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Abstract

The list edge multicoloring problem is a version of edge coloring where every edge e

has a list of available colors L(e) and an integer demand x(e). For each e, we have to
select x(e) colors from L(e) such that adjacent edges receive disjoint sets of colors.
Marcotte and Seymour proved a characterization theorem for list edge multicoloring
trees, which can be turned into a polynomial time algorithm. We present a slightly
more general algorithm that works also on odd cycles. A variant of the method leads
to a randomized polynomial time algorithm for handling even cycles as well.
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1 Introduction

In the list multicoloring problem a graph G(V,E) is given, together with a
nonempty list of available colors L(v) ⊂ N and a demand 0 < x(v) ≤ |L(v)|
for every vertex v ∈ V . A multicoloring is an assignment of a set Ψ(v) ⊆ L(v)
of size x(v) to every vertex v ∈ V , such that Ψ(u) ∩ Ψ(v) = ∅ when u and v

are adjacent vertices in G.

Clearly, the problem is a generalization of graph vertex coloring (coloring with
k colors corresponds to L(v) = {1, 2, . . . , k} and x(v) = 1 for each v), therefore
it is NP-complete in general. The problem remains NP-complete even when
there is no restriction on the sets L(v) but x(v) = 1 for every vertex v and
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the graph is either a planar bipartite graph [4] or the line graph of a complete
bipartite graph [1]. Moreover, if there is no restriction on the demand x(v),
then the problem is NP-complete even in binary trees [7]. On the other hand,
the list multicoloring problem can be solved in polynomial time for paths [3].
A good overview of list coloring and related problems can be found in [10].

In this paper we consider the edge coloring version of list multicoloring:

List edge multicoloring
Input: A graph G(V,E), a demand function x: E → N and a color
list L: E → 2N for each edge
Question: Is there a multicoloring Ψ: E → 2N such that
• Ψ(e) ⊆ L(e) for all e ∈ E,
• Ψ(e1) ∩ Ψ(e2) = ∅ if e1 and e2 are incident to the same vertex in

G and
• |Ψ(e)| = x(e) for all e ∈ E?

Henceforth “coloring” will always mean list edge multicoloring. Marcotte and
Seymour gave a good characterization for this problem in the special case
when G is a tree. Denote by Ec ⊆ E the set of those edges whose lists contain
the color c, and for all X ⊆ E, let νc(X) = ν(X∩Ec) be the maximum number
of independent edges in X whose lists contain c.

Theorem 1 (Marcotte and Seymour, 1990, [6]) Let G be a tree. The list
edge multicoloring problem has a solution if and only if for every X ⊆ E we
have

∑

c∈N
νc(X) ≥

∑

e∈X

x(e). (1)

The necessity of the condition is obvious for any graph, since color c can be
used at most νc(X) times inX, thus at most

∑

c∈N νc(X) colors can be assigned
to the edges in X.

This theorem, in general, does not remain valid on cycles. Figure 1 shows
two uncolorable instances of the problem. The reader can easily verify that
Inequality 1 holds for every subset X of the edges, but the graphs are not
colorable.

The proof of Theorem 1 is based on the total unimodularity of a network
matrix, thus, using standard techniques, the proof can be turned into a poly-
nomial time algorithm by reducing the task to a maximum flow problem. Here
we present another polynomial time algorithm, which solves the problem for a
slightly more general class of graphs, including trees and odd cycles. Moreover,
with some further modifications, it can be turned into a randomized polyno-
mial time algorithm working on an even more general class of graphs, which
also includes even cycles.
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In Section 2, a polynomial time solvable variant of the list edge multicoloring
problem is introduced. This gives us a polynomial time solution of the original
list edge multicoloring problem in some special cases (e.g., trees, odd cycles).
Section 3 presents a modified randomized algorithm for list edge multicoloring
arbitrary connected graphs having at most |V |+O(1) edges.

2 A polynomial case

We introduce a new variant of list edge multicoloring. The requirement that
edge e has to receive x(e) colors is replaced by the requirement that the edges
incident to v have to receive y(v) colors in total. It turns out that in certain
cases list edge multicoloring can be reduced to this new problem. Moreover,
this problem can be solved in polynomial time for any graph (Theorem 4).

List edge multicoloring with demand on the vertices
Input: A graph G(V,E), a demand function y: V → N and a color
list L: E → 2N for each edge
Question: Is there a multicoloring Ψ: E → 2N such that
• Ψ(e) ⊆ L(e) for all e ∈ E,
• Ψ(e1) ∩ Ψ(e2) = ∅ if e1 and e2 are incident to the same vertex in

G, and
•
∑

e3v |Ψ(e)| = y(v) for all v ∈ V ?

The incidence matrix B of an undirected simple graph G(V,E) has |V | rows
and |E| columns, and for every v ∈ V and e ∈ E, the element in row v and
column e is 1 if e is incident to v and 0 otherwise. It will be convenient to
think of the demand function x: E → N in the list edge multicoloring problem
as a vector x with |E| (integer) components. Similarly, the demand function
y: V → N corresponds to a vector y with |V | components. From now on, the
demand function and its vector will be used interchangeably. A coloring Ψ is
valid for the edges if |Ψ(e)| = x(e) for every edge e. It is valid for the vertices

(a)

1,3

2,3

1,2
1,4

3,4 2,3

1,2

(b)

1 1

Fig. 1. Theorem 1 does not hold for (a) even cycles and (b) odd cycles. Every edge
has demand 1, the numbers on an edge are the colors contained in the list of the
edge.
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Fig. 2. The list edge multicoloring with x(e) ≡ 2 has no solution, but with y(v) ≡ 4
there is a coloring valid for the vertices.

if
∑

e3v |Ψ(e)| = y(v) for every vertex v. When using these terms, the demand
functions x(e) and y(v) will be clear from the context.

Let x be an arbitrary demand function on the edges of G, and define y = Bx.
Let L be an arbitrary list assignment. If the list edge multicoloring problem
with demand x has a solution, then list edge multicoloring with demand y on
the vertices has a solution as well. To see this, observe that any coloring Ψ
valid for the edges is also valid for the vertices:

∑

e3v |Ψ(e)| =
∑

e3v x(e) equals
the component of Bx = y corresponding to v, as required. The converse is not
necessarily true: a coloring Ψ valid for the vertices is not always valid for the
edges. In fact, as shown on Figure 2, it is possible that that there is a coloring
satisfying the demand y on the vertices, but there is no coloring valid for the
edges.

However, there is an important special case where every coloring valid for the
vertices is also valid for the edges. We say that a graph G(V,E) has full edge
rank if the rank of B is |E|, that is, the characteristic vectors of the edges of
G are linearly independent (over Q).

Lemma 2 Let x be an arbitrary demand function on the edges of G, and let
y = Bx, where B is the incidence matrix of G. If G has full edge rank, then
for every list assignment L, any coloring valid for the vertices is also valid for
the edges.

PROOF. Let Ψ be a coloring valid for the vertices. Define x′(e) = |Ψ(e)|, and
let x′ be the corresponding vector with |E| components. Since

∑

e3v |Ψ(e)| =
y(v) holds, vector x′ satisfies Bx′ = y. However, the columns of B are linearly
independent, thus x is the unique vector satisfying Bx = y. Hence x = x′,
and |Ψ(e)| = x(e) follows. 2

It is well-known that every tree and odd cycle has full edge rank. From the
definition it is clear that a graph has full edge rank if and only if all of its
connected components have full edge rank. It is not difficult to characterize
those connected graphs that have full edge rank. For completeness we include
a proof here:
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Lemma 3 A connected simple graph G(V,E) has full edge rank if and only if
it does not contain even cycles and it has at most one odd cycle.

PROOF. We prove the lemma by induction on the number of vertices. As-
sume first that G has a degree 1 vertex v, let e be the edge incident to v. In
the incidence matrix B of G, there is only one non-zero element in row v, thus
deleting row v and column e decreases the rank by exactly one. The resulting
matrix is the incidence matrix of G− v, thus G has full edge rank if and only
if G− v has full edge rank. Deleting a degree 1 vertex does not change any of
the cycles. Therefore the lemma follows from the induction hypothesis.

Next assume that every vertex has degree at least 2. If G has full edge rank,
then it has at most |V | edges, thus the degree of every vertex is exactly 2 and
G is a cycle. A cycle has full edge rank if and only if it is odd, thus the lemma
holds in this case as well. 2

We show that list edge multicoloring with demand on the vertices can be
solved in polynomial time. Together with Lemma 2, this implies that the list
edge multicoloring problem also can be solved in polynomial time if the graph
has full edge rank.

Theorem 4 For every simple graph G, list edge multicoloring with demand
on the vertices can be solved in polynomial time.

PROOF. Let C = |
⋃

e∈E L(e)| be the total number of different colors ap-
pearing in the lists. It can be assumed that L(e) ⊆ {1, 2, . . . , C} for every
e ∈ E. We construct a graph G′(U, F ) as follows. For every v ∈ V , there
are 2C − y(v) vertices v1, v2, . . . , vC , v

′
1, v

′
2, . . . , v

′
C−y(v) corresponding to v in

G′. If uv ∈ E and c ∈ L(uv), then there is an edge ucvc in G′. Furthermore,
for every v ∈ V , the vertices v′1, v

′
2, . . . , v

′
C−y(v) are connected to every vertex

v1, v2, . . . , vC . This completes the description of the graph G′.

We show that G′ has a perfect matching if and only if there is a coloring of G
valid for the edges. This implies the theorem, since there are polynomial time
algorithms for finding perfect matchings in arbitrary graphs (cf. [5,8]). First
assume that Ψ is a coloring valid for the vertices. If c ∈ Ψ(uv) ⊆ L(uv), then
include the edge ucvc into the set M ′. Since Ψ(uv) is a proper coloring, every
vertex is covered at most once by the edges in M ′. Furthermore, from the C

vertices v1, v2, . . . , vC , exactly y(v) is covered by M ′. The remaining C − y(v)
vertices can be matched with the C−y(v) vertices v′1, v

′
2, . . . , v

′
C−y(v). Thus we

can extend M ′ to a perfect matching M of G′.
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On the other hand, assume that M ⊆ F is a perfect matching of G′. Let
c ∈ Ψ(uv) if and only if ucvc ∈ M . Clearly Ψ(uv) ⊆ L(uv), since ucvc ∈
M ⊆ F implies c ∈ L(uv). Furthermore, Ψ(uv) ∩Ψ(uw) = ∅, since c ∈ Ψ(uv)
and c ∈ Ψ(uw) would imply ucvc ∈ M and ucwc ∈ M , which is impossible.
What remains to be shown is that

∑

e3v |Ψ(e)| = y(v). From the C vertices
v1, v2, . . . , vC there are exactly C − y(v) that are matched with the vertices
v′1, v

′
2, . . . , v

′
C−y(v). Thus the total size of the sets Ψ(e) on the edges incident

to v is exactly y(v). 2

Corollary 5 If G has full edge rank, then the list edge multicoloring problem
can be solved in polynomial time.

Corollary 6 The list edge multicoloring problem can be solved in polynomial
time for trees and odd cycles.

The algorithm of Micali and Vazirani [8] can be used to find a perfect match-

ing in O(p
1
2 q) time if the graph has p vertices and q edges. The constructed

graph G′ in Theorem 4 has O(C|V |) vertices and O(C|E| + C2|V |) edges,
therefore list edge multicoloring with demands on the vertices can be solved
in O(C

3
2 |V |

1
2 (|E|+C|V |)) time. This leads to an O(C5/2|V |3/2) time algorithm

for the list edge multicoloring of trees and odd cycles.

We note that if G is bipartite, then the constructed graph G′ is bipartite as
well, and the bipartite matching algorithm of [2] can be used in Theorem 4.

3 Graphs with few cycles

In this section we try to extend the results of Section 2 to graphs that are
“almost trees”: to graphs that have only a small number of cycles. However,
Lemma 2 is best possible:

Proposition 7 If G does not have full edge rank, then there is a list assign-
ment L and demand function x such that there is no coloring valid for the
edges, but there is a coloring valid for the vertices (with y = Bx).

PROOF. If G does not have full edge rank, then there is a nonzero integer
vector z with Bz = 0. Since the columns of B are nonnegative vectors, at least
one component of z is negative. Suppose that z(e∗) < 0. Let d = mine∈E z(e) <
0 and let L(e) be a set of z(e)−d ≥ 0 colors such that every color in the union
of the L(e)’s appears in only one list. By setting x(e) ≡ −d, it is clear that
there is no coloring valid for the edges, since |L(e∗)| < −d = x(e∗). On the
other hand, the coloring Ψ(e) = L(e) is valid for the vertices. Coloring Ψ
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assigns z(e) − d colors to edge e. Therefore the number of colors appearing
at the vertices is given by the vector B(z − d · 1) = B(−d · 1) = Bx, as
required. 2

On the other hand, we show that if a coloring Ψ is valid for the vertices and
it satisfies some additional constraints, then it is also valid for the edges.

Lemma 8 Let G(V,E) be an arbitrary graph, and let E ′ ⊆ E be a subset
of edges such that G′(V,E \ E ′) has full edge rank. For an arbitrary demand
function x and list assignment L, if coloring Ψ is valid for the vertices and it
satisfies |Ψ(e)| = x(e) for every e ∈ E ′, then Ψ is also valid for the edges.

PROOF. It can be assumed that the edges in E ′ correspond to the first
|E ′| columns of B. Therefore B can be written as B = (B1 B2), where B1

has |E ′| columns. Similarly x =
(

x1

x2

)

and x1 has |E ′| components. Clearly,
y = Bx = B1x1 + B2x2.

Let x′(e) = |Ψ(e)| and let x′ =
(

x
′

1

x
′

2

)

be the corresponding vector. Since Ψ is

valid for the vertices, it follows that Bx′ = Bx = y, that is

B1x
′
1 + B2x

′
2 = B1x1 + B2x2 = y.

Moreover, since |Ψ(e)| = x(e) for every e ∈ E ′, we have that x′
1 = x1, B1x

′
1 =

B1x1, and B2x
′
2 = B2x2 follows. Since G′(V,E \ E ′) has full edge rank, the

columns of the matrix B2 are linearly independent, hence x′
2 = x2. Therefore

x′ = x, and Ψ is valid for the edges. 2

Since every coloring that is valid for the edges is also valid for the vertices, the
list edge multicoloring problem has a solution if and only if there is a coloring
valid for the vertices that satisfies the requirements in Lemma 8. We reduce the
problem of finding such a coloring to a variant of the exact matching problem,
which can be solved in randomized polynomial time. Before presenting the
reduction (which is essentially the same as in the proof of Theorem 4), we
briefly overview exact matching and some related problems.

There are strongly polynomial time algorithms for finding a maximum weight
perfect matching in a graph (cf. [5]). That is, it can be decided in polynomial
time whether a perfect matching with weight at least K exists. In the exact
matching problem we have to find a perfect matching whose weight equals K.
The exact matching problem can be solved in randomized polynomial time
if every weight is an integer smaller than some polynomial of the size of the
graph [9]. That is, there is a polynomial time algorithm that answers ’no’ if
there is no matching with weight exactly K, and answers ’yes’ with probability
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at least 1
2
if there is such a matching. It is an open question whether there

exists a deterministic polynomial time algorithm for this problem.

A related problem is the following: given a graph G(V,E), a set of edges
F ⊆ E, and an integer k, find a perfect matching M of G with |M ∩ F | = k.
This can be reduced to the exact matching problem: let every edge in F have
weight 1 and every other edge weight 0. Now a matching M has |M ∩ F | = k

if and only if its weight equals k. More generally, we can consider more than
one subset of the edges:

Proposition 9 Assume that we are given a graph G(V,E), pairwise disjoint
subsets F0, F1, . . . , F` ⊆ E, and integers k0, k1, . . . , k`. If ` is fixed, then it can
be decided in randomized polynomial time whether there is a perfect matching
M with |M ∩ Fi| = ki for every 0 ≤ i ≤ `.

PROOF. This problem can be reduced to exact matching: let e ∈ Fi have
weight (|E| + 1)i, edges in E \ (F0 ∪ · · · ∪ F`) have weight 0, and set K =
∑`

i=0 ki(|E|+1)i. It is easy to see that a matching satisfies the requirements if
and only if it has weight K. If ` is a fixed constant, then the weight of every
edge is polynomially bounded in the size of the graph, thus the problem can
be solved in randomized polynomial time. 2

Theorem 10 For every fixed `, there is a randomized polynomial time algo-
rithm for list edge multicoloring in connected graphs having at most |V | + `

edges.

PROOF. Let T be a spanning tree of G(V,E), and let E ′ = {e0, e1, . . . , e`} be
the |E|−(|V |−1) = `+1 edges not in T . Notice that E\E ′ has full edge rank (it
is a tree). Construct the graph G′, as in the proof of Theorem 4. For every 0 ≤
i ≤ `, let Fi contain the |L(ei)| edges in G′ that corresponds to edge ei. That
is, if ei = uv and L(ei) = {c1, c2, . . . , cr}, then Fi = {uc1vc1 , uc2vc2 , . . . , ucr

vcr
}.

Set ki to x(ei).

We show that the list edge multicoloring problem has a solution if and only
if G′ has a perfect matching M with |Fi ∩ M | = ki for every 0 ≤ i ≤ `.
By Prop. 9, the latter problem can be solved in randomized polynomial time,
hence the theorem follows.

If there is a perfect matching M in G such that |Fi ∩ M | = ki for every
0 ≤ i ≤ `, then construct a coloring Ψ valid for the vertices, as in the proof
of Theorem 4. Clearly, |Ψ(ei)| = ki = x(ei). Thus by Lemma 8, Ψ is valid for
the edges.
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The other direction also follows easily: since any coloring Ψ valid for the edges
is also valid for the vertices, one can find a perfect matching M of G′ based
on Ψ. It is clear from the construction that M has exactly ki edges from Fi,
since |Ψ(ei)| = x(ei) = ki. 2

Corollary 11 List edge multicoloring can be solved in randomized polynomial
time for even cycles.
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