimed. Each object in Fin(Hi) intersects at least one of the
6d sub-hypercubes, so we can conclude that

��Fin(Hi) \ Flarge
�� <(

6d/(6d + 1)
)
n. □

Step 2: Defining the cliques and finding a low-weight separator.

Define F ∗ := F \(Fin(H0)∪Fout(Hm)∪Flarge). Note that F∂(Hi) ⊆ F ∗

for all i . We partition F ∗ into size classes F ∗s , based on the diameter
of the objects. More precisely, for integers s with 1 ⩽ s ⩽ smax,
where smax := ⌈(1 − 1/d) logn⌉ − 2, we define

F ∗s :=
{
o ∈ F ∗ : 2s−1

n1/d ⩽ diam(o) <
2s

n1/d

}
.

We furthermore define F ∗0 to be the subset of objects o ∈ F ∗ with
diam(o) < 1/n1/d . Note that 2smax/n1/d ⩾ 1/4, which means that
every object in F ∗ is in exactly one size class.

Each size class can be decomposed into cliques, as follows. Fix
a size class F ∗s , with 1 ⩽ s ⩽ smax. Since the objects in F are α-fat
for a fixed constant α > 0, each o ∈ F ∗s contains a ball of radius
α · (diam(o)/2) = Ω(2s

n1/d). Moreover, each object o ∈ F ∗s lies fully or
partially inside the outer hypercube Hm , which has edge length 3.
This implies we can stab all objects in F ∗s using a set Ps ofO((n

1/d
2s)d)

points. Thus there exists a decomposition C(F ∗s) of F ∗s consisting
of O(n

2sd) cliques. In a similar way we can argue that there exists
a decomposition C(Flarge) of Flarge into O(1) cliques. For F ∗0 the
argument does not work since objects in F ∗0 can be arbitrarily small.
Hence, we create a singleton clique for each object in F ∗0 . Together
with the decompositions of the size classes F ∗s and of Flarge we thus
obtain a decomposition C(F ∗) of F ∗ into cliques.

A decomposition of Fsep(Hi) into cliques is induced by C(F ∗),
which we denote by C(Fsep(Hi)). Thus, for a given weight func-
tion γ , the weight of Fsep(Hi) is

∑
C ∈C(Fsep(Hi)) γ (|C |). Our goal is

now to show that at least one of the separators Fsep(Hi) has weight
O(n1−1/d), when γ (t) = O(t1−1/d−ε) for some ε > 0. To this end
we will bound the total weight of all separators Fsep(Hi) by O(n).
Using that the number of separators is n1/d we then obtain the
desired result.

Lemma 2.2. If γ (t) = O(t1−1/d−ε) for some ε > 0 then∑m
i=1 weight(Fsep(Hi)) = O(n).

Proof. First consider the cliques in C(F ∗0), which are singletons.
Since objects in F ∗0 have diameter less than 1/n1/d , which is the

distance between consecutive hypercube Hi and Hi+1, each such
object is in at most one set F∂(Hi). Hence, its contribution to the
total weight

∑m
i=1 weight(Fsep(Hi)) is γ (1) = O(1). Together, the

cliques in C(F ∗0) thus contribute O(n) to the total weight.
Next, consider C(Flarge). It consists of O(1) cliques. In the worst

case each clique appears in all sets F∂(Hi). Hence, their total contri-
bution to

∑m
i=1 weight(Fsep(Hi)) is bounded by O(1) · γ (n) · n1/d =

O(n).
Now consider a set C(F ∗s)with 1 ⩽ s ⩽ smax. A cliqueC ∈ C(F ∗s)

consists of objects of diameter at most 2s/n1/d that are stabbed by a
common point. Since the distance between consecutive hypercubes
Hi and Hi+1 is 1/n1/d , this implies thatC contributes to the weight
of O(2s) separators Fsep(Hi). The contribution to the weight of a
single separator is at most γ (|C |). (It can be less than γ (|C |) because
not all objects in C need to intersect ∂Hi .) Hence, the total weight
contributed by all cliques, which equals the total weight of all
separators, is

smax∑
s=1

∑
C ∈C(F ∗

s)

(weight contributed by C)

⩽
smax∑
s=1

∑
C ∈C(F ∗

s)

2sγ (|C |)

=

smax∑
s=1

©«2s
∑

C ∈C(F ∗
s)

γ (|C |)
ª®¬ .

Next we wish to bound
∑
C ∈C(F ∗

s)
γ (|C |). Define ns := |F ∗s | and

observe that
∑smax
s=1 ns ⩽ n. Recall that C(F ∗s) consists of O(n/2sd)

cliques, that is, of at most cn/2sd cliques for some constant c . To
make the formulas below more readable we assume c = 1 (so we
can omit c), but it is easily checked that this does not influence
the final result asymptotically. Similarly, we will be using γ (t) =
t1−1/d−ε instead of γ (t) = O(t1−1/d−ε). Because γ is positive and
concave, the sum

∑
C ∈C(F ∗

s)
γ (|C |) is maximized when the number

of cliques is maximal, namely min(ns ,n/2sd), and when the objects
are distributed as evenly as possible over the cliques. Hence,∑

C ∈C(F ∗
s)

γ (|C |)⩽

{
ns if ns ⩽ n/2sd

(n/2sd) · γ
(

ns
n/2sd

)
otherwise

We now split the set {1, . . . , smax} into two index sets S1 and S2,
where Si contains all indices s such thatns ⩽ n/2sd , and S2 contains
all remaining indices. Thus

smax∑
s=1

©«2s
∑

C ∈C(F ∗
s)

γ (|C |)
ª®¬

=
∑
s ∈S1

©«2s
∑

C ∈C(F ∗
s)

γ (|C |)
ª®¬ +

∑
s ∈S2

©«2s
∑

C ∈C(F ∗
s)

γ (|C |)
ª®¬

(1)

The first term in (1) can be bounded by∑
s ∈S1

©«2s
∑

C ∈C(F ∗
s)

γ (|C |)
ª®¬ ⩽

∑
s ∈S1

2sns ⩽
∑
s ∈S1

2s (n/2sd)

= n
∑
s ∈S1

1/2s(d−1) = O(n),

577

A Framework for ETH-Tight Algorithms and Lower Bounds in ... STOC’18, June 25–29, 2018, Los Angeles, CA, USA

where the last step uses that d ⩾ 2. For the second term we get∑
s ∈S2

©«2s
∑

C ∈C(F ∗
s)

γ (|C |)
ª®¬ ⩽

∑
s ∈S2

(
2s (n/2sd) · γ

(
ns

n/2sd

))
⩽

∑
s ∈S2

©« n

2s(d−1) ·

(
ns2sd
n

)1−1/d−ε ª®¬
⩽ n

∑
s ∈S2

(ns
n

)1−1/d−ε 1
2sdε

⩽ n
∑
s ∈S2

(
1

2dε

)s
= O(n). □

The two lemmas above imply the existence of the separator
of Theorem 1.1 with the desired balance and weight. Computing
the separator in polynomial time can be done in a more or less
brute-force manner; this is explained in the full version.

Corollary 2.3. Let F be a set of n fat objects in Rd , where d is a

constant. Then Independent Set on the intersection graphG[F] can

be solved in 2O (n1−1/d)
time.

Proof. Let γ (t) := log(t + 1), and compute a separator Fsep
for G[F] using Theorem 1.1. For each subset Ssep ⊆ Fsep of in-
dependent (that is, pairwise non-adjacent) vertices we find the
largest independent set S of G such that S ⊇ Ssep, by removing the
closed neighborhood of Ssep fromG and recursing on the remaining
connected components. Finally, we report the largest of all these
independent sets. Because a clique C ∈ C(Fsep) can contribute at
most one vertex to Ssep, we have that the number of candidate sets
Ssep is at most∏

C ∈C(Fsep)

(|C | + 1) = 2
∑
C∈C(Fsep) log(|C |+1)

= 2O (n1−1/d).

Since all components on which we recurse have at most (6d/(6d +
1))n vertices, the running time T (n) satisfies

T (n) = 2O (n1−1/d)T ((6d/(6d + 1))n) + poly(n),

which solves to T (n) = 2O (n1−1/d). □

2.2 An Algorithmic Framework for

Similarly-Sized Fat Objects

We restrict our attention to similarly-sized fat objects. More pre-
cisely, we consider intersection graphs of sets F of objects such
that, for each o ∈ F , there are balls Bin and Bout in Rd such that
Bin ⊆ F ⊆ Bout, and radius(Bin) = α and radius(Bout) = 1 for some
fatness constant α > 0. The restriction to similarly-sized objects
makes it possible to construct a clique cover of F with the follow-
ing property: if we consider the intersection graph G[F] where
the cliques are contracted to single vertices, then the contracted
graph has constant degree. Moreover, the contracted graph admits
a tree decomposition whose weighted treewidth is O(n1−1/d). This
tool allows us to solve many problems on intersection graphs of
similarly-sized fat objects.

Our tree-decomposition construction uses the separator theorem
from the previous subsection. That theorem also states that we can
compute the separator for G[F] in polynomial time, provided we
are given F . However, finding the separator if we are only given the
graph and not the underlying set F is not easy. Note that deciding
whether a graph is a unit-disk graph is already ER-complete [17].
Nevertheless, we show that for similarly-sized fat objects we can
find certain tree decompositions with the desired properties, purely
based on the graph G[F].

κ-partitions, P-contractions, and separators. Let G = (V ,E) be
the intersection graph of an (unknown) set F of similarly-sized fat
objects, as defined above. The separators in the previous section
use cliques as basic components. We need to generalize this slightly,
by allowing connected unions of a constant number of cliques as
basic components. Thus we define a κ-partition of G as a partition
P = (V1, . . . ,Vk) of V such that every partition class Vi induces a
connected subgraph that is the union of at most κ cliques. Note
that a 1-partition corresponds to a clique cover of G.

Given a κ-partition P of G we define the P-contraction of G,
denoted byGP , to be the graph obtained by contracting all partition
classes Vi to single vertices and removing loops and parallel edges.
In many applications it is essential that the P-contraction we work
with has maximum degree bounded by a constant. From now on,
when we speak of the degree of a κ-partition P we refer to the
degree of the corresponding P-contraction.

The following theorem and its proof are very similar to Theo-
rem 1.1, but it applies only for similarly-sized objects because of
the degree bound on GP . The other main difference is that the
separator is defined on the P-contraction of a given κ-partition,
instead of on the intersection graph G itself.

Theorem 2.4. Let G = (V ,E) be the intersection graph of a set of

n similarly-sized fat objects in Rd , and let γ be a weight function such

that γ (t) = O(t1−1/d−ε), for constants d ⩾ 2 and ε > 0. Suppose we
are given a κ-partition P ofG such thatGP has maximum degree at

most ∆, whereκ and ∆ are constants. Then there exists a (6d/(6d +1))-
balanced separator for GP of weight O(n1−1/d).

The following lemma shows that a partition P as needed in
Theorem 2.4 can be computed even in the absence of geometric
information.

Lemma 2.5. Let G = (V ,E) be the intersection graph of an (un-

known) set ofn similarly-sized fat objects inRd for some constantd ⩾
2. There there exist constants κ and ∆ such that a κ-partition P for

which GP has maximum degree ∆ can be computed in polynomial

time.

Proof. Let S ⊆ V be a maximal independent set in G (that is,
it is inclusion-wise maximal). We assign each vertex v ∈ V \ S
to an arbitrary vertex s ∈ S that is a neighbor of v; such a vertex
s always exists since S is maximal. For each vertex s ∈ S define
Vs := {s} ∪ {v ∈ V \ S : v is assigned to s}. We prove that the
partition P := {Vs : s ∈ S}, which can be computed in polynomial
time, has the desired properties.

Let ov denote the (unknown) object corresponding to a ver-
tex v ∈ V , and for a partition class Vs define U (Vs) :=

⋃
v ∈Vs ov .

We call U (Vs) a union-object. Let US := {U (Vs) : s ∈ S}. Because

578

STOC’18, June 25–29, 2018, Los Angeles, CA, USA de Berg, Bodlaender, Kisfaludi-Bak, Marx, and van der Zanden

the objects defining G are similarly-sized and fat, there are balls
Bin(ov) of radius α = Ω(1) and Bout(ov) of radius 1 such that
Bin(ov) ⊆ ov ⊆ Bout(ov).

Now observe that each union-objectU (Vs) is contained in a ball
of radius 3. Hence, we can stab all balls Bin(ov), v ∈ Vs using O(1)
points, which implies that P is a κ-partition for some κ = O(1).

To prove that the maximum degree of GP is O(1), we note that
any two balls Bin(s), Bin(s ′) with s, s ′ ∈ S are disjoint (because S is
an independent set inG). Since all union-objectsU (s ′) that intersect
U (s) are contained in a ball of radius 9, an easy packing argument
now shows thatU (s) intersectsO(1) union-objectsU (s). Hence, the
node in GP corresponding to Vs has degree O(1). □

Weighted tree decompositions for P-contractions. Recall that a tree
decomposition of a graphG = (V ,E) is a pair (T ,σ)whereT is a tree
and σ is a mapping from the vertices ofT to subsets ofV called bags,
with the following properties. Let Bags(T ,σ) := {σ (u) : u ∈ V (T)}
be the set of bags associated to the vertices of T . Then we have:
(1) For any vertex u ∈ V there is at least one bag in Bags(T ,σ)
containing it. (2) For any edge (u,v) ∈ E there is at least one bag
in Bags(T ,σ) containing both u and v . (3) For any vertex u ∈ V the
collection of bags in Bags(T ,σ) containing u forms a subtree of T .

The width of a tree decomposition is the size of its largest bag
minus 1, and the treewidth of a graphG equals the minimum width
of a tree decomposition of G. We will need the notion of weighted
treewidth [26]. Here each vertex has a weight, and the weighted

width of a tree decomposition is the maximum over the bags of the
sum of the weights of the vertices in the bag (note: without the −1).
The weighted treewidth of a graph is the minimum weighted width
over its tree decompositions.

Now let P = (V1, . . . ,Vk) be a κ-partition of a given graph G
which is the intersection graph of similarly-sized fat objects, and
let γ be a given weight function on partition classes. We apply the
concept of weighted treewidth toGP , where we assign each vertex
Vi of GP a weight γ (|Vi |). Because we have a separator for GP of
low weight by Theorem 2.4, we can prove a bound on the weighted
treewidth of GP using standard techniques.

Lemma 2.6. Let P be a κ-partition of a family of similarly-sized

fat objects such that GP has maximum degree at most ∆, where κ

and ∆ are constants. Then the weighted treewidth ofGP isO(n1−1/d)
for any weight function γ with γ (t) = O(t1−1/d−ε).

By combining Lemmas 2.5 and 2.6 we can obtain a κ-partition
such that GP has constant degree, and such that the weighted
treewidth of GP is as desired. In the full version we show how
to use existing algorithms for computing tree decompositions of
approximately optimal width to obtain the following main theorem.

Theorem 2.7. Let G = (V ,E) be the intersection graph of an

(unknown) set of n similarly-sized α-fat objects in Rd , and let γ be a

weight function such that 1 ⩽ γ (t) = O(t1−1/d−ε), for constants d ⩾
2, α > 0, and ε > 0. Then there exist constants κ and ∆ such that there

is a κ-partition P with the following properties: (i)GP has maximum

degree at most ∆, and (ii) GP has weighted treewidth O(n1−1/d).
Moreover, such a partition P and a corresponding tree decomposition

of weight O(n1−1/d) can be computed in 2O (n1−1/d)
time.

2.3 Basic Algorithmic Applications

In this section, we give examples of how κ-partitions and weighted
tree decompositions can be used to obtain subexponential-time
algorithms for classical problems on geometric intersection graphs.

Given a κ-partition P and a weighted tree decomposition ofGP

of width τ , we note that there exists a nice tree decomposition ofG
(i.e., a “traditional”, non-partitioned tree decomposition) with the
property that each bag is a subset of the union of a number of par-
tition classes, such that the total weight of those classes is at most
τ . This can be seen by creating a nice version of the weighted tree
decomposition of GP , and then replacing every introduce/forget
bag (that introduces/forgets a class of the partition) by a series
of introduce/forget bags (that introduce/forget the individual ver-
tices). We call such a decomposition a traditional tree decomposition.
Using such a decomposition, it becomes easy to give algorithms
for problems for which we already have dynamic-programming
algorithms operating on nice tree decompositions. We can re-use
the algorithms for the leaf, introduce, join and forget cases, and
either show that the number of partial solutions remains bounded
(by exploiting the properties of the underlying κ-partition) or show
that we can discard some irrelevant partial solutions.

We present several applications for our framework, resulting
in 2O (n1−1/d) algorithms for various problems. In addition to the
Independent Set algorithm for fat objects based on our separator,
we also give a robust algorithm for similarly sized fat objects. This
adds robustness compared to the state of the art [23]. In the rest
of the applications, our algorithms work on intersection graphs of
d-dimensional similarly sized fat objects; this is usually a larger
graph class than what has been studied. We have non-robust al-
gorithms for Hamiltonian Path and Hamiltonian Cycle; this
is a simple generalization from the algorithm for unit disks that
has been known before [11, 18]. For Feedback Vertex Set, we
give a robust algorithm with the same running time improvement,
over a non-robust algorithm that works in 2-dimensional unit disk
graphs [11]. For r -Dominating Set, we give a robust algorithm
for d ≥ 2, which is the first subexponential algorithm in dimension
d ≥ 3, and the first robust subexponential for d = 2 [22]. (The algo-
rithm in [22] is for Dominating Set in unit disk graphs.) Finally,
we give robust algorithms for Steiner Tree, r -Dominating Set,
Connected Vertex Cover, Connected Feedback Vertex Set
and Connected Dominating Set, which are – to our knowledge –
also the first subexponential algorithms in geometric intersection
graphs for these problems.

In the following, we let t refer to a node of the tree decomposition
T , let Xt denote the set of vertices in the bag associated with t , and
letG[t] denote the subgraph ofG induced by the vertices appearing
in bags in the subtree of T rooted at t . We fix our weight function
to be γ (k) = log(k + 1).

Theorem 2.8. Letγ (k) = log(k+1). If aκ-partition and aweighted
tree decomposition of width at most τ is given, Independent Set
and Vertex Cover can be solved in time 2κτnO (1)

.

Proof. A well-known algorithm (see, e.g., [8]) for solving Inde-
pendent Set on graphs of bounded treewidth, computes, for each
bag t and subset S ⊆ Xt , the maximum size c[t , S] of an independent
subset Ŝ ⊂ G[t] such that Ŝ ∩ Xt = S .

579

A Framework for ETH-Tight Algorithms and Lower Bounds in ... STOC’18, June 25–29, 2018, Los Angeles, CA, USA

An independent set never contains more than one vertex of a
clique. Therefore, since Xt is a subset of the union of partition
classes Vi , i ∈ σ (b), and from each partition class we can select
at most κ vertices (one vertex from each clique), the number of
subsets Ŝ that need to be considered is at most

∏
i ∈σ (b)(|Vi |+1)κ =

exp
(∑

i ∈σ (b) κ log (|Vi | + 1)
)
= 2κτ .

Applying the standard algorithm for Independent Set on a
traditional tree decomposition, using the fact that only solutions
that select at most one vertex from each clique get a non-zero value,
we obtain the claimed algorithm. Minimum vertex cover is simply
the complement of maximum independent set. □

Corollary 2.9. Let d be a fixed constant. Then Independent Set
and Vertex Cover can be solved in 2O (n1−1/d)

time on intersection

graphs of similarly-sized fat objects in Rd , even if the geometric

representation is not given.

In the remainder of this section, because we need additional
assumptions that are derived from the properties of intersection
graphs, we state our results in terms of algorithms operating directly
on intersection graphs. However, note that underlying each of these
results is an algorithm operating on a weighted tree decomposition
of the contracted graph.

To obtain the algorithm for Independent Set, we exploited the
fact that we can select at most one vertex from each clique, and that
thus, we can select at most κ vertices from each partition class. For
Dominating Set, our bound for the treewidth is however not enough.
Instead, we need the following, stronger result, which states that
the weight of a bag in the decomposition can still be bounded by
O(n1−1/d), even if we take the weight to be the total weight of the
classes in the bag and that of their distance-r neighbors:

Theorem 2.10. LetG be an intersection graph of n similarly-sized

fat objects in Rd , and let r ⩾ 1 be a constant. For any weight function

γ , there exists a constant κ = O(1) such that G has a κ-partition
P and a corresponding GP of maximum degree at most ∆, where
GP has a weighted tree decomposition with the additional property

that for any bag b, the total weight of the partition classes {Vi ∈

P | (some vertex in) Vi is within distance r of some Vj ∈ σ (b)} is

O(n1−1/d).

Proof. As per Theorem 2.7, there exist constants κ,∆ = O(1)
such that G has a κ-partition in which each class of the partition is
adjacent to at most ∆ other classes.

We now create a new geometric intersection graph G ′, which
is made by copying each vertex (and its corresponding object) at
most κr times. We create the following κr -partition Pr : for each
class Vi of the original partition, create a class that contains a copy
of the vertices from Vi and copies of the vertices from the classes
within distance at most r fromVi . This graphGr has at most κrn =
O(n) vertices, and it is an intersection graph of similarly-sized
objects; furthermore, the set Pr has low union ply. Therefore, we
can find a weighted tree decomposition ofGr

Pr of widthO(n1−1/d)
by Lemma 2.6.

This decomposition can also be used as a decomposition for
the original κ-partition, by replacing each partition class with the
corresponding original partition class. □

Theorem 2.11. Let r andd be fixed constants. Then r -Dominating
Set can be solved in 2O (n1−1/d)

time on intersection graphs of similarly-

sized fat objects in Rd .

Proof. We first present the argument for Dominating Set. It
is easy to see that from each partition class, we need to select at
most κ2(∆ + 1) vertices: each partition class can be partitioned into
at most κ cliques, and each of these cliques is adjacent to at most
κ(∆+ 1) other cliques. If we select at least κ(∆+ 1)+ 1 vertices from
a clique, we can instead select only one vertex from the clique, and
select at least one vertex from each neighboring clique.

We once again proceed by dynamic programming on a traditional
tree decomposition (see e.g. [8] for an algorithm solvingDominating
Set using tree decompositions). However, rather than needing just
two states per vertex (in the solution or not), we need three: a
vertex can be either in the solution, not in the solution and not
dominated, or not in the solution and dominated. After processing
each bag, we discard partial solutions that select more thanκ2(∆+1)
vertices from any class of the partition. Note that all vertices of each
partition class are introduced before any are forgotten, so we can
guarantee we do indeed never select more than κ2(∆ + 1) vertices
from each partition class.

The way vertices outside the solution are dominated or not is
completely determined by the vertices that are in the solution and
are neighbours of the vertices in the bag. While the partial solution
does not track this explicitly for vertices that are forgotten, by
using the fact that we need to select at most κ∆ vertices from each
class of the partition, and the fact that Theorem 2.10 bounds the
total weight of the neighbourhood of the partition classes in a bag,
we see that there are at most Πi (|Vi | + 1)κ2(∆+1) = exp(κ2(∆ +

1)
∑
i log (|Vi | + 1)) = 2O (n1−1/d), where the product (resp., sum) is

taken over all partition classes Vi that appear in the current bag or
are a neighbors of such a class.

For the generalization where r > 1, the argument that we need to
select at mostκ(∆+1) vertices from each clique still holds: moving a
vertex from a clique with more than κ(∆+ 1) vertices selected to an
adjacent clique only decreases the distance to any vertices it helps
cover. The dynamic programming algorithm needs, in a partial
solution, to track at what distance from a vertex in the solution
each vertex is. This, once again, is completely determined by the
solution in partition classes at distance at most r ; the number of
such cases we can bound using Theorem 2.10. □

2.4 Rank-Based Approach

To illustrate how our algorithmic framework can be combined with
the rank-based approach, we now give an algorithm for Steiner
Tree. We consider the following variant of Steiner Tree:

Steiner Tree
Input: A graph G = (V ,E), a set of terminal vertices K ⊆ V and
integer s .
Question: Decide if there is a vertex set X ⊆ V of size at most s ,
such that K ⊆ X , and X induces a connected subgraph of G.

We only consider the unweighted variant of Steiner Tree, as the
weighted Steiner Tree problem is NP-complete, even on a clique (so
we should not expect Theorem 2.12 to hold for the weighted case).

580

STOC’18, June 25–29, 2018, Los Angeles, CA, USA de Berg, Bodlaender, Kisfaludi-Bak, Marx, and van der Zanden

Theorem 2.12. Let d ∈ Z+ be a constant. Then Steiner Tree can
be solved in 2O (n1−1/d)

time on intersection graphs of d-dimensional

similarly-sized fat objects.

Proof. The algorithm works by dynamic programming on a
traditional tree decomposition. The leaf, introduce, join and forget
cases can be handled as they are in the conventional algorithm
for Steiner Tree on tree decompositions, see e.g. [5]. However,
after processing each bag, we can reduce the number of partial
solutions that need to be considered by exploiting the properties of
the underlying κ-partition.

To this end, we first need a bound on the number of vertices that
can be selected from each class of the κ-partition P.

Lemma 2.13. Let C be a clique in a κ-sized clique cover of a par-
tition class Vi ∈ P. Then any optimal solution X contains at most

κ(∆ + 1) vertices from C that are not also in K . Furthermore, any

optimal solution thus contains at most κ2(∆+ 1) vertices (that are not
also in K) from each partition class.

Proof. To every vertex v ∈ (C ∩ X) \ K we greedily assign a
private neighbor u ∈ X \ C such that u is adjacent to v and u is
not adjacent to any other previously assigned private neighbor.
If this process terminates before all vertices in (C ∩ X) \ K have
been assigned a private neighbor, then the remaining vertices are
redundant and can be removed from the solution.

We now note that since the neighborhood of C can be covered
by at most κ(∆ + 1) cliques, this gives us an upper bound on the
number of private neighbors that can be assigned and thus bounds
the number of vertices that can be selected from any partition
class. □

The algorithm for Steiner Tree presented in [5] is for theweighted
case, but we can ignore the weights by setting them to 1. A partial
solution is then represented by a subset Ŝ ⊆ Xt (representing the
intersection of the partial solution with the vertices in the bag),
together with an equivalence relation on Ŝ (which indicates which
vertices are in the same connected component of the partial solu-
tion).

Since we select at most κ2(∆ + 1) vertices from each partition
class, we can discard partial solutions that select more than this
number of vertices from any partition class. Then the number of
subsets S considered is at most∏

i ∈σ (b)

(|Vi | + 1)κ
2(∆+1) = exp ©«κ2(∆ + 1) ·

∑
i ∈σ (b)

log(|Vi | + 1)ª®¬
⩽ exp

(
κ2(∆ + 1)τ

)
.

For any such subset Ŝ , the number of possible equivalence re-
lations is 2Θ(|Ŝ | log |Ŝ |). However, the rank-based approach [5] pro-
vides an algorithm called “reduce” that, given a set of equivalence
relations2 on Ŝ , outputs a representative set of equivalence rela-
tions of size at most 2 |Ŝ | . Thus, by running the reduce algorithm
after processing each bag, we can keep the number of equivalence
relations considered single exponential.

Since |Ŝ | is alsoO(κ2(∆+1)τ) (we select at mostκ2(∆+1) vertices
from each partition class and each bag contains at most τ partition
2What we refer to as “equivalence relation”, [5] refers to as “partition”.

classes), for any subset Ŝ , the rank-based approach guarantees that
we need to consider at most 2O (κ2(∆+1)τ) representative equivalence
classes of Ŝ (for each set Ŝ). □

3 THE LOWER-BOUND FRAMEWORK

The goal of this section is to provide a general framework to ex-
clude algorithmswith running time 2o(n1−1/d) in intersection graphs.
To get the strongest results, we show our lower bounds where
possible for a more restricted graph class, namely subgraphs of
d-dimensional induced grid graphs. Induced grid graphs are inter-
section graphs of unit balls, so they are a subclass of intersection
graphs of similarly sized fat objects. We need to use a different
approach for d = 2 than for d > 2; this is because of the topological
restrictions introduced by planarity. Luckily, the difference between
d = 2 and d > 2 is only in the need of two different “embedding
theorems”; when applying the framework to specific problems, the
same gadgetry works both for d = 2 and for d > 2. In particular, in
R2, constructing crossover gadgets is not necessary with our frame-
work. To apply our framework, we need a graph problem P on grid
graphs in Rd , d ⩾ 2. Suppose that P admits a reduction from 3-SAT
using constant size variable and clause gadgets and a wire gadget,
whose size is a constant multiple of its length. Then the framework
implies that P has no 2o(n1−1/d) time algorithm in d-dimensional
grid graphs for all d ≥ 2, unless ETH fails. We remark that such
gadgets can often be obtained by looking at classical NP-hardness
proofs in the literature, and introducing minor tweaks if necessary.

3.1 Lower Bounds in Two Dimensions

To prove lower bounds in two dimensional grids, we introduce an
intermediate problem.

We denote by G2(n1,n2) the two dimensional grid graph with
vertex set [n1] × [n2]. We say that a graph H is embeddable in
G2(n1,n2) if it is a topological minor of G2(n1,n2), i.e., if H has a
subdivision that is a subgraph of G2(n1,n2). Finally, for a given
3-CNF formula ϕ, its incidence graph Gϕ is the bipartite graph on
its variables and clauses, where a variable vertex and a clause vertex
are connected by an edge if the variable appears in the clause.

A CNF formula ϕ with clause size at most 3 and where each
variable occurs at most 3 times is called a (3, 3)-CNF formula. Note
that in such formulas the number of clauses and variables is within
constant factor of each other. The (3, 3)-SAT problem asks to decide
the satisfiability of a (3, 3)-CNF formula.

Proposition 3.1. There is no 2o(n) algorithm for (3, 3)-SAT unless

ETH fails.

Our intermediate problem, Grid Embedded SAT, asks to de-
termine the satisfiability of a (3, 3)-CNF formula whose incidence
graph is embedded in a n × n grid:

Grid Embedded SAT
Input: A (3, 3)-CNF formula ϕ together with an embedding of
its incidence graph Gϕ in G2(n,n).
Question: Is there a satisfying assignment?

Theorem 3.2. Grid Embedded SAT has no 2o(n) algorithm, unless

ETH fails.

581

A Framework for ETH-Tight Algorithms and Lower Bounds in ... STOC’18, June 25–29, 2018, Los Angeles, CA, USA

3.2 Lower Bounds in Higher Dimensions –

Cube Wiring

For an integer n, let [n] = {1, . . . ,n}. For a vector n := (n1, . . . ,nd)
in Zd+, let Boxd (n) = [n1] × · · · × [nd]. Let Gd (n) be the graph
whose vertex set V (G) is Boxd (n), and where x, y ∈ V (G) are
connected if and only if they are at distance 1 in Rd . The inte-
ger points of Rd can be divided into parallel layers. The layer
at “height” h ∈ Z is defined as ℓ(h) = {x ∈ Zd | xd = h}. Let
Raiseh : Rd−1 → Rd be the function that maps Rd−1 into ℓ(h) as
follows: Raiseh (x1, . . . ,xd−1) = (x1, . . . ,xd−1,h).

In what follows, n denotes a (d − 1)-dimensional vector. Let P ,Q
be equal-size subsets of Box(n). LetM be a perfect matching of the
graph GP×Q := (P ∪Q, P ×Q).

We say thatM can be wired inGd (cn,h)where c andh are positive
integers, if there are vertex-disjoint paths Gd (cn,h) that connect
Raise1(p) to Raiseh (q) for all (p, q) ∈ M . Note that Gd (cn,h) con-
sists of h layers, each of which is a copy of Box(cn) at a different
height.

We will refer to the embedding in Rd of the path representing
a pair (p, q) as a wire, and we define the length of a wire as the
number of edges on the path. Note that the length of a wire is equal
to its Euclidean length, since the edges connect adjacent points of
the integer grid.

Theorem 3.3. (Cube Wiring Theorem) Let d ≥ 3, n ∈ Zd−1
+ ,

and let P and Q be two equal-size subsets of Boxd−1(n). LetM be a

perfect matching in GP×Q = (P ∪Q, P ×Q). Then M can be wired

in Gd (36n,h), where h = O(
∑d−1
i=1 ni), and the length of each wire is

O(d
∑d−1
i=1 ni).

To simplify the description, we assume that all coordinates of
n are powers of two, and work inside Boxd−1(18n). Rounding co-
ordinates up to the next power of two gives the stated result in-
side Boxd−1(36n). Note that Boxd−1(n) is a “corner” of the larger
Boxd−1(18n), so the point sets P and Q above are embedded into
two such corners within the first and last layer of the grid graph.

Overview of the Proof. We obtain a wiring from P toQ by a divide-
and-conquer approach. Let nmax := maxi ∈[d−1] ni , and without
loss of generality, assume that n1 = nmax . We split Boxd−1(n)
in all layers into two equal-sized sub-boxes, using a hyperplane
orthogonal to the x1-axis. Thus the points z ∈ P ∪ Q with z1 ⩽
nmax /2 end up in one halfspace, while the points z with z1 >
nmax /2 end up in the other halfspace. We then perform the crucial
step, a rough reordering, which wires all points from P to points
in an intermediate layer ℓ so they end up in the correct halfspace
with respect to their target locations in Q . That is, if a point p
and its matching point q were on different sides in the above split,
then we wire p to a point p′ in ℓ which lies in the same side as
q (Figure 1). Next, we perform a global movement, which offsets
all the points in the halfspace x1 > nmax /2 by (8 + 1/2)nmax in
the first coordinate, that is, the points are wired to the halfspace
x1 ⩾ 9nmax . The rough reordering and the global movement can
be performed in O(nmax) layers. Recall that we are working inside
a 18n1 × 18n2 × . . . × 18nd−1 × c

∑d−1
i=1 ni grid. The wiring problem

in the halfspaces can recursively be solved in their own separate
halfspaces, and the size of grid required for this is 18n1/2 × 18n2 ×

. . . × 18nd−1 × c
∑d−1
i=1 ni . Thus, in the original, twice larger grid,

we can recursively solve the wiring problem for both halfspaces in
parallel. After the recursive steps are finished, we have the points
arranged as they should be in Q but spread out in Boxd−1(18n),
so we compress it back to their true targets in Boxd−1(n). We will
provide a more rigorous analysis later, but for now, note that after
at most d rough reorderings (taking O(dnmax) layers), nmax will
have halved. Since the number of layers required for each halving
of nmax decreases by half each iteration, we see that the wiring
can be accomplished in O(dnmax) layers.

To perform a rough reordering, we first separate the points of P
into three groups: those that are already in the correct halfspace,
those that need to move from the halfspace x1 ⩽ nmax /2 to the
halfspace x1 > nmax /2 (and we say that the wires corresponding to
those points need to be pushed) and those that need to move in the
opposite direction (whose wires must be pulled). To avoid conflicts
between these movements, we do them in different subgrids. An
(a,b)-subgrid consists of those points whose coordinates are equal
to a modulo b, together with the points of which at most one
coordinate differs from a modulo b. Note that the former points
make up the “vertices” of the (a,b) subgrid, and these are connected
by paths of lengthb, the “edges” of the subgrid. We perform pushing
in the (1, 3)-subgrid, pulling in the (2, 3)-subgrid, and the points
that do not need to move stay in the (0, 3)-subgrid. Notice that we
use d ≥ 3 here; for d ⩽ 2, these subgrids are not disjoint.

In what follows, we introduce some further concepts needed for
the proof, together with the required lemmas. The proof of these
lemmas can be found in the full version.

Rearrangement lemmas. We begin by defining a discrete version
of compression and magnification:

compk ,magrk : Zd−1 → Zd−1,

compk (x1, . . . ,xd−1) =

(⌊
x1 − 1
k

⌋
, . . . ,

⌊
xd−1 − 1

k

⌋)
,

magrk (x1, . . . ,xd−1) = (kx1 + r , . . . ,kxd−1 + r).

We often use the set version of some functions, so for example if P
is a point set, then let compk (P) = {compk (p) | p ∈ P}.

We can subdivideZd−1 into small hypercubes of side length t , the
vertices of which we call t-cells. More precisely, points p, p′ ∈ Zd−1

belong to the same t-cell if and only if compt (p) = compt (p′).

Definition 3.4. Let k be a positive integer, and consider a point
set P ⊆ Zd−1. The set P is k-spaced if there is an integer 0 ⩽ r < k
such that for any x = (x1, . . . ,xd−1) ∈ P we have xi ≡ r mod k

for all i = 1, . . . ,d − 1. A point set P ⊆ Zd is quasi-k-spaced if it
has at most one point in each k-cell.

Lemma 3.5. It is possible to make local and global movements in

the following sense.

(1) (Local movement) Let P andQ be two quasi-k-spaced subsets
of Boxd−1(kn), which have points in the same k-cells, i.e.,
compk (P) = compk (Q). Then M = {(p, q) | compk (p) =
compk (q)} can be wired inGd (kn, 3), while keeping each wire
within its k-cell of origin in all layers, and the length of each

wire is O(kd).

582

STOC’18, June 25–29, 2018, Los Angeles, CA, USA de Berg, Bodlaender, Kisfaludi-Bak, Marx, and van der Zanden

`(1)

Local

Rough

Local

Global

mag03(P)

Push Pull

B1 B2

`(3)

`(h2)

`(h3)

`(h2 + 2)

reordering
in subgrids

3n1

18n1

Figure 1: Left: One step in the divide and conquer approach. Right (four pictures): Schematic pictures of rough reordering in

disjoint subgrids, according to first coordinates. The orange wires are pulled, the green ones are pushed. The blue wires do not

need reordering. The three subgrids are weaved together in a finer grid (rightmost picture).

n

Global movement: P → 5n + P

P

Q

P̄

Figure 2: Pushing/pulling lemma in 2 dimensions, using two

global movements.

(2) (Global movement) Let P ⊆ Boxd−1(n) and let Q be a trans-

late of P along the first coordinate, of the formQ = {p+x | p ∈

P} for some fixed vector x = (kn1, 0, . . . , 0) (k ∈ Z). The
translation defines a matching M = {(p, p + x) | p ∈ P},

which can be wired inGd ((k +1)n1,n2, . . . ,nd−1,n1+2), and
the length of each wire is O(kn1).

Let Σ(n) def
=

∑d−1
i=1 ni , and let π\i be the projection that removes

the i-th coordinate: π\i (x1, . . . ,xd) = (x1, . . . ,xi−1,xi+1, . . . ,xd).

Lemma 3.6. (Compression/Expansion) Let P ⊂ Boxd−1(kn) be
a k-spaced set and letM = {(p, q) | p ∈ P , q = compk (p)} — soM is

the natural matching between P and Q = compk (P). ThenM can be

wired inGd (kn, 2d − 2+Σ(n)), where each wire has lengthO(kΣ(n)).

In a point set P ⊆ Zd−1, we denote the lexicographic ordering
by <d−1. The lexicographic matching between two equal size point
sets of Zd−1 is the matching {(pi , qi) | i = 1, . . . , |P |}, where pi

and qi are the i-th points in the lexicographic order in P and Q
respectively. The main lemma in the proof of Theorem 3.3 is the
following:

Lemma 3.7. (Pushing/Pulling) Let d ≥ 2, n ∈ Zd−1
+ and let P

and Q be equal-size subsets of Boxd−1(n), where n1 ⩾ n2 ⩾ . . . ⩾
nd−1. Then the lexicographic matching between P andQ can be wired

in Gd (6n, 3n1 + 2). Moreover, the length of each wire is O(Σ(n)).

Induction: π\1(Rj(P)) → π\1(Rj(Q))

`(n1 + 2 + j)

`(1)

`(n1 + 2)

Global movement

P̄

P

Q

`(3n1 + 2)

Figure 3: Pushing/pulling lemma: we use the induction hy-

pothesis for each partition class in a separate layer.

Proof. Let the points of P and Q be p1 <d−1 p2 <d−1 · · · <d−1
pk and q1 <d−1 q2 <d−1 · · · <d−1 qk . The lexicographic matching
isM = {(pi ,qi) | i ∈ {1, . . . ,k}}.

We use induction on the dimension d . For d = 2, the sets P
and Q are equal size subsets of [n]. The wiring for d = 2 starts
by using a global movement (Lemma 3.5) from P to its translate
5n + P def

= {5n + p | p ∈ P} — this requires n + 2 layers. The wires
we need to continue are P̄ def

= Raisen1+2(5n + P). Next, we continue
wire i from point p̄i by raising its height by i units (along the x2-
coordinate), then we add a horizontal segment so that the first
coordinate becomes equal to qi (we decrease the first coordinate
by (5n +pi − qi)). We finish by raising the height by k + 1 − i steps.
It is easy to see that these wires do not intersect. This requires
k + 2 ⩽ n1 + 2 layers, so overall the d = 2 case can be wired in
2n + 4 layers. Each wire that we defined has length at most cn for
some constant c .

583

A Framework for ETH-Tight Algorithms and Lower Bounds in ... STOC’18, June 25–29, 2018, Los Angeles, CA, USA

For the inductive step, consider P ,Q ⊆ Boxd−1(n). Let IP be the
set of indices in the lexicographic ordering of P that separate the
ordering according to the value of the first coordinate, i.e., i ∈ IP if
and only if (pi)1 < (pi+1)1. We define the analogous set IQ for the
lexicographic order of Q . Let I = IP ∪ IQ ∪ {0, |P |}. Let R be the
partition of P according to I , so

R =
{
{pa , pa+1, . . . , pb } |

a ⩽ b, (a − 1) ∈ I ,b ∈ I , {a,a + 1, . . . ,b − 1} ∩ I = ∅
}
.

Note that R has size at most |R | ⩽ 2n1 − 1. We enumerate the
partition classes in the lexicographic order: R = {R1,R2, . . . ,R |R |}.
The analogous partition R ′ = {R′

1,R
′
2, . . . ,R

′
|R |

} can be defined
on Q . Notice that the lexicographic matching between P and Q is
the union of the lexicographic matchings between Rj and R′j for
j = 1, . . . , |R |. The crucial property of each partition class Rj ∈ R

is that for any pk , pl ∈ Rj and their pairs qk , ql ∈ R′
j we have

(pk)1 = (pl)1 and (qk)1 = (ql)1.
Now we are ready to define the wiring. We start with a global

movement (Lemma 3.5), just as we did in 2 dimensions: we move
P to (5n1, 0, . . . , 0) + P using height n1 + 2. Then we continue the
wires from P̄

def
= Raisen1+2 (

(5n1, 0, . . . , 0) + P
)
, see Figure 3. For

each point p̄ ∈ P̄ whose wire belongs to the class Rj , we raise the
wire j layers (into ℓ(n1 + 2 + j)). This introduces at most |R | ⩽
2n1 − 1 new layers, and together with a top layer it gives us all our
n1 + 2 + 2n1 − 1 + 1 = 3n1 + 2 layers.

We apply the inductive step for π\1(Rj) and π\1(R
′
j). This gives

us a wiring in d − 1 dimensions between these sets corresponding
to the lexicographic matching between Rj and R′

j , which is a subset
of the lexicographic matching between P andQ . We can embed this
wiring into ℓ(n1 + 2 + j) using the function φ j : Rd−1 → Rd that is
defined as

φ j ((x1, . . . ,xd−1)) = (5n1 + p1 − xd−1, x1, . . . ,xd−2, n1 + 2 + j)

where p1 is the first coordinate of an arbitrary p ∈ Rj , so that
the “height” of the inductive step is mapped to decreasing the first
coordinate within ℓj . (Note that by the definition ofR, we have p1 =
p′1 for any p, p

′ ∈ Rj , thus φ j is well-defined.) The induction implies
that the wiring fits within [6n2]×· · ·×[6nd−1]×[3n2+2]. Therefore,
the embedded wires do not enter Raisen1+2+j (Boxd−1(n)), since
the above embedding ends with a first coordinate which is at least
5n1 − (3n2 + 2) ≥ n1. We further extend each of these wires by
decreasing the first coordinate, until the wire corresponding to
p ∈ Rj decreases to q1, where q is the pair of p in the lexicographic
matching. Finally, we finish the wiring by raising all of the wires
corresponding to Rj for each j ∈ 1, . . . , |R | (extending them parallel
to the d-th coordinate axis) by length |R | + 1 − j. This completes
the wiring. The length used per wire is c

∑d−1
i=2 ni + cn1 = cΣ(n). It

is routine to check that these wires are vertex disjoint. □

Our task is to wire from the bottom layer ℓ(1), where the point set
P is embedded, to the the top layer ℓ(htop) that containsRaisehtop (Q).

A wire point of a wire at height h is the vertex of the wire inside
layer ℓ(h). (If there are multiple such points, let it denote the one
that is the furthest away from the starting point of the wire w .)
We denote by Wires the set of wires corresponding to M in the

construction; furthermore, for any set of wires T ⊂ Wires let T (h)
be the set of wire points at height h for the wires in T . For any
wire w and corresponding matching edge (p, q) ∈ M , denote by
orig(w) = p and dest(w) = q the origin and destination of the wire.

Proof of Theorem 3.3. By adding dummy edges to the match-
ing, we may assume that P = Q = Boxd−1(n). Without loss of
generality, assume that n1 ⩾ n2 ⩾ . . . ⩾ nd−1. We assume that all
coordinates of n are powers of two, and work inside Boxd−1(18n).
Rounding coordinates up to the next power of two gives the stated
result inside Boxd−1(36n).

We show that there are constants c1, c2 such thatM can be wired
in c1Σ(n) layers and c2dΣ(n) length per wire, but starting from
mag0

3(P) instead of P and arriving to mag0
18(Q) instead of Q . This

is sufficient because using our compression technique described
in Lemma 3.6, we can wire initially from P to mag0

3(P) and in the
end from mag0

18(Q) to Q in O(Σ(n)) extra layers and O(Σ(n)) extra
length per wire.

We use induction on Σ(n). In the base case, we have Σ(n) = d − 1
(i.e., ni = 1 for all i), and therefore mag0

3(P) can be wired in 3 layers
to mag0

18(Q) with a local movement (Lemma 3.5) since P and Q are
both singletons in the 18-cell [18]d−1.

For the inductive step, start the wiring at layer ℓ(1) with the
3-spaced point set mag0

3(P) ⊆ Boxd−1(3n). (See Figure 1.)
A wirew must be pushed if (orig(w))i ⩽ ni/2 and (dest(w))i >

ni/2. Let Push ⊂ Wires be the set of wires that need to be pushed.
Conversely, there is a set Pull ⊂ Wires, the wires that need to be
pulled, where (orig(wp))i > ni/2 and (dest(wp))i ⩽ n/2. Due to
our assumption that P = Q = Boxd−1(n), we have |Push| = |Pull|,
therefore the pushed and pulled wires need to change places. Let
Stay = Wires \ (Push ∪ Pull) be the rest of the wires. Therefore,
the starting points of the wires are at height one, at the points
Raise1(P) =Wires(1) = Push(1) ∪ Pull(1) ∪ Stay(1).

Using local movements with respect to 3-cells (Lemma 3.5), we
connect the points of π\d (Push(1)) into relevant points of the (1, 3)-
subgrid ofBoxd−1(3n), and the points of π\d (Pull(1)) to the relevant
points of the (2, 3)-subgrid of Boxd−1(3n). These local movements
end in layer ℓ(3); by raising the Stay wires vertically into ℓ(3), we
have that the point set Stay(3) is in the (0, 3) subgrid of Zd . We
raise Push(3) by one layer, and Pull(3) by two layers; as a result the
points Push(4) and Pull(5) are in the (1, 3) and (2, 3) subgrids of Zd
respectively. Note that for a while, we ensure the disjointness of
Push, Pull and Stay by keeping them in these subgrids, which are
disjoint (i.e., even the subgrid “edges” are vertex disjoint) for d ≥ 3.

Next, we apply pushing (Lemma 3.7) in the (1, 3)-subgrid to
Push(4). More precisely, we regard the (1, 3)-subgrid as a grid
graph Gd (

6n, (c/3)Σ(n)
)
(and disregard the edge subdivisions). We

can apply Lemma 3.7 in this graph, to wire from the point set
comp3

(
π\d (Push(4))

)
to comp3

(
π\d (Pull(5))

)
along the lexicogra-

phic matching. This wiring requires at most (3n1 + 2) layers in
the (1, 3)-subgrid. In the original graph, that becomes 3 · (3n1 + 2)
layers, therefore the wiring ends at height h1 = O(n1). We ap-
ply the same lemma to Pull(5) in the (2, 3)-subgrid, to wire from
comp3

(
π\d (Pull(5))

)
to comp3

(
π\d (Push(4))

)
; this also requires

height O(n1) in the original graph, and ends at height h′1 = O(n1).

584

STOC’18, June 25–29, 2018, Los Angeles, CA, USA de Berg, Bodlaender, Kisfaludi-Bak, Marx, and van der Zanden

Let h2 = max(h1,h′1) = O(n1). By raising the height (increasing
the last coordinate) of the wire sets Push,Pull and Stay until they
reach heighth2, we get to a quasi-3-spaced point set π\d

(
Push(h2)∪

Pull(h2) ∪ Stay(h2)
)
= π\d

(
Wires(h2)

)
⊆ Boxd−1(18n). We apply a

local movement (Lemma 3.5) to make our wire points 3-spaced at
height h2 + 2. Finally, we apply a global movement (Lemma 3.5) on
the wires in the higher half, and move them into the second half of
Boxd−1(18n) along the first coordinate3, that is,

X =
{
x ∈ π\d (Wires(h2 + 2)) | (comp3(x))1 > n1/2

}
is wired to

{
x +

(
15n1

2 , 0, . . . , 0
)
| x ∈ X

}
.

This wiring ends at a layer h3 = O(n1) = c1nmax for some
constant c1. The length requirement per wire is O(d) for the local
movements, O(dn1) for the rough reordering and O(n1) for the
global movement, so overall O(dn1) = c2dnmax length is used per
wire so far for some constant c2.

LetB1 = [18n1
2]×[18n2]×· · ·×[18nd−1] and letB2 = Boxd−1(18n)\

B1. Moreover, let W1 = {w ∈ Wires | (dest(w))1 ⩽ n1
2 } and

W2 = {w ∈ Wires | (dest(w))1 >
n1
2 }. Note that due to the rough

reordering, the wires that are in the B1 box in the layer ℓ(h2) are
precisely W1, while those in B2 are precisely W2. By induction,
there is a wiring from π\d (W1(h3)) to mag0

18(Q)∩B1, and also from
π\d (W2(h3)) tomag0

18(Q)∩B2 that realize thematchingM restricted
to these parts respectively, requiring c1 max(n1/2,n2, . . . ,nd−1)
height and c2d max(n1/2,n2, . . . ,nd−1) length per wire. We can
embed these two wirings next to each other starting from layer
ℓ(h3). Consider the number of layers used throughout. The value
of nmax takes all values from the multiset {ni/2j | i ∈ [d − 1], j =
0, 1, . . . , logni } exactly once. The number of layers used is therefore

d−1∑
i=1

logni∑
j=0

c1
ni
2j
<

d−1∑
i=1

2c1ni = O(Σ(n)),

and the length required per wire is

d−1∑
i=1

logni∑
j=0

c2d
ni
2j
<

d−1∑
i=1

2c2dni = O(dΣ(n)). □

The following theorem is an easy corollary of Cube Wiring.

Theorem 3.8. For all constantsd ≥ 3, any graph withm edges and

no isolated vertices is the minor of the d-dimensional grid hypercube

of side length O(m
1

d−1).

Proof. Let G be an arbitrary graph with m edges. We dilate
all vertices v of G into a path Pv of length degG (v), i.e., replace v
with Pv , where each vertex of Pv is adjacent to a single neighbor
of v . We also subdivide each original edge e = uv of G with two
new vertices, weu (adjacent to u) and wev (adjacent to v); let G ′

be the graph that we end up with after these modifications. Let
P =

⋃
v ∈V V (Pv) and let Q = {wev | e ∈ E,v ∈ e}; both sets have

size 2m. It is easy to see that both G ′[P] and G ′[Q] are subgraphs
of Gd−1((cm

1/(d−1), . . . , cm1/(d−1)) for some constant c; let us fix
such an embedding. By the cube wiring theorem, there are vertex
3Notice that we shift by 7.5n1 instead of 8.5n1 , as stated in the simplified overview
earlier. The reason is that we are working with a 3-spaced set X here.

0 1 2 3

4

5

6789

10

11

Ear

Wire

Figure 4: Variable gadget for Dominating Set. In blue it

is shown where the wire gadgets are attached for a vari-

able that occurs twice as a negative literal (corresponding

to wires attached to vertices 0 and 3) and once as a positive

literal (wire attached to vertex 7).

disjoint paths connecting the embedded vertices of P to the embed-
ded vertices of Q in O(dm1/(d−1)) = O(m1/(d−1)) layers, along the
perfect matching E(G ′) ∩ (P × Q). This wiring together with the
embeddings is a subgraph of the d-dimensional hypercube of side
length O(m1/(d−1)) from which we can get to G by applying edge
contractions. □

3.3 Applying the Lower-Bound Framework

Theorem 3.9. Let d ⩾ 2 be a fixed constant. Then there is no

2o(n1−1/d)
algorithm for Dominating Set in induced grid graphs of

dimension d , unless ETH fails.

Proof. We do a reduction from Grid Embedded SAT. Let ϕ be
the input formula with incidence graph Gϕ . Our variable gadget
is a cycle of length 12 with an “ear” of the same size, as depicted
in Figure 4; we number the vertices of the cycle from 0 to 11. The
wire gadgets are simple paths of length 3k + 1 (for some k ∈ Z+),
and the clause gadget is a single vertex. A wire that corresponds
to a positive literal starts at a variable cycle vertex with index ≡ 1
(mod 3), and ends at the corresponding clause vertex. For negative
literals, we start at a vertex of index ≡ 0 (mod 3) instead. From
each variable cycle, we must select at least four vertices into our
dominating set, and at least three more vertices from the ear are
necessary. From the inner vertices of a wire of length 3k + 1, we
have at least k vertices in the dominating set.

Therefore, the dominating-set instance corresponding to a for-
mula on n variables with a drawing of total wire countw and total
wire length ℓ has dominating set size at least 7n+ ℓ−w

3 . It is routine
to check that this is attainable if and only if the formula is satisfied.
See [10] for a similar, but more detailed argument.
Two-dimensional grid graphs. Given a grid embedded drawing D of
Gϕ , we need to create a grid graph which incorporates the above
gadgets. This can be done by changing the grid underlying D to
a ten times denser grid; this way, we can add the variable gadgets
without overlap or unwanted induced edges, and we also have space
to adjust the wire length where necessary using local modifications.
This transformation can be done in polynomial time, and the result
is an induced grid graph drawn in an O(n) ×O(n) grid. Therefore,
Dominating Set has no 2o(

√
n) algorithm in induced grid graphs

unless ETH fails.

585

A Framework for ETH-Tight Algorithms and Lower Bounds in ... STOC’18, June 25–29, 2018, Los Angeles, CA, USA

Higher dimensional grid graphs.

We start with a (3, 3)-SAT formula ϕ. We place the above variable
gadgets in a d − 1-dimensional hypercube of side length O(n

1
d−1).

The clause gadgets along with the last inner vertices of each wire
are placed in the opposing face of the d-dimensional hypercube.
Applying the Cube Wiring Theorem to the first and last inner
vertices of the wires that have been placed in the opposing faces,
we can place each wire inside the hypercube, by increasing the side
length by a constant factor (depending on d). The construction fits
in a hypercube of side length O(n

1
d−1), and the number of vertices

in this induced grid graph isO(n
d
d−1). Thus, a 2o(|V |1−1/d) algorithm

for Dominating Set would translate into a 2o((n
d
d−1)1−1/d) = 2o(n)

algorithm for (3, 3)-SAT, contradicting ETH (this is demonstrated
in the full version). □

4 CONCLUSION

We have presented an algorithmic and lower bound framework
for obtaining 2Θ(n1−1/d) algorithms and matching conditional lower
bounds for several problems in geometric intersection graphs. We
find the following questions intriguing:

• Is it possible to obtain clique decompositions without geo-
metric information? Alternatively, how hard is it to color
the complement of a small diameter geometric intersection
graph of fat objects?

• Many of our applications require the low degree property
(i.e., the fact that GP has bounded degree). Is the low de-
gree property really essential for these applications? Would
having low average degree be sufficient?

• Is it possible to modify the framework to work without the
similar size assumption?

Finally, it would be interesting to explore the potential conse-
quences of this framework for parameterized and approximation
algorithms.

REFERENCES

[1] Jochen Alber and Jirí Fiala. 2004. Geometric separation and exact solutions for
the parameterized independent set problem on disk graphs. Journal of Algorithms

52, 2 (2004), 134–151. https://doi.org/10.1016/j.jalgor.2003.10.001
[2] Boris Aronov, Mark de Berg, Esther Ezra, and Micha Sharir. 2014. Improved

Bounds for the Union of Locally Fat Objects in the Plane. SIAM J. Comput. 43, 2
(2014), 543–572. https://doi.org/10.1137/120891241

[3] Julien Baste and Dimitrios M. Thilikos. 2018. Contraction-Bidimensionality of
Geometric Intersection Graphs. In 12th International Symposium on Parameter-

ized and Exact Computation (IPEC 2017) (Leibniz International Proceedings in

Informatics (LIPIcs)), Daniel Lokshtanov and Naomi Nishimura (Eds.), Vol. 89.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 5:1–5:13.
https://doi.org/10.4230/LIPIcs.IPEC.2017.5

[4] Csaba Biró, Édouard Bonnet, Dániel Marx, Tillmann Miltzow, and Paweł
Rzążewski. 2017. Fine-Grained Complexity of Coloring Unit Disks and Balls.
In Proceedings of the 33rd International Symposium on Computational Geometry,

SoCG 2017 (LIPCS), Vol. 77. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
18:1–18:16. https://doi.org/10.4230/LIPIcs.SoCG.2017.18

[5] Hans L Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. 2015.
Deterministic single exponential time algorithms for connectivity problems
parameterized by treewidth. Information and Computation 243 (2015), 86–111.

[6] Heinz Breu and David G. Kirkpatrick. 1998. Unit disk graph recognition is NP-
hard. Comput. Geom. 9, 1-2 (1998), 3–24. https://doi.org/10.1016/S0925-7721(97)
00014-X

[7] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. 2000. Linear Time
Solvable Optimization Problems on Graphs of Bounded Clique-Width. Theory of

Computing Systems 33, 2 (2000), 125–150. https://doi.org/10.1007/s002249910009
[8] Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx,

Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. 2015. Parameterized

Algorithms. Springer.
[9] Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and TomC.

van der Zanden. 2018. Framework for ETH-tight Algorithms and Lower Bounds
in Geometric Intersection Graphs. CoRR abs/1803.10633 (2018). arXiv:1803.10633
http://arxiv.org/abs/1803.10633

[10] Mark de Berg, Sándor Kisfaludi-Bak, and Gerhard Woeginger. 2018. The Dom-
inating Set Problem in Geometric Intersection Graphs. In 12th International

Symposium on Parameterized and Exact Computation (IPEC 2017) (Leibniz In-

ternational Proceedings in Informatics (LIPIcs)), Daniel Lokshtanov and Naomi
Nishimura (Eds.), Vol. 89. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 14:1–14:12. https://doi.org/10.4230/LIPIcs.IPEC.2017.14

[11] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav
Zehavi. 2017. Finding, Hitting and Packing Cycles in Subexponential Time
on Unit Disk Graphs. In Proceedings of the 44th International Colloquium on

Automata, Languages, and Programming, ICALP 2017 (LIPICS), Vol. 80. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 65:1–65:15. https://doi.org/10.4230/
LIPIcs.ICALP.2017.65

[12] Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. 2012. Bidimensionality
and geometric graphs. In Proceedings of the Twenty-Third Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2012. SIAM, 1563–1575. http://portal.
acm.org/citation.cfm?id=2095240&CFID=63838676&CFTOKEN=79617016

[13] Bin Fu. 2011. Theory and application of width bounded geometric separators. J.
Comput. System Sci. 77, 2 (2011), 379 – 392. https://doi.org/10.1016/j.jcss.2010.05.
003

[14] Martin Charles Golumbic and Udi Rotics. 2000. On the Clique-Width of Some
Perfect Graph Classes. International Journal of Foundations of Computer Science

11, 3 (2000), 423–443. https://doi.org/10.1142/S0129054100000260
[15] Sariel Har-Peled and Kent Quanrud. 2015. Approximation algorithms for

polynomial-expansion and low-density graphs. In Proceedings of the 23rd Annual

European Symposium on Algorithms, ESA 2015 (Lecture Notes in Computer Science),
Vol. 9294. Springer, 717–728. https://doi.org/10.1007/978-3-662-48350-3_60

[16] Russell Impagliazzo and Ramamohan Paturi. 2001. On the Complexity of k -SAT.
J. Comput. System Sci. 62, 2 (2001), 367–375. https://doi.org/10.1006/jcss.2000.1727

[17] Ross J. Kang and Tobias Müller. 2012. Sphere and Dot Product Representations
of Graphs. Discrete & Computational Geometry 47, 3 (2012), 548–568. https:
//doi.org/10.1007/s00454-012-9394-8

[18] Sándor Kisfaludi-Bak and Tom C van der Zanden. 2017. On the Exact Complex-
ity of Hamiltonian Cycle and q-Colouring in Disk Graphs. In Proceedings 10th

International Conference on Algorithms and Complexity, CIAC 2017 (Lecture Notes

in Computer Science), Vol. 10236. Springer, 369–380.
[19] Richard J. Lipton and Robert Endre Tarjan. 1979. A separator theorem for planar

graphs. SIAM J. Appl. Math. 36, 2 (1979), 177–189.
[20] Richard J. Lipton and Robert Endre Tarjan. 1980. Applications of a planar separa-

tor theorem. SIAM J. Comput. 9, 3 (1980), 615–627.
[21] Dániel Marx. 2013. The Square Root Phenomenon in Planar Graphs. In Au-

tomata, Languages, and Programming - 40th International Colloquium, ICALP

2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II. 28. https://doi.org/10.1007/
978-3-642-39212-2_4

[22] Dániel Marx and Michal Pilipczuk. 2015. Optimal Parameterized Algorithms for
Planar Facility Location Problems Using Voronoi Diagrams. In Proceedings of

the 23rd Annual European Symposium on Algorithms, ESA 2015 (Lecture Notes

in Computer Science), Vol. 9294. Springer, 865–877. https://doi.org/10.1007/
978-3-662-48350-3_72

[23] Dániel Marx and Anastasios Sidiropoulos. 2014. The limited blessing of low di-
mensionality: when 1− 1/d is the best possible exponent for d -dimensional geo-
metric problems. In Proceedings of the 30th Annual Symposium on Computational

Geometry, SOCG 2014. ACM, 67–76. https://doi.org/10.1145/2582112.2582124
[24] Sang-il Oum. 2017. Rank-width: Algorithmic and structural results. Discrete

Applied Mathematics 231 (2017), 15–24. https://doi.org/10.1016/j.dam.2016.08.006
[25] Warren D. Smith and Nicholas C. Wormald. 1998. Geometric Separator Theorems

& Applications. In Proceedings of the 39th Annual Symposium on Foundations of

Computer Science, FOCS 1998. IEEE Computer Society, 232–243. https://doi.org/
10.1109/SFCS.1998.743449

[26] Frank van den Eijkhof, Hans L. Bodlaender, and M.C.A. Koster. 2007. Safe
Reduction Rules for Weighted Treewidth. Algorithmica 47, 2 (2007), 139–158.

586

https://doi.org/10.1016/j.jalgor.2003.10.001
https://doi.org/10.1137/120891241
https://doi.org/10.4230/LIPIcs.IPEC.2017.5
https://doi.org/10.4230/LIPIcs.SoCG.2017.18
https://doi.org/10.1016/S0925-7721(97)00014-X
https://doi.org/10.1016/S0925-7721(97)00014-X
https://doi.org/10.1007/s002249910009
http://arxiv.org/abs/1803.10633
http://arxiv.org/abs/1803.10633
https://doi.org/10.4230/LIPIcs.IPEC.2017.14
https://doi.org/10.4230/LIPIcs.ICALP.2017.65
https://doi.org/10.4230/LIPIcs.ICALP.2017.65
http://portal.acm.org/citation.cfm?id=2095240&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095240&CFID=63838676&CFTOKEN=79617016
https://doi.org/10.1016/j.jcss.2010.05.003
https://doi.org/10.1016/j.jcss.2010.05.003
https://doi.org/10.1142/S0129054100000260
https://doi.org/10.1007/978-3-662-48350-3_60
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1007/s00454-012-9394-8
https://doi.org/10.1007/s00454-012-9394-8
https://doi.org/10.1007/978-3-642-39212-2_4
https://doi.org/10.1007/978-3-642-39212-2_4
https://doi.org/10.1007/978-3-662-48350-3_72
https://doi.org/10.1007/978-3-662-48350-3_72
https://doi.org/10.1145/2582112.2582124
https://doi.org/10.1016/j.dam.2016.08.006
https://doi.org/10.1109/SFCS.1998.743449
https://doi.org/10.1109/SFCS.1998.743449

	Abstract
	1 Introduction
	2 The algorithmic framework
	2.1 Separators for Arbitrarily-Sized Fat Objects
	2.2 An Algorithmic Framework for Similarly-Sized Fat Objects
	2.3 Basic Algorithmic Applications
	2.4 Rank-Based Approach

	3 The Lower-Bound Framework
	3.1 Lower Bounds in Two Dimensions
	3.2 Lower Bounds in Higher Dimensions – Cube Wiring
	3.3 Applying the Lower-Bound Framework

	4 Conclusion
	References

