
List edge multicoloring in bounded cyclicity
graphs

Dániel Marx
Budapest University of Technology and Economics

dmarx@cs.bme.hu

1

List edge multicoloring

Generalization of list edge coloring: multiple colors have to be assigned to
each edge.

• Given: a graph G(V, E), a list L(e) ⊆ C for each edge e, and a demand
function x: E → N

• Find: an assignment Ψ(e) ⊆ L(e) of x(e) colors to every edge e, such
that adjacent edges receive disjoint sets

List edge coloring is the special case x(e) = 1 for every edge e.

1

List edge multicoloring

Generalization of list edge coloring: multiple colors have to be assigned to
each edge.

• Given: a graph G(V, E), a list L(e) ⊆ C for each edge e, and a demand
function x: E → N

• Find: an assignment Ψ(e) ⊆ L(e) of x(e) colors to every edge e, such
that adjacent edges receive disjoint sets

List edge coloring is the special case x(e) = 1 for every edge e.

Example:

1

List edge multicoloring

Generalization of list edge coloring: multiple colors have to be assigned to
each edge.

• Given: a graph G(V, E), a list L(e) ⊆ C for each edge e, and a demand
function x: E → N

• Find: an assignment Ψ(e) ⊆ L(e) of x(e) colors to every edge e, such
that adjacent edges receive disjoint sets

List edge coloring is the special case x(e) = 1 for every edge e.

Example:

1

List edge multicoloring

Generalization of list edge coloring: multiple colors have to be assigned to
each edge.

• Given: a graph G(V, E), a list L(e) ⊆ C for each edge e, and a demand
function x: E → N

• Find: an assignment Ψ(e) ⊆ L(e) of x(e) colors to every edge e, such
that adjacent edges receive disjoint sets

List edge coloring is the special case x(e) = 1 for every edge e.

Example:

1 1

2 1

12
3

1

List edge multicoloring

Generalization of list edge coloring: multiple colors have to be assigned to
each edge.

• Given: a graph G(V, E), a list L(e) ⊆ C for each edge e, and a demand
function x: E → N

• Find: an assignment Ψ(e) ⊆ L(e) of x(e) colors to every edge e, such
that adjacent edges receive disjoint sets

List edge coloring is the special case x(e) = 1 for every edge e.

Example:

1 1

2 1

12
3

2

Hall’s condition

νc(G): maximum number of independent edges that can receive color c

Necessary condition for the existence of the coloring:∑
c∈C

νc(G) ≥
∑

e∈E(G)

x(e)

2

Hall’s condition

νc(G): maximum number of independent edges that can receive color c

Necessary condition for the existence of the coloring:∑
c∈C

νc(G) ≥
∑

e∈E(G)

x(e)

Example: (every demand is 1)

∑
c∈C νc(G) =

2

Hall’s condition

νc(G): maximum number of independent edges that can receive color c

Necessary condition for the existence of the coloring:∑
c∈C

νc(G) ≥
∑

e∈E(G)

x(e)

Example: (every demand is 1)

∑
c∈C νc(G) =

2

Hall’s condition

νc(G): maximum number of independent edges that can receive color c

Necessary condition for the existence of the coloring:∑
c∈C

νc(G) ≥
∑

e∈E(G)

x(e)

Example: (every demand is 1)

∑
c∈C νc(G) =

2

2

Hall’s condition

νc(G): maximum number of independent edges that can receive color c

Necessary condition for the existence of the coloring:∑
c∈C

νc(G) ≥
∑

e∈E(G)

x(e)

Example: (every demand is 1)

∑
c∈C νc(G) =

2

2

Hall’s condition

νc(G): maximum number of independent edges that can receive color c

Necessary condition for the existence of the coloring:∑
c∈C

νc(G) ≥
∑

e∈E(G)

x(e)

Example: (every demand is 1)

∑
c∈C νc(G) =

2+2

2

Hall’s condition

νc(G): maximum number of independent edges that can receive color c

Necessary condition for the existence of the coloring:∑
c∈C

νc(G) ≥
∑

e∈E(G)

x(e)

Example: (every demand is 1)

∑
c∈C νc(G) =

2+2

2

Hall’s condition

νc(G): maximum number of independent edges that can receive color c

Necessary condition for the existence of the coloring:∑
c∈C

νc(G) ≥
∑

e∈E(G)

x(e)

Example: (every demand is 1)

∑
c∈C νc(G) =

2+2+1

2

Hall’s condition

νc(G): maximum number of independent edges that can receive color c

Necessary condition for the existence of the coloring:∑
c∈C

νc(G) ≥
∑

e∈E(G)

x(e)

Example: (every demand is 1)

∑
c∈C νc(G) =

2+2+1

2

Hall’s condition

νc(G): maximum number of independent edges that can receive color c

Necessary condition for the existence of the coloring:∑
c∈C

νc(G) ≥
∑

e∈E(G)

x(e)

Example: (every demand is 1)

∑
c∈C νc(G) =

2+2+1+1

2

Hall’s condition

νc(G): maximum number of independent edges that can receive color c

Necessary condition for the existence of the coloring:∑
c∈C

νc(G) ≥
∑

e∈E(G)

x(e)

Example: (every demand is 1)

∑
c∈C νc(G) =

2+2+1+1< 7,

Necessary condition is
violated, there is no coloring.

3

Hall’s condition (cont.)

Hall’s condition: For every subgraph H ⊆ G∑
c∈C

νc(H) ≥
∑

e∈E(H)

x(e)

Hall’s condition is necessary for the existence of the coloring.

3

Hall’s condition (cont.)

Hall’s condition: For every subgraph H ⊆ G∑
c∈C

νc(H) ≥
∑

e∈E(H)

x(e)

Hall’s condition is necessary for the existence of the coloring.

However, it is not sufficient in general:

3

Hall’s condition (cont.)

Hall’s condition: For every subgraph H ⊆ G∑
c∈C

νc(H) ≥
∑

e∈E(H)

x(e)

Hall’s condition is necessary for the existence of the coloring.

However, it is not sufficient in general:

2 + 1 + 1 ≥ 4,
Hall’s condition is satisfied,
but there is no coloring.

3

Hall’s condition (cont.)

Hall’s condition: For every subgraph H ⊆ G∑
c∈C

νc(H) ≥
∑

e∈E(H)

x(e)

Hall’s condition is necessary for the existence of the coloring.

However, it is not sufficient in general:

2 + 1 + 1 ≥ 4,
Hall’s condition is satisfied,
but there is no coloring.

Theorem (Marcotte and Seymour, 1990) If G is a tree, then Hall’s condition is
sufficient and necessary for list edge multicoloring.

4

Algorithmic complexity

List edge coloring is NP-complete in complete bipartite graphs .
(Partial Latin square extension is a special case)

4

Algorithmic complexity

List edge coloring is NP-complete in complete bipartite graphs .
(Partial Latin square extension is a special case)

Theorem (Marcotte and Seymour, 1990) If G is a tree , then Hall’s condition is
sufficient and necessary for list edge multicoloring.

Proof is based on the total unimodularity of a network matrix ⇒ polynomial
time algorithm by reduction to network flow

4

Algorithmic complexity

List edge coloring is NP-complete in complete bipartite graphs .
(Partial Latin square extension is a special case)

Theorem (Marcotte and Seymour, 1990) If G is a tree , then Hall’s condition is
sufficient and necessary for list edge multicoloring.

Proof is based on the total unimodularity of a network matrix ⇒ polynomial
time algorithm by reduction to network flow

G is a path : simpler algorithm by Goldwasser and Klostermeyer, 2002

4

Algorithmic complexity

List edge coloring is NP-complete in complete bipartite graphs .
(Partial Latin square extension is a special case)

Theorem (Marcotte and Seymour, 1990) If G is a tree , then Hall’s condition is
sufficient and necessary for list edge multicoloring.

Proof is based on the total unimodularity of a network matrix ⇒ polynomial
time algorithm by reduction to network flow

G is a path : simpler algorithm by Goldwasser and Klostermeyer, 2002

? What about cycles ?
What about “almost trees” (graphs having at most k cycles)?

5

A new problem

List edge multicoloring with demand on the vertices

• Given: a graph G(V, E), a list L(e) ⊆ C for each edge e and a demand
function y: V → N

• Find: an assignment Ψ(e) ⊆ L(e) of colors to every edge e, such that
adjacent edges receive disjoint sets and there are y(v) colors in total on
the edges incident to v

6

Incidence matrix

Incidence matrix B:

vertices



edges︷ ︸︸ ︷
0

· · · 1 · · ·
0

· · · 1 · · ·
0


Definition : a graph has full edge rank if the columns of its incidence matrix
are linearly independent.

A connected graph has full edge
rank if and only if it is a tree, or it
has only one cycle, and this cycle
is odd.

odd cycle

7

Connections between the two problems

Problem 1 Problem 2
List edge multicoloring y = Bx List edge multicoloring

with demand on the edges ⇒ with demand on the vertices
(G, x) (G, y)

7

Connections between the two problems

Problem 1 Problem 2
List edge multicoloring y = Bx List edge multicoloring

with demand on the edges ⇒ with demand on the vertices
(G, x) (G, y)

Every solution for Problem 1 is a also a solution for Problem 2 :
y(v) =

∑
e3v x(e) is the number of colors assigned to the edges incident to

vertex v

7

Connections between the two problems

Problem 1 Problem 2
List edge multicoloring y = Bx List edge multicoloring

with demand on the edges ⇒ with demand on the vertices
(G, x) (G, y)

Every solution for Problem 1 is a also a solution for Problem 2 :
y(v) =

∑
e3v x(e) is the number of colors assigned to the edges incident to

vertex v

The other direction is not true:

• Problem 1 (with x(e) = 2) has no solution,

• Problem 2 (with y(v) = 4) has a solution.

7

Connections between the two problems

Problem 1 Problem 2
List edge multicoloring y = Bx List edge multicoloring

with demand on the edges ⇒ with demand on the vertices
(G, x) (G, y)

Every solution for Problem 1 is a also a solution for Problem 2 :
y(v) =

∑
e3v x(e) is the number of colors assigned to the edges incident to

vertex v

The other direction is not true:

• Problem 1 (with x(e) = 2) has no solution,

• Problem 2 (with y(v) = 4) has a solution.

2

2

2 2

7

Connections between the two problems

Problem 1 Problem 2
List edge multicoloring y = Bx List edge multicoloring

with demand on the edges ⇒ with demand on the vertices
(G, x) (G, y)

Every solution for Problem 1 is a also a solution for Problem 2 :
y(v) =

∑
e3v x(e) is the number of colors assigned to the edges incident to

vertex v

The other direction is not true:

• Problem 1 (with x(e) = 2) has no solution,

• Problem 2 (with y(v) = 4) has a solution.

2

2

2 2

4

4

4

4

7

Connections between the two problems

Problem 1 Problem 2
List edge multicoloring y = Bx List edge multicoloring

with demand on the edges ⇒ with demand on the vertices
(G, x) (G, y)

Every solution for Problem 1 is a also a solution for Problem 2 :
y(v) =

∑
e3v x(e) is the number of colors assigned to the edges incident to

vertex v

The other direction is not true:

• Problem 1 (with x(e) = 2) has no solution,

• Problem 2 (with y(v) = 4) has a solution.

2

2

2 2

4

4

4

4

8

Connections between the two problems (cont.)

Problem 1 Problem 2
List edge multicoloring y = Bx List edge multicoloring

with demand on the edges ⇒ with demand on the vertices
(G, x) (G, y)

However, if G has full edge rank, then every solution for Problem 2 is also a
solution for Problem 1 . There is only one vector x that satisfies Bx = y ⇒ if
the demand of the vertices are satisfied, then the demand of the edges are
also satisfied.

⇓

Problem 1 and Problem 2 are equivalent in graphs with full edge rank.

8

Connections between the two problems (cont.)

Problem 1 Problem 2
List edge multicoloring y = Bx List edge multicoloring

with demand on the edges ⇒ with demand on the vertices
(G, x) (G, y)

However, if G has full edge rank, then every solution for Problem 2 is also a
solution for Problem 1 . There is only one vector x that satisfies Bx = y ⇒ if
the demand of the vertices are satisfied, then the demand of the edges are
also satisfied.

⇓

Problem 1 and Problem 2 are equivalent in graphs with full edge rank.

Problem 2 can be solved in polynomial time for any graph: reduction to
perfect matching.

⇓

List edge multicoloring can be solved in polynomial time for graphs with full
edge rank (incuding odd cycles).

9

Bounded cyclicity graphs

Randomized polynomial time algorithm for list edge multicoloring in connected
graphs with |V | + k edges (for every fixed k):

• if there is no solution, algorithm says NO with probabilty 1

• if there is solution, algorithm says YES with probability ≥ 1
2

9

Bounded cyclicity graphs

Randomized polynomial time algorithm for list edge multicoloring in connected
graphs with |V | + k edges (for every fixed k):

• if there is no solution, algorithm says NO with probabilty 1

• if there is solution, algorithm says YES with probability ≥ 1
2

Method:
Reduction to the exact matching problem: given a graph with some of its
edges colored red, find a perfect matching with exactly m red edges
(known to be solvable in randomized polynomial time, Mulmuley, Vazirani,
Vazirani, 1987).

More generally:
Given a partition E1, E2, . . . , Ek of the edges, find a perfect matching with
exactly `i edges from Ei.

10

Conclusions

• Previous result : list edge multicoloring can be solved in polynomial time for
trees

• New result : more general polynomial algorithm for full edge rank graphs

• New result : randomized algorithm for bounded cyclicity graphs

• Question: deterministic algorithm for even cycles ?

