
The Square Root Phenomenon in Planar Graphs
Survey and New Results

Dániel Marx

Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

Dagstuhl Seminar 16221:
Algorithms for Optimization Problems

in Planar Graphs

Schloss Dagstuhl, Germany
June 1, 2016

1

Main message

NP-hard problems become easier on planar graphs
and geometric objects, and usually exactly by a
square root factor.

Planar graphs Geometric objects

2

Better exponential algorithms

Most NP-hard problems (e.g., 3-Coloring, Independent Set,
Hamiltonian Cycle, Steiner Tree, etc.) remain NP-hard on
planar graphs,1 so what do we mean by “easier”?

The running time is still exponential, but significantly smaller:

2O(n) ⇒ 2O(
√
n)

nO(k) ⇒ nO(
√
k)

2O(k) · nO(1) ⇒ 2O(
√
k) · nO(1)

1Notable exception: Max Cut is in P for planar graphs.
3

Better exponential algorithms

Most NP-hard problems (e.g., 3-Coloring, Independent Set,
Hamiltonian Cycle, Steiner Tree, etc.) remain NP-hard on
planar graphs,1 so what do we mean by “easier”?

The running time is still exponential, but significantly smaller:

2O(n) ⇒ 2O(
√
n)

nO(k) ⇒ nO(
√
k)

2O(k) · nO(1) ⇒ 2O(
√
k) · nO(1)

1Notable exception: Max Cut is in P for planar graphs.
3

Overview

Chapter 1:
Subexponential algorithms using treewidth.

Chapter 2:
Grid minors and bidimensionality.

Chapter 3:
Beyond bidimensionality:
Finding bounded-treewidth solutions.

4

Chapter 1: Subexponential algorithms using treewidth

Treewidth is a measure of “how treelike the graph is.”

We need only the following basic facts:

Treewidth
1 If a graph G has treewidth k , then many classical NP-hard

problems can be solved in time 2O(k) · nO(1) or
2O(k log k) · nO(1) on G .

2 A planar graph on n vertices has treewidth O(
√
n).

5

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.

6

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

hgfe

a

b c d

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.

6

Finding tree decompositions

Various algorithms for finding optimal or approximate tree
decompositions if treewidth is w :

optimal decomposition in time 2O(w3) · n
[Bodlaender 1996].
4-approximate decomposition in time 2O(w) · n2

[Robertson and Seymour].
5-approximate decomposition in time 2O(w) · n
[Bodlaender et al. 2013].
O(

√
logw)-approximation in polynomial time

[Feige, Hajiaghayi, Lee 2008].
As we are mostly interested in algorithms with running time
2O(w) · nO(1), we may assume that we have a decomposition.

7

3-Coloring and tree decompositions

Theorem
Given a tree decomposition of width w , 3-Coloring can be
solved in time 3w · wO(1) · n.

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and coloring c : Bx →
{1, 2, 3}, we compute the Boolean value
E [x , c], which is true if and only if c can
be extended to a proper 3-coloring of Vx .

Claim:
We can determine E [x , c] if all the values are
known for the children of x .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

bcf=T bcf=F
bcf=T bcf=F
.

8

Subexponential algorithm for 3-Coloring

Theorem [textbook dynamic programming]

3-Coloring can be solved in time 2O(w) · nO(1) on graphs of
treewidth w .

+

Theorem [Robertson and Seymour]

A planar graph on n vertices has treewidth O(
√
n).

⇓

Corollary

3-Coloring can be solved in time 2O(
√
n) on planar graphs.

textbook algorithm + combinatorial bound
⇓

subexponential algorithm

9

Subexponential algorithm for 3-Coloring

Theorem [textbook dynamic programming]

3-Coloring can be solved in time 2O(w) · nO(1) on graphs of
treewidth w .

+

Theorem [Robertson and Seymour]

A planar graph on n vertices has treewidth O(
√
n).

⇓

Corollary

3-Coloring can be solved in time 2O(
√
n) on planar graphs.

textbook algorithm + combinatorial bound
⇓

subexponential algorithm
9

Lower bounds

Corollary

3-Coloring can be solved in time 2O(
√
n) on planar graphs.

Two natural questions:
Can we achieve this running time on general graphs?
Can we achieve even better running time (e.g., 2O(3√n)) on
planar graphs?

P 6= NP is not a sufficiently strong hypothesis: it is compatible with
3SAT being solvable in time 2O(n1/1000) or even in time nO(log n).

We need a stronger hypothesis!

10

Lower bounds

Corollary

3-Coloring can be solved in time 2O(
√
n) on planar graphs.

Two natural questions:
Can we achieve this running time on general graphs?
Can we achieve even better running time (e.g., 2O(3√n)) on
planar graphs?

P 6= NP is not a sufficiently strong hypothesis: it is compatible with
3SAT being solvable in time 2O(n1/1000) or even in time nO(log n).

We need a stronger hypothesis!

10

Exponential Time Hypothesis (ETH)
Hypothesis introduced by Impagliazzo, Paturi, and Zane:

Exponential Time Hypothesis (ETH) [consequence of]

There is no 2o(n)-time algorithm for n-variable 3SAT.

Note: current best algorithm is 1.30704n [Hertli 2011].

Note: an n-variable 3SAT formula can have m = Ω(n3) clauses.

Are there algorithms that are subexponential in the size n + m of
the 3SAT formula?

Sparsification Lemma [Impagliazzo, Paturi, Zane 2001]

There is a 2o(n)-time algorithm for n-variable 3SAT.
m

There is a 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

11

Exponential Time Hypothesis (ETH)
Hypothesis introduced by Impagliazzo, Paturi, and Zane:

Exponential Time Hypothesis (ETH) [consequence of]

There is no 2o(n)-time algorithm for n-variable 3SAT.

Note: current best algorithm is 1.30704n [Hertli 2011].

Note: an n-variable 3SAT formula can have m = Ω(n3) clauses.

Are there algorithms that are subexponential in the size n + m of
the 3SAT formula?

Sparsification Lemma [Impagliazzo, Paturi, Zane 2001]

There is a 2o(n)-time algorithm for n-variable 3SAT.
m

There is a 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

11

Lower bounds based on ETH

ETH + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to 3-Coloring:

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(n + m) vertices
O(n + m) edges

(we can assume n = O(m))

Corollary

Assuming ETH, there is no 2o(n) algorithm for 3-Coloring on an
n-vertex graph G .

12

Lower bounds based on ETH

ETH + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to 3-Coloring:

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(m) vertices
O(m) edges

(we can assume n = O(m))

Corollary

Assuming ETH, there is no 2o(n) algorithm for 3-Coloring on an
n-vertex graph G .

12

Transfering bounds
There are polynomial-time reductions from, say, 3-Coloring to
many other problems such that the reduction increases the number
of vertices by at most a constant factor.

Consequence: Assuming ETH, there is no 2o(n) time algorithm on
n-vertex graphs for

Independent Set

Clique

Dominating Set

Vertex Cover

Hamiltonian Path

Feedback Vertex Set

. . .

13

Lower bounds based on ETH
What about 3-Coloring on planar graphs?

The textbook reduction from 3-Coloring to Planar
3-Coloring uses a “crossover gadget” with 4 external connectors:

In every 3-coloring of the gadget, opposite external connectors
have the same color.
Every coloring of the external connectors where the opposite
vertices have the same color can be extended to all the gadget.
If two edges cross, replace them with a crossover gadget.

14

Lower bounds based on ETH
What about 3-Coloring on planar graphs?

The textbook reduction from 3-Coloring to Planar
3-Coloring uses a “crossover gadget” with 4 external connectors:

In every 3-coloring of the gadget, opposite external connectors
have the same color.
Every coloring of the external connectors where the opposite
vertices have the same color can be extended to all the gadget.
If two edges cross, replace them with a crossover gadget.

14

Lower bounds based on ETH
What about 3-Coloring on planar graphs?

The textbook reduction from 3-Coloring to Planar
3-Coloring uses a “crossover gadget” with 4 external connectors:

In every 3-coloring of the gadget, opposite external connectors
have the same color.
Every coloring of the external connectors where the opposite
vertices have the same color can be extended to all the gadget.
If two edges cross, replace them with a crossover gadget.

14

Lower bounds based on ETH

The reduction from 3-Coloring to Planar 3-Coloring
introduces O(1) new edges/vertices for each crossing.
A graph with m edges can be drawn with O(m2) crossings.

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(m) vertices
O(m) edges

⇒
Planar graph G ′

O(m2) vertices
O(m2) edges

Corollary

Assuming ETH, there is no 2o(
√
n) algorithm for 3-Coloring on

an n-vertex planar graph G .

(Essentially observed by [Cai and Juedes 2001])

15

Summary of Chapter 1

Streamlined way of obtaining tight upper and lower bounds for
planar problems.

Upper bound:
Standard bounded-treewidth algorithm + treewidth bound on
planar graphs give 2O(

√
n) time subexponential algorithms.

Lower bound:
Textbook NP-hardness proof with quadratic blow up + ETH
rule out 2o(

√
n) algorithms.

Works for Hamiltonian Cycle, Vertex Cover,
Independent Set, Feedback Vertex Set, Dominating
Set, Steiner Tree, . . .

16

Chapter 2: Grid minors and bidimensionality
More refined analysis of the running time: we express the running
time as a function of input size n and a parameter k .

Definition
A problem is fixed-parameter tractable (FPT) parameterized by
k if it can be solved in time f (k) · nO(1) for some computable
function f .

Examples of FPT problems:
Finding a vertex cover of size k .
Finding a feedback vertex set of size k .
Finding a path of length k .
Finding k vertex-disjoint triangles.
. . .

Note: these four problems have 2O(k) · nO(1) time algorithms, which
is best possible on general graphs.

17

W[1]-hardness

Negative evidence similar to NP-completeness. If a problem is
W[1]-hard, then the problem is not FPT unless FPT=W[1].

Some W[1]-hard problems:
Finding a clique/independent set of size k .
Finding a dominating set of size k .
Finding k pairwise disjoint sets.
. . .

For these problems, the exponent of n has to depend on k
(the running time is typically nO(k)).

18

Subexponential parameterized algorithms

What kind of upper/lower bounds we have for f (k)?
For most problems, we cannot expect a 2o(k) · nO(1) time
algorithm on general graphs.
(As this would imply a 2o(n) algorithm.)

For most problems, we cannot expect a 2o(
√
k) · nO(1) time

algorithm on planar graphs.
(As this would imply a 2o(

√
n) algorithm.)

However, 2O(
√
k) · nO(1) algorithms do exist for several

problems on planar graphs, even for some W[1]-hard problems.
Quick proofs via grid minors and bidimensionality.
[Demaine, Fomin, Hajiaghayi, Thilikos 2004]

Next: subexponential parameterized algorithm for k-Path.

19

Subexponential parameterized algorithms

What kind of upper/lower bounds we have for f (k)?
For most problems, we cannot expect a 2o(k) · nO(1) time
algorithm on general graphs.
(As this would imply a 2o(n) algorithm.)

For most problems, we cannot expect a 2o(
√
k) · nO(1) time

algorithm on planar graphs.
(As this would imply a 2o(

√
n) algorithm.)

However, 2O(
√
k) · nO(1) algorithms do exist for several

problems on planar graphs, even for some W[1]-hard problems.
Quick proofs via grid minors and bidimensionality.
[Demaine, Fomin, Hajiaghayi, Thilikos 2004]

Next: subexponential parameterized algorithm for k-Path.

19

Minors

Definition
Graph H is a minor of G (H ≤ G) if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

deleting uv

vu w

u v
contracting uv

Note: length of the longest path in H is at most the length of the
longest path in G .

20

Planar Excluded Grid Theorem

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a k × k grid
minor.

Note: for general graphs, treewidth at least k100 or so guarantees
a k × k grid minor [Chekuri and Chuzhoy 2013]!

21

Bidimensionality for k-Path
Observation: If the treewidth of a planar graph G is at least 5

√
k

⇒ It has a
√
k ×
√
k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a path of length at least k .
⇒ G has a path of length at least k .

We use this observation to find a path of length at least k on
planar graphs:

22

Bidimensionality for k-Path
Observation: If the treewidth of a planar graph G is at least 5

√
k

⇒ It has a
√
k ×
√
k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a path of length at least k .
⇒ G has a path of length at least k .

We use this observation to find a path of length at least k on
planar graphs:

If treewidth w of G is at least 5
√
k :

we answer “there is a path of length at
least k .”
If treewidth w of G is less than 5

√
k ,

then we can solve the problem in time
2O(w) · nO(1) = 2O(

√
k) · nO(1).

22

Bidimensionality for k-Path
Observation: If the treewidth of a planar graph G is at least 5

√
k

⇒ It has a
√
k ×
√
k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a path of length at least k .
⇒ G has a path of length at least k .

We use this observation to find a path of length at least k on
planar graphs:

Set w := 5
√
k .

Find an O(1)-approximate tree
decomposition.

If treewidth is at least w : we can
answer “there is a path of length at
least k .”
If we get a tree decomposition of
width O(w), then we can solve the
problem in time
2O(w) · nO(1) = 2O(

√
k) · nO(1).

22

Bidimensionality
Definition
A graph invariant x(G) is minor-bidimensional if

x(G ′) ≤ x(G) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.

23

Bidimensionality
Definition
A graph invariant x(G) is minor-bidimensional if

x(G ′) ≤ x(G) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.

23

Bidimensionality
Definition
A graph invariant x(G) is minor-bidimensional if

x(G ′) ≤ x(G) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.

23

Summary of Chapter 2

Tight bounds for minor-bidimensional planar problems.

Upper bound:
Standard bounded-treewidth algorithm + planar excluded grid
theorem give 2O(

√
k) · nO(1) time FPT algorithms.

Lower bound:
Textbook NP-hardness proof with quadratic blow up + ETH
rule out 2o(

√
n) time algorithms ⇒ no 2o(

√
k) · nO(1) time

algorithm.

Variant of theory works for contraction-bidimensional problems,
e.g., Independent Set, Dominating Set.

24

Limits of bidimensionality?

Bidimensionality works nice for some problems, but fails completely
even for embarrassingly simple generalizations.

Works for k-Path, but not for s − t paths.
Works for cycles of length at least k , but not for cycles of
length exactly k .
Weighted versions, colored versions, counting versions, etc.

Bidimensionality on its own does not give subexponential
parameterized algorithms for these problems!

25

Limits of bidimensionality?
Perhaps the most basic problem:

Subgraph Isomorphism
Given a graphs H and G , decide if G has a subgraph isomorphic
to H.

26

Limits of bidimensionality?
Perhaps the most basic problem:

Subgraph Isomorphism
Given a graphs H and G , decide if G has a subgraph isomorphic
to H.

Theorem [Eppstein 1999]

Subgraph Isomorphism for planar graphs can be solved in time
2O(k log k) · n for k := |V (H)|.

26

Limits of bidimensionality?
Perhaps the most basic problem:

Subgraph Isomorphism
Given a graphs H and G , decide if G has a subgraph isomorphic
to H.

Question already asked in the last seminar:

Does the square root phenomenon appear for Subgraph
Isomorphism on planar graphs?

26

Limits of bidimensionality?
Perhaps the most basic problem:

Subgraph Isomorphism
Given a graphs H and G , decide if G has a subgraph isomorphic
to H.

Question already asked in the last seminar:

Does the square root phenomenon appear for Subgraph
Isomorphism on planar graphs?

Assuming ETH, there is no 2o(k/ log k)nO(1) time algorithm for
general patterns.

[Hans Bodlaender’s talk Thu 9:30]

There is a 2O(
√
kpolylogk)nO(1) time (randomized) algorithm for

connected, bounded degree patterns.

[Marcin Pilipczuk’s talk Thu 9:00]
26

Chapter 3: Finding bounded-treewidth solutions

So far, we have exploited that the input has bounded treewidth
and used standard algorithms.

Change of viewpoint:

In many cases, we have to exploit instead that the solution has
bounded treewidth.

27

Chapter 3: Finding bounded-treewidth solutions

So far, we have exploited that the input has bounded treewidth
and used standard algorithms.

Change of viewpoint:

In many cases, we have to exploit instead that the solution has
bounded treewidth.

27

Minimum Weight Triangulation
Given a set of n points in the plane, find a triangulation of
minimum length.

28

Minimum Weight Triangulation
Given a set of n points in the plane, find a triangulation of
minimum length.

28

Minimum Weight Triangulation
Given a set of n points in the plane, find a triangulation of
minimum length.

28

Minimum Weight Triangulation
Given a set of n points in the plane, find a triangulation of
minimum length.

Brute force solution: 2O(n) time.

28

Minimum Weight Triangulation
Given a set of n points in the plane, find a triangulation of
minimum length.

Theorem [Lingas 1998], [Knauer 2006]

Minimum Weight Triangulation can be solved in time 2O(
√
n log n).

28

Minimum Weight Triangulation

Theorem [Lingas 1998], [Knauer 2006]

Minimum Weight Triangulation can be solved in time 2O(
√
n log n).

Main idea: guess a separator of size O(
√
n) of the solution and

recurse.

29

Minimum Weight Triangulation

Theorem [Lingas 1998], [Knauer 2006]

Minimum Weight Triangulation can be solved in time 2O(
√
n log n).

Main idea: guess a separator of size O(
√
n) of the solution and

recurse.

29

Minimum Weight Triangulation

Theorem [Lingas 1998], [Knauer 2006]

Minimum Weight Triangulation can be solved in time 2O(
√
n log n).

Main idea: guess a separator of size O(
√
n) of the solution and

recurse.

29

Lower bound
Theorem [Mulzer and Rote 2006]

Minimum Weight Triangulation is NP-hard.

(solving a long-standing open problem of [Garey and Johnson 1979])

30

Lower bound
Theorem [Mulzer and Rote 2006]

Minimum Weight Triangulation is NP-hard.

(solving a long-standing open problem of [Garey and Johnson 1979])

Not for the fainthearted. . .

30

Lower bound
Theorem [Mulzer and Rote 2006]

Minimum Weight Triangulation is NP-hard.

(solving a long-standing open problem of [Garey and Johnson 1979])

It can be checked that the proof also implies:

Theorem [Mulzer and Rote 2006]

Assuming ETH, Minimum Weight Triangulation cannot be solved
in time 2o(

√
n).

30

Main paradigm

Exploit that the solution has treewidth O(
√
n) and

has separators of size O(
√
n).

31

Counting problems

Counting is harder than decision:
Counting version of easy problems:
not clear if they remain easy.
Counting version of hard problems:
not clear if we can keep the same running time.

Working on counting problems is fun:
You can revisit fundamental, “well-understood” problems.
Requires a new set of lower bound techniques.
Requires new algorithmic techniques.

32

Counting problems

Counting is harder than decision:
Counting version of easy problems:
not clear if they remain easy.
Counting version of hard problems:
not clear if we can keep the same running time.

Working on counting problems is fun:
You can revisit fundamental, “well-understood” problems.
Requires a new set of lower bound techniques.
Requires new algorithmic techniques.

32

Bidimensionality and counting

Does not work for counting k-paths in a planar graph:

If treewidth w is O(
√
k): can be solved in time

2O(w)nO(1) = 2O(
√
k)nO(1) using dynamic programming.

If treewidth w is larger than c
√
k : answer is positive, but how

much exactly?

Works for counting vertex covers of size k in a planar graph:

If treewidth w is O(
√
k): can be solved in time

2O(w)nO(1) = 2O(
√
k)nO(1) using dynamic programming.

If treewidth w is larger than c
√
k : answer is 0.

33

Bidimensionality and counting

Does not work for counting k-paths in a planar graph:

If treewidth w is O(
√
k): can be solved in time

2O(w)nO(1) = 2O(
√
k)nO(1) using dynamic programming.

If treewidth w is larger than c
√
k : answer is positive, but how

much exactly?

Works for counting vertex covers of size k in a planar graph:

If treewidth w is O(
√
k): can be solved in time

2O(w)nO(1) = 2O(
√
k)nO(1) using dynamic programming.

If treewidth w is larger than c
√
k : answer is 0.

33

Counting k-matching

Counting matchings can be significantly harder than finding a
matching!

Counting perfect matchings is #P-hard [Valiant 1979].
Counting matchings of size k is #W[1]-hard
[Curticapean 2013], [Curticapean and M. 2014].
Counting matchings of size k is FPT in planar graphs.
[Frick 2004]

Open question: Is there a 2O(
√
k) · nO(1) algorithm for counting k

matchings in planar graphs?

34

Counting k-matching

Counting matchings can be significantly harder than finding a
matching!

Counting perfect matchings in planar graphs is
polynomial-time solvable.
[Kasteleyn 1961], [Temperley and Fischer 1961].
Corollary: we can count matchings covering n − k vertices in
time nO(k)

. . . but (assuming ETH) there is no f (k)no(k/ log k) time
algorithm [Curticapean and Xia 2015].

34

Counting Triangulations
Natural idea:
Guess size-O(

√
n) separator of the triangulation, solve the two

subproblems, multiply the number of solutions in the two
subproblems.

Does not work:
More than one separator could be valid for a triangulation
⇒ we can significantly overcount the number of triangulations.

35

Counting Triangulations
Natural idea:
Guess size-O(

√
n) separator of the triangulation, solve the two

subproblems, multiply the number of solutions in the two
subproblems.

Does not work:
More than one separator could be valid for a triangulation
⇒ we can significantly overcount the number of triangulations.

35

Counting Triangulations
Natural idea:
Guess size-O(

√
n) separator of the triangulation, solve the two

subproblems, multiply the number of solutions in the two
subproblems.

Does not work:
More than one separator could be valid for a triangulation
⇒ we can significantly overcount the number of triangulations.

35

Counting Triangulations
Natural idea:
Guess size-O(

√
n) separator of the triangulation, solve the two

subproblems, multiply the number of solutions in the two
subproblems.

Does not work:
More than one separator could be valid for a triangulation
⇒ we can significantly overcount the number of triangulations.

35

Counting Triangulations
Theorem [M. and Miltzow 2016]

The number of triangulations can be counted in time 2O(
√
n log n).

Main idea: Use canonical separators and enforce that they are
canonical in the triangulation.

More than
√
n layers:

Use the first layer of size ≤
√
n.

Less than
√
n layers:

17 27 14 7

251615918

19 10 8 13 2

512112320

21 24 22 3 6 29

Build separators from “canonical
outgoing paths.”

36

Counting Triangulations
Theorem [M. and Miltzow 2016]

The number of triangulations can be counted in time 2O(
√
n log n).

Main idea: Use canonical separators and enforce that they are
canonical in the triangulation.

More than
√
n layers:

Use the first layer of size ≤
√
n.

Less than
√
n layers:

17 27 14 7

251615918

19 10 8 13 2

512112320

21 24 22 3 6 29

Build separators from “canonical
outgoing paths.”

36

Counting Triangulations
Theorem [M. and Miltzow 2016]

The number of triangulations can be counted in time 2O(
√
n log n).

Main idea: Use canonical separators and enforce that they are
canonical in the triangulation.

More than
√
n layers:

Use the first layer of size ≤
√
n.

Less than
√
n layers:

17 27 14 7

251615918

19 10 8 13 2

512112320

21 24 22 3 6 29

Build separators from “canonical
outgoing paths.”

36

What do we know about a lower bound?

37

Lower bounds, anyone?

Seems challenging: we need a counting complexity lower bound for
a delicate geometric problem.

Related lower bounds:
Finding a restricted triangulation (only a given list of pairs of
points can be connected) is NP-hard, and there is no 2o(

√
n)

time algorithm, assuming ETH.
[Lloyd 1977], [Schulz 2006].
Minimum Weight Triangulation is NP-hard.
[Mulzer and Rote 2006]

38

W[1]-hard problems

W[1]-hard problems probably have no f (k)nO(1) algorithms.
Many of them can be solved in nO(k) time.
For many of them, there is no f (k)no(k) time algorithm on
general graphs (assuming ETH).
For those problems that remain W[1]-hard on planar graphs,
can we improve the running time to no(k)?

39

Scattered Set
Scattered Set
Given a graph G and integers k and d , find a set of S of k vertices
that are at distance at least d from each other.

For d = 2, we get Independent Set.

For fixed d > 2, bidimensionality gives 2O(
√
k) · nO(1)

algorithms.
What happens if d is part of the input?

Theorem [M. and Pilipczuk 2015]

Scattered Set on planar graphs (with d in the input)

can be solved in time nO(
√
k),

[Michał Pilipczuk’s talk Wed 11:00]

cannot be solved in time f (k)no(
√
k) (assuming ETH).

[following slides]

40

Scattered Set
Scattered Set
Given a graph G and integers k and d , find a set of S of k vertices
that are at distance at least d from each other.

For d = 2, we get Independent Set.

For fixed d > 2, bidimensionality gives 2O(
√
k) · nO(1)

algorithms.
What happens if d is part of the input?

Theorem [M. and Pilipczuk 2015]

Scattered Set on planar graphs (with d in the input)

can be solved in time nO(
√
k),

[Michał Pilipczuk’s talk Wed 11:00]

cannot be solved in time f (k)no(
√
k) (assuming ETH).

[following slides]

40

W[1]-hardness

Definition
A parameterized reduction from problem A to B maps an
instance (x , k) of A to instance (x ′, k ′) of B such that

(x , k) ∈ A ⇐⇒ (x ′, k ′) ∈ B ,
k ′ ≤ g(k) for some computable function g .
(x ′, k ′) can be computed in time f (k) · |x |O(1).

Easy: If there is a parameterized reduction from problem A to
problem B and B is FPT, then A is FPT as well.

Definition
A problem P is W[1]-hard if there is a parameterized reduction
from k-Clique to P .

41

W[1]-hardness

Definition
A parameterized reduction from problem A to B maps an
instance (x , k) of A to instance (x ′, k ′) of B such that

(x , k) ∈ A ⇐⇒ (x ′, k ′) ∈ B ,
k ′ ≤ g(k) for some computable function g .
(x ′, k ′) can be computed in time f (k) · |x |O(1).

Easy: If there is a parameterized reduction from problem A to
problem B and B is FPT, then A is FPT as well.

Definition
A problem P is W[1]-hard if there is a parameterized reduction
from k-Clique to P .

41

Tight bounds

Theorem [Chen et al. 2004]

Assuming ETH, there is no f (k) · no(k) algorithm for k-Clique for
any computable function f .

Transfering to other problems:

k-Clique
(x , k)

⇒ Problem A
(x ′, k2)

f (k) · no(k)
algorithm

⇐ f (k) · no(
√
k)

algorithm

Bottom line:
To rule out f (k) · no(

√
k) algorithms, we need a parameterized

reduction that blows up the parameter at most quadratically.

42

Grid Tiling

Grid Tiling
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

Vertical neighbors agree in the 1st coordinate.
Horizontal neighbors agree in the 2nd coordinate.

(1,1)
(3,1)
(2,4)

(5,1)
(1,4)
(5,3)

(1,1)
(2,4)
(3,3)

(2,2)
(1,4)

(3,1)
(1,2)

(2,2)
(2,3)

(1,3)
(2,3)
(3,3)

(1,1)
(1,3)

(2,3)
(5,3)

k = 3, D = 5
43

Grid Tiling

Grid Tiling
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

Vertical neighbors agree in the 1st coordinate.
Horizontal neighbors agree in the 2nd coordinate.

(1,1)
(3,1)
(2,4)

(5,1)
(1,4)
(5,3)

(1,1)
(2,4)
(3,3)

(2,2)
(1,4)

(3,1)
(1,2)

(2,2)
(2,3)

(1,3)
(2,3)
(3,3)

(1,1)
(1,3)

(2,3)
(5,3)

k = 3, D = 5
43

Grid Tiling

Grid Tiling
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

Vertical neighbors agree in the 1st coordinate.
Horizontal neighbors agree in the 2nd coordinate.

Simple proof:

Fact
There is a parameterized reduction from k-Clique to k × k Grid
Tiling.

43

Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y

For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(vi , vi)

Each diagonal cell defines a value vi . . .
44

Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y

For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(vi , .)

(., vi) (vi , vi) (., vi) (., vi) (., vi)

(vi , .)

(vi .,)

(vi , .)

. . . which appears on a “cross”
44

Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y

For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(vi , .)

(., vi) (vi , vi) (., vi) (., vi) (., vi)

(vi , .)

(vi , .) (vj , vj)

(vi , .)

vi and vj are adjacent for every 1 ≤ i < j ≤ k .
44

Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y

For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(vi , .) (vj , .)

(., vi) (vi , vi) (., vi) (vj , vi) (., vi)

(vi , .) (vj , .)

(., vj) (vi , vj) (., vj) (vj , vj) (., vj)

(vi , .) (vj , .)

vi and vj are adjacent for every 1 ≤ i < j ≤ k .
44

Grid Tiling and planar problems

Theorem
k × k Grid Tiling is W[1]-hard and, assuming ETH, cannot be
solved in time f (k)no(k) for any function f .

This lower bound is the key for proving hardness results for planar
graphs.

Examples:
Multiway Cut on planar graphs with k terminals
Independent Set for unit disks
Strongly Connected Steiner Subgraph on planar
graphs
Scattered Set on planar graphs

45

Grid Tiling with ≤

Grid Tiling with ≤
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

1st coordinate of si ,j ≤ 1st coordinate of si+1,j .
2nd coordinate of si ,j ≤ 2nd coordinate of si ,j+1.

(5,1)
(1,2)
(3,3)

(4,3)
(3,2)

(2,3)
(2,5)

(2,1)
(5,5)
(3,5)

(4,2)
(5,3)

(5,1)
(3,2)

(5,1)
(2,2)
(5,3)

(2,1)
(4,2)

(3,1)
(3,2)
(3,3)

k = 3, D = 5
46

Grid Tiling with ≤

Grid Tiling with ≤
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

1st coordinate of si ,j ≤ 1st coordinate of si+1,j .
2nd coordinate of si ,j ≤ 2nd coordinate of si ,j+1.

Variant of the previous proof:

Theorem
There is a parameterized reduction from k × k-Grid Tiling to
O(k)× O(k) Grid Tiling with ≤.

Very useful starting point for geometric (and also some planar) prob-
lems!

46

Grid Tiling with ≤ ⇒ Scattered Set

(1,1)
(3,1)
(2,4)

(5,1)
(1,4)
(5,3)

(1,1)
(2,5)
(3,3)

(2,2)
(1,4)

(3,1)
(2,2)

(3,2)
(2,3)

(3,1)
(3,2)
(3,3)

(1,1)
(2,3)

(5,4)
(3,4)

⇒

required distance: at least n black edges + 4 red edges

Solution to k × k grid tiling ⇒ scattered set of size k2

47

Steiner Tree
Steiner Tree
Given an edge-weighted graph G and set T ⊆ V (G) of terminals,
find a minimum weight tree in G containing every vertex of T .

Theorem [Dreyfus and Wagner 1971]

Steiner Tree with k terminals can be solved in time 3k · nO(1).

48

Steiner Tree
Steiner Tree
Given an edge-weighted graph G and set T ⊆ V (G) of terminals,
find a minimum weight tree in G containing every vertex of T .

Theorem [Björklund et al. 2007]

Steiner Tree with k terminals can be solved in time 2k · nO(1).

48

Steiner Tree
Steiner Tree
Given an edge-weighted graph G and set T ⊆ V (G) of terminals,
find a minimum weight tree in G containing every vertex of T .

Open question: Can we solve Steiner Tree on planar graphs
with k terminals in time 2O(

√
k) · nO(1)?

48

Variants of Steiner Tree
Steiner Tree

Connect all the terminals

Steiner Forest

Create connections
satisying every request

r

Directed Steiner
Network (DSN)

Strongly Connected
Steiner Subgraph (SCSS)

Make all the terminals
reachable from each other

Make every terminal
reachable from the root

Steiner Tree

Create connections
satisying every request

49

Variants of Steiner Tree
Steiner Tree

Connect all the terminals

Steiner Forest

Create connections
satisying every request

r

Directed Steiner
Network (DSN)

Strongly Connected
Steiner Subgraph (SCSS)

Make all the terminals
reachable from each other

Make every terminal
reachable from the root

Steiner Tree

Create connections
satisying every request

49

Directed Steiner Network

Theorem [Feldman and Ruhl 2006]

Directed Steiner Network with k requests can be solved in
time nO(k).

Corollary: Strongly Connected Steiner Subgraph with k
terminals can be solved in time nO(k).

Proof is based on a “pebble game”: O(k) pebbles need to reach
their destinations using certain allowed moves, tracing the solution.

50

Directed Steiner Network

A new combinatorial result:

Theorem [Feldmann and M. 2016]

Every minimum cost solution of Directed Steiner Network
with k requests has cutwidth and treewidth O(k).

A new algorithmic result:

Theorem [Feldmann and M. 2016]

If a Directed Steiner Network instance with k requests has
a minimum cost solution with treewidth w , then it can be solved in
time f (k ,w) · nO(w).

Corollary: A new proof that DSN and SCSS can be solved in
time f (k)nO(k).

51

Directed Steiner Network

A new combinatorial result:

Theorem [Feldmann and M. 2016]

Every minimum cost solution of Directed Steiner Network
with k requests has cutwidth and treewidth O(k).

A new algorithmic result:

Theorem [Feldmann and M. 2016]

If a Directed Steiner Network instance with k requests has
a minimum cost solution with treewidth w , then it can be solved in
time f (k ,w) · nO(w).

Corollary: A new proof that DSN and SCSS can be solved in
time f (k)nO(k).

51

Planar Steiner Problems
Square root phenomenon for SCSS:

Theorem [Chitnis, Hajiaghayi, M. 2014]

Strongly Connected Steiner Subgraph with k terminals
can be solved in time f (k)nO(

√
k) on planar graphs.

Proof by a complicated generalization of the Feldman-Ruhl pebble
game.

Lower bound:

Theorem [Chitnis, Hajiaghayi, M. 2014]

Assuming ETH, Strongly Connected Steiner Subgraph
with k terminals cannot be solved in time f (k)no(

√
k) on planar

graphs.

Proof by reduction from Grid Tiling.

52

Planar Steiner Problems
Square root phenomenon for SCSS:

Theorem [Chitnis, Hajiaghayi, M. 2014]

Strongly Connected Steiner Subgraph with k terminals
can be solved in time f (k)nO(

√
k) on planar graphs.

Proof by a complicated generalization of the Feldman-Ruhl pebble
game.

Lower bound:

Theorem [Chitnis, Hajiaghayi, M. 2014]

Assuming ETH, Strongly Connected Steiner Subgraph
with k terminals cannot be solved in time f (k)no(

√
k) on planar

graphs.

Proof by reduction from Grid Tiling.

52

Lower bound for planar SCSS

53

Planar Strongly Connected Steiner Subgraph
A new combinatorial result:

Theorem [Feldmann and M. 2016]

Every minimum cost solution of SCSS with k terminals has
“distance O(k) from treewidth 2.”

Corollary
Every minimum cost solution of SCSS with k terminals has
treewidth O(

√
k) on planar graphs.

54

Planar Strongly Connected Steiner Subgraph

Corollary
Every minimum cost solution of SCSS with k terminals has
treewidth O(

√
k) on planar graphs.

We have seen:

Theorem [Feldmann and M. 2016]

If a Directed Steiner Network instance with k requests has
a minimum cost solution with treewidth w , then it can be solved in
time f (k ,w) · nO(w).

Corollary: A new proof that SCSS can be solved in time
f (k)nO(

√
k) on planar graphs.

55

Planar Directed Steiner Network

No square root phenomenon for DSN:

Theorem [Chitnis, Hajiaghayi, M. 2014]

Directed Steiner Network with k requests is W[1]-hard on
planar graphs and (assuming ETH) cannot be solved in time
f (k)no(k).

56

Planar Directed Steiner Network

s1 s2 s3

t1 t2 t3

s4

s5

s6

t4

t5

t6

57

Summary of Chapter 3

Parameterized problems where bidimensionality does not work.
Upper bounds:
Algorithms exploiting that some representation of the solution
has bounded treewidth. Treewidth bound is problem-specific:

Minimum Weight Triangulation/Counting triangulations:
n-vertex triangulation has treewidth O(

√
n).

Strongly Connected Steiner Subgraph on planar
graphs: optimum solution can be made treewidth-2 with O(k)
deletions ⇒ treewidth is O(

√
k).

Lower bounds:
To rule out f (k) · no(

√
k) time algorithms for W[1]-hard

problems, we have to prove hardness by reduction from Grid
Tiling.

58

Conclusions

A robust understanding of why certain problems can be solved
in time 2O(

√
n) etc. on planar graphs and why the square root

is best possible.

Going beyond the basic toolbox requires new problem-specific
algorithmic techniques and hardness proofs with tricky gadget
constructions.
The lower bound technology on planar graphs cannot give a
lower bound without a square root factor. Does this mean that
there are matching algorithms for other problems as well?

2O(
√
k) · nO(1) time algorithm for Steiner Tree with k

terminals in a planar graph?
2O(

√
k) · nO(1) time algorithms for counting k-matchings in

planar graphs?
. . .

59

Conclusions

A robust understanding of why certain problems can be solved
in time 2O(

√
n) etc. on planar graphs and why the square root

is best possible.
Going beyond the basic toolbox requires new problem-specific
algorithmic techniques and hardness proofs with tricky gadget
constructions.

The lower bound technology on planar graphs cannot give a
lower bound without a square root factor. Does this mean that
there are matching algorithms for other problems as well?

2O(
√
k) · nO(1) time algorithm for Steiner Tree with k

terminals in a planar graph?
2O(

√
k) · nO(1) time algorithms for counting k-matchings in

planar graphs?
. . .

59

Conclusions

A robust understanding of why certain problems can be solved
in time 2O(

√
n) etc. on planar graphs and why the square root

is best possible.
Going beyond the basic toolbox requires new problem-specific
algorithmic techniques and hardness proofs with tricky gadget
constructions.
The lower bound technology on planar graphs cannot give a
lower bound without a square root factor. Does this mean that
there are matching algorithms for other problems as well?

2O(
√
k) · nO(1) time algorithm for Steiner Tree with k

terminals in a planar graph?
2O(

√
k) · nO(1) time algorithms for counting k-matchings in

planar graphs?
. . .

59

