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List edge multicoloring

Generalization of list edge coloring: multiple colors have to be assigned to
each edge.

e Given: agraph G(V, E), alist L(e) C C for each edge e, and a demand
functionx: E — N

e Find: an assignment ¥(e) C L(e) of x(e) colors to every edge e, such
that adjacent edges receive disjoint sets

List edge coloring is the special case x(e) = 1 for every edge e.
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Hall's condition

v.(G): maximum number of independent edges that can receive color c

Necessary condition for the existence of the coloring:

ZVC(G)Z Z z(e)

ceC ecE(G)

Example: (every demandis 1)
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Necessary condition is
violated, there is no coloring.



Hall's condition (cont.)

Hall's condition: For every subgraph H C G

S v(H) > Y a(e)

ceC ecE(H)

Hall's condition is necessary for the existence of the coloring.
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Hall's condition (cont.)

Hall's condition: For every subgraph H C G

SvH)> Y a(e)

ceC ecE(H)

Hall's condition is necessary for the existence of the coloring.

However, it is not sufficient in general:
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Theorem (Marcotte and Seymour, 1990) If G is a tree, then Hall's condition is
sufficient and necessary for list edge multicoloring.
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Algorithmic complexity

List edge coloring is NP-complete in complete bipartite graphs
(Partial Latin square extension is a special case)

Theorem (Marcotte and Seymour, 1990) If GG is a tree, then Hall's condition is
sufficient and necessary for list edge multicoloring.

Proof is based on the total unimodularity of a network matrix = polynomial
time algorithm by reduction to network flow

G is a path : simpler algorithm by Goldwasser and Klostermeyer, 2002

f? What about cycles ?
m What about “almost trees” (graphs having at most k cycles)?



A new problem

List edge multicoloring with demand on the vertices

e Given: agraph G(V, E), alist L(e) C C for each edge e and a demand
functiony: V — N

e Find: an assignment W(e) C L(e) of colors to every edge e, such that
adjacent edges receive disjoint sets and there are y(v) colors in total on
the edges incidentto v



Incidence matrix

Incidence matrix B:

edges

vertices <

OrOPrFrOoO

-\ /

Definition : a graph has full edge rank if the columns of its incidence matrix
are linearly independent.

A connected graph has full edge
rank if and only if it is a tree, or it

has only one cycle, and this cycle
IS odd.

odd cycle
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Connections between the two problems (cont.)

Problem 1 Problem 2
List edge multicoloring y = Bx List edge multicoloring
with demand on the edges = with demand on the vertices
(G, x) (G,Y)

However, if G has full edge rank, then every solution for Problem 2 is also a
solution for Problem 1 . There is only one vector x that satisfies Bx =y = if
the demand of the vertices are satisfied, then the demand of the edges are

also satisfied.

U

Problem 1 and Problem 2 are equivalent in graphs with full edge rank.



Connections between the two problems (cont.)

Problem 1 Problem 2
List edge multicoloring y = Bx List edge multicoloring
with demand on the edges = with demand on the vertices
(G, x) (G,Y)

However, if G has full edge rank, then every solution for Problem 2 is also a
solution for Problem 1 . There is only one vector x that satisfies Bx =y = if
the demand of the vertices are satisfied, then the demand of the edges are
also satisfied.

U

Problem 1 and Problem 2 are equivalent in graphs with full edge rank.

Problem 2 can be solved in polynomial time for any graph: reduction to
perfect matching.

U

List edge multicoloring can be solved in polynomial time for graphs with full
edge rank (incuding odd cycles).



Bounded cyclicity graphs

Randomized polynomial time algorithm for list edge multicoloring in connected
graphs with |V'| + k edges (for every fixed k):

e if there is no solution, algorithm says NO with probabilty 1

e If there is solution, algorithm says YES with probability > %



Bounded cyclicity graphs

Randomized polynomial time algorithm for list edge multicoloring in connected
graphs with |V'| + k edges (for every fixed k):

e if there is no solution, algorithm says NO with probabilty 1

e If there is solution, algorithm says YES with probability > %

Method:

Reduction to the exact matching problem: given a graph with some of its
edges colored red, find a perfect matching with exactly m red edges
(known to be solvable in randomized polynomial time, Mulmuley, Vazirani,
Vazirani, 1987).

More generally:
Given a partition E4, E,, ..., E of the edges, find a perfect matching with
exactly £; edges from E;.



Conclusions

Previous result : list edge multicoloring can be solved in polynomial time for
trees

New result : more general polynomial algorithm for full edge rank graphs
New result : randomized algorithm for bounded cyclicity graphs

Question: deterministic algorithm for even cycles ?
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