Every graph is easy or hard: dichotomy theorems for graph problems

Dániel Marx¹

¹Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

> Carnegie Mellon University Pittsburgh, PA June 10, 2015

We survey results where we can precisely tell which graphs make the problem easy and which graphs make the problem hard.



Focus will be on

- how to formulate questions that lead to such results and
- what results of this type are known,

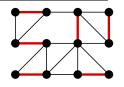
but less on how to prove such results.

Perfect Matching

Input: graph **G**.

Task: find |V(G)|/2 vertex-disjoint edges.

Polynomial-time solvable [Edmonds 1961].

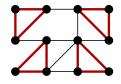


TRIANGLE FACTOR

Input: graph *G*.

Task: find |V(G)|/3 vertex-disjoint triangles.

NP-complete [Karp 1975]



H-FACTOR

Input: graph **G**.

Task: find |V(G)|/|V(H)| vertex-disjoint copies of H in G.

Polynomial-time solvable for $H = K_2$ and NP-hard for $H = K_3$.

Which graphs H make H-FACTOR easy and which graphs make it hard?

H-FACTOR

Input: graph **G**.

Task: find |V(G)|/|V(H)| vertex-disjoint copies of H in G.

Polynomial-time solvable for $H = K_2$ and NP-hard for $H = K_3$.

Which graphs H make H-FACTOR easy and which graphs make it hard?

Theorem [Kirkpatrick and Hell 1978]

H-FACTOR is NP-hard for every connected graph *H* with at least 3 vertices.

Instead of publishing

Kirkpatrick and Hell: NP-completeness of packing cycles. 1978.
Kirkpatrick and Hell: NP-completeness of packing trees. 1979.
Kirkpatrick and Hell: NP-completeness of packing stars. 1980.
Kirkpatrick and Hell: NP-completeness of packing wheels. 1981.
Kirkpatrick and Hell: NP-completeness of packing Petersen graphs. 1982.
Kirkpatrick and Hell: NP-completeness of packing Starfish graphs. 1983.
Kirkpatrick and Hell: NP-completeness of packing Jaws. 1984.

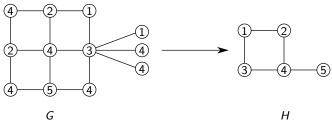
:

they only published

Kirkpatrick and Hell: On the Completeness of a Generalized Matching Problem. 1978

H-coloring

A homomorphism from G to H is a mapping $f: V(G) \to V(H)$ such that if ab is an edge of G, then f(a)f(b) is an edge of H.



H-COLORING

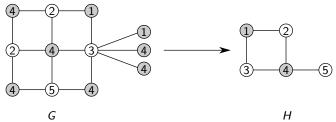
Input: graph **G**.

Task: Find a homomorphism from G to H.

- If $H = K_r$, then equivalent to r-COLORING.
- If H is bipartite, then the problem is equivalent to G being bipartite.

H-coloring

A homomorphism from G to H is a mapping $f: V(G) \to V(H)$ such that if ab is an edge of G, then f(a)f(b) is an edge of H.



H-COLORING

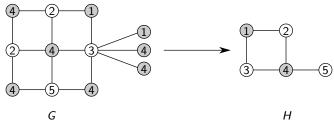
Input: graph **G**.

Task: Find a homomorphism from G to H.

- If $H = K_r$, then equivalent to r-COLORING.
- If H is bipartite, then the problem is equivalent to G being bipartite.

H-coloring

A homomorphism from G to H is a mapping $f: V(G) \to V(H)$ such that if ab is an edge of G, then f(a)f(b) is an edge of H.



H-COLORING

Input: graph **G**.

Task: Find a homomorphism from G to H.

Theorem [Hell and Nešetřil 1990]

For every simple graph H, H-COLORING is polynomial-time solvable if H is bipartite and NP-complete if H is not bipartite.

Dichotomy theorem: classifying every member of a family of problems as easy or hard.

Why are such theorems surprising?

• The characterization of easy/hard is a simple combinatorial property.

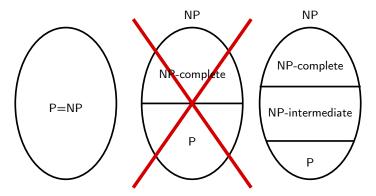
So far, we have seen:

- at least 3 vertices,
- nonbipartite.

Every problem is either in P or NP-complete, there are no NP-intermediate problems in the family.

Theorem [Ladner 1973]

If $P \neq NP$, then there is a language $L \in NP \setminus P$ that is not NP-complete.



- Dichotomy theorems give goods research programs: easy to formulate, but can be hard to complete.
- The search for dichotomy theorems may uncover algorithmic results that no one has thought of.
- Proving dichotomy theorems may require good command of both algorithmic and hardness proof techniques.

- Dichotomy theorems give goods research programs: easy to formulate, but can be hard to complete.
- The search for dichotomy theorems may uncover algorithmic results that no one has thought of.
- Proving dichotomy theorems may require good command of both algorithmic and hardness proof techniques.

So far:

Each problem in the family was defined by fixing a graph H.

Next:

Each problem is defined by fixing a class of graph \mathcal{H} .

\mathcal{H} -Deletion

Input: a graph G and an integer k.

Task: find a set S of k vertices such that $G - S \in \mathcal{H}$

Examples:

- ullet is the set of all graphs without edges: VERTEX COVER.
- \bullet \mathcal{H} is the set of all acyclic graphs: FEEDBACK VERTEX SET.

 ${\cal H}$ is **hereditary** if it is closed under taking induced subgraphs.

Hereditary:

- planar
- chordal
- interval
- bipartite

Not hereditary:

- connected
- 3-regular
- Hamiltonian
- nonbipartite

Theorem [Yannakakis 1978]

For every hereditary class \mathcal{H} , the \mathcal{H} -DELETION problem is NP-complete.

Hereditary class \mathcal{H} can be characterized by a (finite or infinite) list of minimal forbidden induced subgraphs.

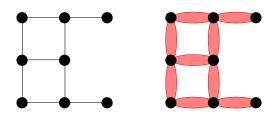


Theorem [Yannakakis 1978]

For every hereditary class \mathcal{H} , the \mathcal{H} -DELETION problem is NP-complete.

Simpler case: suppose that every minimal forbidden induced subgraph is 2-connected and let C be the smallest forbidden induced subgraph.

Reduction from VERTEX COVER:

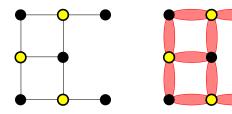


Theorem [Yannakakis 1978]

For every hereditary class \mathcal{H} , the \mathcal{H} -DELETION problem is NP-complete.

Simpler case: suppose that every minimal forbidden induced subgraph is 2-connected and let C be the smallest forbidden induced subgraph.

Reduction from VERTEX COVER:

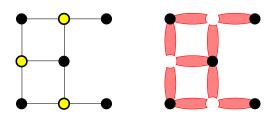


Theorem [Yannakakis 1978]

For every hereditary class \mathcal{H} , the \mathcal{H} -DELETION problem is NP-complete.

Simpler case: suppose that every minimal forbidden induced subgraph is 2-connected and let C be the smallest forbidden induced subgraph.

Reduction from VERTEX COVER:



Finding subgraphs

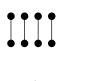
$Sub(\mathcal{H})$

Input: a graph $H \in \mathcal{H}$ and an arbitrary graph G.

Task: decide if H is a subgraph of G.

Some classes for which $Sub(\mathcal{H})$ is polynomial-time solvable:

- ullet \mathcal{H} is the class of all matchings
- \bullet \mathcal{H} is the class of all stars
- ullet is the class of all stars, each edge subdivided once
- ullet \mathcal{H} is the class of all windmills



matching

star

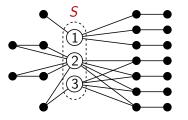
subdivided star

windmill

Finding subgraphs

Definition

Class \mathcal{H} is matching splittable if there is a constant c such that every $H \in \mathcal{H}$ has a set S of at most c vertices such that every component of H - S has size at most C.



Theorem [Jansen and M. 2015]

Let \mathcal{H} be a hereditary class of graphs. If \mathcal{H} is matching splittable, then $\mathrm{Sub}(\mathcal{H})$ is randomized polynomial-time solvable and NP-hard otherwise.

Theorem [Jansen and M. 2015]

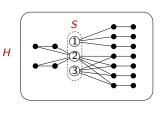
If hereditary class \mathcal{H} is matching splittable, then $\mathrm{SUB}(\mathcal{H})$ is randomized polynomial-time solvable.



Theorem [Jansen and M. 2015]

If hereditary class \mathcal{H} is matching splittable, then $Sub(\mathcal{H})$ is randomized polynomial-time solvable.

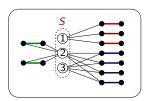
• Guess the image S' of S in G.



Theorem [Jansen and M. 2015]

If hereditary class \mathcal{H} is matching splittable, then $Sub(\mathcal{H})$ is randomized polynomial-time solvable.

- Guess the image S' of S in G.
- Classify the edges of H S
 according to their neighborhoods in
 S (at most 2^{2c} colors).

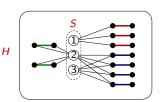


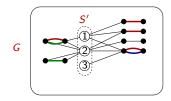
Н

Theorem [Jansen and M. 2015]

If hereditary class \mathcal{H} is matching splittable, then $Sub(\mathcal{H})$ is randomized polynomial-time solvable.

- Guess the image S' of S in G.
- Classify the edges of H S according to their neighborhoods in S (at most 2^{2c} colors).
- Classify the edges of G S'
 according to which edge of H S
 can be mapped into it (use parallel
 edges if needed).
- Task is to find a matching in G - S' with a certain number of edges of each color.





Theorem [Mulmuley, Vazirani, Vazirani 1987]

There is a randomized polynomial-time algorithm that, given a graph G with red and blue edges and integer k, decides if there is a perfect matching with exactly k red edges.

More generally:

Theorem

Given a graph G with edges colored with c colors and c integers k_1 , ..., k_c , we can decide in randomized time $n^{O(c)}$ if there is a matching with exactly k_i edges of color i.

This is precisely what we need to complete the algorithm for $Sub(\mathcal{H})$ for matching splittable \mathcal{H} .

Lemma

Let \mathcal{H} be a hereditary class of graphs that is not matching splittable. Then at least one of the following is true.

- H contains every clique.
- *H* contains every biclique.
- For every $n \ge 1$, \mathcal{H} contains $n \cdot K_3$.
- For every $n \ge 1$, \mathcal{H} contains $n \cdot P_3$ (where P_3 is the path on 3 vertices).

In each case, $Sub(\mathcal{H})$ is NP-hard (recall that P_3 -FACTOR and K_3 -FACTOR are NP-hard).

Recall: Class \mathcal{H} is matching splittable if there is a constant c such that every $H \in \mathcal{H}$ has a set S of at most c vertices such that every component of H - S has size at most C.

Equivalently: in every $H \in \mathcal{H}$, we can cover every 3-vertex connected set (i.e., every K_3 and P_3) by c vertices.

Observation: either

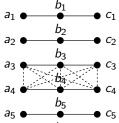
- there are r vertex disjoint K_3 , or
- there are r vertex disjoint P_3 , or
- we can cover every K_3 and every P_3 by 6r vertices.

Ramsey's Theorem: There is a monochromatic r-clique in every c-coloring of the edges of a clique with at least c^{cr} vertices.

Lemma

Let \mathcal{H} be a hereditary class of graphs that is not matching splittable. Then at least one of the following is true.

- ullet Contains every clique.
- \bullet \mathcal{H} contains every biclique.
- For every $n \ge 1$, \mathcal{H} contains $n \cdot K_3$.
- For every $n \ge 1$, \mathcal{H} contains $n \cdot P_3$.
- Consider many vertex-disjoint P₃'s.
- For every i < j, there are 2^9 possibilities between $\{a_i, b_i, c_i\}$ and $\{a_j, b_j, c_j\}$.
- There is a homogeneous set of many P_3 's with respect to these 2^9 possibilities.
- In each of the 2^9 cases, we find many disjoint P_3 's, a clique, or a biclique.

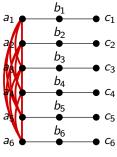


C6

Lemma

Let \mathcal{H} be a hereditary class of graphs that is not matching splittable. Then at least one of the following is true.

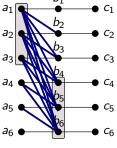
- ullet Contains every clique.
- H contains every biclique.
- For every $n \ge 1$, \mathcal{H} contains $n \cdot K_3$.
- For every $n \ge 1$, \mathcal{H} contains $n \cdot P_3$.
- Consider many vertex-disjoint P₃'s.
- For every i < j, there are 2^9 possibilities between $\{a_i, b_i, c_i\}$ and $\{a_j, b_j, c_j\}$.
- There is a homogeneous set of many P_3 's with respect to these 2^9 possibilities.
- In each of the 2^9 cases, we find many disjoint P_3 's, a clique, or a biclique.



Lemma

Let \mathcal{H} be a hereditary class of graphs that is not matching splittable. Then at least one of the following is true.

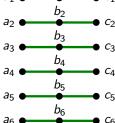
- ${\cal H}$ contains every clique.
- \mathcal{H} contains every biclique.
- For every $n \ge 1$, \mathcal{H} contains $n \cdot K_3$.
- For every $n \ge 1$, \mathcal{H} contains $n \cdot P_3$.
- Consider many vertex-disjoint P₃'s.
- For every i < j, there are 2^9 possibilities between $\{a_i, b_i, c_i\}$ and $\{a_j, b_j, c_j\}$.
- There is a homogeneous set of many P_3 's with respect to these 2^9 possibilities.
- In each of the 2^9 cases, we find many disjoint P_3 's, a clique, or a biclique.



Lemma

Let \mathcal{H} be a hereditary class of graphs that is not matching splittable. Then at least one of the following is true.

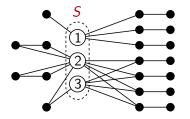
- ullet Contains every clique.
- ullet Contains every biclique.
- For every $n \ge 1$, \mathcal{H} contains $n \cdot K_3$.
- For every $n \ge 1$, \mathcal{H} contains $n \cdot P_3$.
- Consider many vertex-disjoint P₃'s.
- For every i < j, there are 2^9 possibilities between $\{a_i, b_i, c_i\}$ and $\{a_j, b_j, c_j\}$.
- There is a homogeneous set of many P_3 's with respect to these 2^9 possibilities.
- In each of the 2^9 cases, we find many disjoint P_3 's, a clique, or a biclique.



Finding subgraphs

Definition

Class \mathcal{H} is matching splittable if there is a constant c such that every $H \in \mathcal{H}$ has a set S of at most c vertices such that every component of H - S has size at most C.



Theorem [Jansen and M. 2015]

Let \mathcal{H} be a hereditary class of graphs. If \mathcal{H} is matching splittable, then $\mathrm{Sub}(\mathcal{H})$ is randomized polynomial-time solvable and NP-hard otherwise.

Fixed-parameter tractability

More refined analysis of the running time: we express the running time as a function of input size n and a parameter k.

Definition

A problem is **fixed-parameter tractable (FPT)** parameterized by k if it can be solved in time $f(k) \cdot n^{O(1)}$ for some computable function f.

Examples of FPT problems (having $2^{O(k)} \cdot n^{O(1)}$ time algorithms):

- Finding a vertex cover of size k.
- Finding a feedback vertex set of size k.
- Finding a path of length k.
- Finding *k* vertex-disjoint triangles.
- ...

W[1]-hardness

Negative evidence similar to NP-completeness. If a problem is W[1]-hard, then the problem is not FPT, unless FPT = W[1].

Some W[1]-hard problems:

- Finding a clique/independent set of size k.
- Finding a dominating set of size k.
- Finding k pairwise disjoint sets.
- . . .

For these problems, the exponent of n has to depend on k (the running time is typically $n^{O(k)}$).

Finding subgraphs

Ideally, we would like to classify $Sub(\mathcal{H})$ problems into three categories:

- (Randomized) polynomial-time solvable
 Example: matchings, matching-splittable graphs
- ② No polytime algorithm, but FPT parameterized by |V(H)| (solvable in time $f(|V(H)|)n^{O(1)}$)

 Example: paths, disjoint triangles, low-treewidth graphs
- 3 Not FPT parameterized by |V(H)|.
 - Example: cliques, complete bipartite graphs

No such classification is known yet!

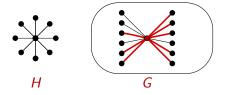
Counting subgraphs

$\#Sub(\mathcal{H})$

Input: a graph $H \in \mathcal{H}$ and an arbitrary graph G.

Task: calculate the number of copies of H in G.

If \mathcal{H} is the class of all stars, then $\#SuB(\mathcal{H})$ is easy: for each placement of the center of the star, calculate the number of possible different assignments of the leaves.

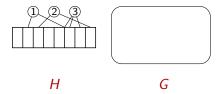


$\# Sub(\mathcal{H})$

Input: a graph $H \in \mathcal{H}$ and an arbitrary graph G. **Task**: calculate the number of copies of H in G.

Theorem

If every graph in \mathcal{H} has vertex cover number at most c, then $\#Sub(\mathcal{H})$ is polynomial-time solvable.



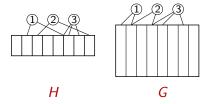
Running time is $n^{2^{O(c)}}$, better algorithms known [Vassilevska Williams and Williams], [Kowaluk, Lingas, and Lundell].

$\#Sub(\mathcal{H})$

Input: a graph $H \in \mathcal{H}$ and an arbitrary graph G. **Task**: calculate the number of copies of H in G.

Theorem

If every graph in \mathcal{H} has vertex cover number at most c, then $\#Sub(\mathcal{H})$ is polynomial-time solvable.



Running time is $n^{2^{O(c)}}$, better algorithms known [Vassilevska Williams and Williams], [Kowaluk, Lingas, and Lundell].

Who are the bad guys now?

Theorem [Flum and Grohe 2002]

If \mathcal{H} is the set of all paths, then $\#Sub(\mathcal{H})$ is #W[1]-hard.

Theorem [Curticapean 2013]

If \mathcal{H} is the set of all matchings, then $\#\mathrm{Sub}(\mathcal{H})$ is $\#\mathrm{W[1]}$ -hard.

Who are the bad guys now?

Theorem [Flum and Grohe 2002]

If \mathcal{H} is the set of all paths, then $\#Sub(\mathcal{H})$ is #W[1]-hard.

Theorem [Curticapean 2013]

If \mathcal{H} is the set of all matchings, then $\#Sub(\mathcal{H})$ is #W[1]-hard.

Dichotomy theorem:

Theorem [Curticapean and M. 2014]

Let \mathcal{H} be a recursively enumerable class of graphs. If \mathcal{H} has unbounded vertex cover number, then $\#\mathrm{Sub}(\mathcal{H})$ is $\#\mathrm{W[1]}$ -hard.

 $(\nu(G) \le \tau(G) \le 2\nu(G)$, hence "unbounded vertex cover number" and "unbounded matching number" are the same.)

Who are the bad guys now?

Theorem [Flum and Grohe 2002]

If \mathcal{H} is the set of all paths, then $\#Sub(\mathcal{H})$ is #W[1]-hard.

Theorem [Curticapean 2013]

If \mathcal{H} is the set of all matchings, then $\#Sub(\mathcal{H})$ is #W[1]-hard.

Dichotomy theorem:

Theorem [Curticapean and M. 2014]

Let \mathcal{H} be a recursively enumerable class of graphs. If \mathcal{H} has unbounded vertex cover number, then $\#\mathrm{Sub}(\mathcal{H})$ is $\#\mathrm{W[1]}$ -hard.

 $(\nu(G) \le \tau(G) \le 2\nu(G)$, hence "unbounded vertex cover number" and "unbounded matching number" are the same.)

There is a simple proof if \mathcal{H} is hereditary, but the general case is more difficult.

Observation

At least one of the following holds for every hereditary class \mathcal{H} with unbounded vertex cover number:

- ${\cal H}$ contains every matching.
- ullet Contains every clique.
- ullet Contains every biclique.

Observation

At least one of the following holds for every hereditary class \mathcal{H} with unbounded vertex cover number:

- \mathcal{H} contains every matching. $\Rightarrow \#W[1]$ -hard
- \mathcal{H} contains every clique. $\Rightarrow \#W[1]$ -hard
- \mathcal{H} contains every biclique. $\Rightarrow \#W[1]$ -hard

Observation

At least one of the following holds for every hereditary class \mathcal{H} with unbounded vertex cover number:

- • H contains every matching. ⇒ #W[1]-hard
- \mathcal{H} contains every clique. $\Rightarrow \#W[1]$ -hard
- \mathcal{H} contains every biclique. $\Rightarrow \#W[1]$ -hard

Observation

At least one of the following holds for every hereditary class \mathcal{H} with unbounded vertex cover number:

- \mathcal{H} contains every matching. $\Rightarrow \#W[1]$ -hard
- \mathcal{H} contains every clique. $\Rightarrow \#W[1]$ -hard
- \mathcal{H} contains every biclique. $\Rightarrow \#W[1]$ -hard

Ramsey's Theorem: There is a monochromatic r-clique in every c-coloring of the edges of a clique with at least c^{cr} vertices.

- For every i < j, there are 2^4 possibilities for the 4 edges between $\{a_i, b_i\}$ and $\{a_j, b_j\}$.
- If there is a large matching, then there is a large matching that is homogeneous with respect to these 16 possibilities.

 b_1 b_2 b_2

 $a_5 \bullet b_5$

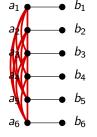
 $a_6 \bullet b_6$

Observation

At least one of the following holds for every hereditary class \mathcal{H} with unbounded vertex cover number:

- \mathcal{H} contains every matching. $\Rightarrow \#W[1]$ -hard
- \mathcal{H} contains every clique. $\Rightarrow \#W[1]$ -hard
- \mathcal{H} contains every biclique. $\Rightarrow \#W[1]$ -hard

- For every i < j, there are 2^4 possibilities for the 4 edges between $\{a_i, b_i\}$ and $\{a_j, b_j\}$.
- If there is a large matching, then there is a large matching that is homogeneous with respect to these 16 possibilities.
- In each of the 16 cases, we find a matching, clique, or biclique as induced subgraph.

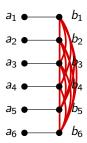


Observation

At least one of the following holds for every hereditary class \mathcal{H} with unbounded vertex cover number:

- \mathcal{H} contains every matching. $\Rightarrow \#W[1]$ -hard
- \mathcal{H} contains every clique. $\Rightarrow \#W[1]$ -hard
- \mathcal{H} contains every biclique. $\Rightarrow \#W[1]$ -hard

- For every i < j, there are 2^4 possibilities for the 4 edges between $\{a_i, b_i\}$ and $\{a_j, b_j\}$.
- If there is a large matching, then there is a large matching that is homogeneous with respect to these 16 possibilities.
- In each of the 16 cases, we find a matching, clique, or biclique as induced subgraph.

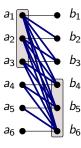


Observation

At least one of the following holds for every hereditary class \mathcal{H} with unbounded vertex cover number:

- \mathcal{H} contains every matching. $\Rightarrow \#W[1]$ -hard
- \mathcal{H} contains every clique. $\Rightarrow \#W[1]$ -hard
- \mathcal{H} contains every biclique. $\Rightarrow \#W[1]$ -hard

- For every i < j, there are 2^4 possibilities for the 4 edges between $\{a_i, b_i\}$ and $\{a_j, b_j\}$.
- If there is a large matching, then there is a large matching that is homogeneous with respect to these 16 possibilities.
- In each of the 16 cases, we find a matching, clique, or biclique as induced subgraph.

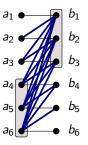


Observation

At least one of the following holds for every hereditary class \mathcal{H} with unbounded vertex cover number:

- \mathcal{H} contains every matching. $\Rightarrow \#W[1]$ -hard
- \mathcal{H} contains every clique. $\Rightarrow \#W[1]$ -hard
- \mathcal{H} contains every biclique. $\Rightarrow \#W[1]$ -hard

- For every i < j, there are 2^4 possibilities for the 4 edges between $\{a_i, b_i\}$ and $\{a_j, b_j\}$.
- If there is a large matching, then there is a large matching that is homogeneous with respect to these 16 possibilities.
- In each of the 16 cases, we find a matching, clique, or biclique as induced subgraph.



Observation

At least one of the following holds for every hereditary class \mathcal{H} with unbounded vertex cover number:

- \mathcal{H} contains every matching. $\Rightarrow \#W[1]$ -hard
- ullet Contains every clique. \Rightarrow #W[1]-hard
- \mathcal{H} contains every biclique. $\Rightarrow \#W[1]$ -hard

Ramsey's Theorem: There is a monochromatic r-clique in every c-coloring of the edges of a clique with at least c^{cr} vertices.

- For every i < j, there are 2^4 possibilities for the 4 edges between $\{a_i, b_i\}$ and $\{a_j, b_j\}$.
- If there is a large matching, then there is a large matching that is homogeneous with respect to these 16 possibilities.
- In each of the 16 cases, we find a matching, clique, or biclique as induced subgraph.

• b

 $b_2 \bullet b_2$

 $b_3 \bullet b_3$

 $a_4 \bullet b_4$

 $a_5 \longrightarrow b_5$

 $a_6 \bullet b_6$

Theorem [Curticapean and M. 2014]

Let \mathcal{H} be a recursively enumerable class of graphs.

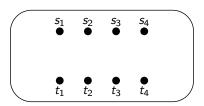
- If \mathcal{H} has bounded vertex cover number, then $\#Sub(\mathcal{H})$ is polynomial-time solvable.
- If \mathcal{H} has unbounded vertex cover number, then $\#SUB(\mathcal{H})$ is #W[1]-hard (parameterized by |V(H)|).

Fixed-parameter tractability does not give us any extra power here!

k-Disjoint Paths

Input: graph G and pairs of vertices $(s_1, t_1), \ldots, (s_k, t_k)$.

Task: find pairwise vertex-disjoint paths P_1 , ..., P_k such that P_i connects s_i and t_i .



NP-hard, but FPT parameterized by k:

Theorem [Robertson and Seymour]

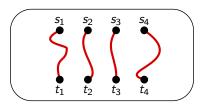
The k-DISJOINT PATHS problem can be solved in time $f(k)n^3$.

We consider now a maximization version of the problem.

k-Disjoint Paths

Input: graph G and pairs of vertices $(s_1, t_1), \ldots, (s_k, t_k)$.

Task: find pairwise vertex-disjoint paths P_1, \ldots, P_k such that P_i connects s_i and t_i .



NP-hard, but FPT parameterized by k:

Theorem [Robertson and Seymour]

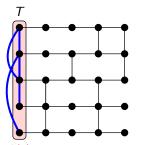
The k-DISJOINT PATHS problem can be solved in time $f(k)n^3$.

We consider now a maximization version of the problem.

MAXIMUM DISJOINT PATHS

Input: supply graph G, set $T \subseteq V(G)$ of terminals and a demand graph H on T.

Task: find k pairwise vertex-disjoint paths such that the two endpoints of each path are adjacent in H.



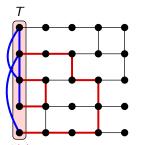
Can be solved in time $n^{O(k)}$, but W[1]-hard in general.

MAXIMUM DISJOINT \mathcal{H} -PATHS: special case when \mathcal{H} restricted to be a member of \mathcal{H} .

MAXIMUM DISJOINT PATHS

Input: supply graph G, set $T \subseteq V(G)$ of terminals and a demand graph H on T.

Task: find k pairwise vertex-disjoint paths such that the two endpoints of each path are adjacent in H.

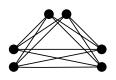


Can be solved in time $n^{O(k)}$, but W[1]-hard in general.

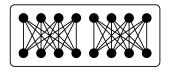
MAXIMUM DISJOINT \mathcal{H} -PATHS: special case when \mathcal{H} restricted to be a member of \mathcal{H} .

bicliques: in P

cliques: in P



complete multipartite graphs: in P



two disjoint bicliques: FPT

matchings: W[1]-hard

skew bicliques: W[1]-hard

Questions:

- Algorithmic: FPT vs. W[1]-hard.
- Combinatorial (Erdős-Pósa): is there a function f such that there is either a set of k vertex-disjoint good paths or a set of f(k) vertices covering every good path?

Questions:

- Algorithmic: FPT vs. W[1]-hard.
- Combinatorial (Erdős-Pósa): is there a function f such that there is either a set of k vertex-disjoint good paths or a set of f(k) vertices covering every good path?

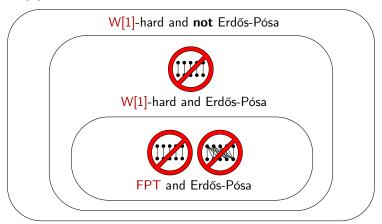
Theorem [M. and Wollan]

Let \mathcal{H} be a hereditary class of graphs.

- If H does not contain every matching and every skew biclique, then MAXIMUM DISJOINT H-PATHS is FPT and has the Erdős-Pósa Property.
- If H does not contain every matching, but contains every skew biclique, then MAXIMUM DISJOINT H-PATHS is W[1]-hard, but has the Erdős-Pósa Property.
- **3** If \mathcal{H} contains every matching, then MAXIMUM DISJOINT \mathcal{H} -PATHS is W[1]-hard, and does not have the Erdős-Pósa Property.

Questions:

- Algorithmic: FPT vs. W[1]-hard.
- Combinatorial (Erdős-Pósa): is there a function f such that there is either a set of k vertex-disjoint good paths or a set of f(k) vertices covering every good path?



Summary

Dichotomy results:

- P vs. NP-hard or FPT vs. W[1]-hard.
- For a fixed graph H or (hereditary) class H.

Considered problems:

- *H*-FACTOR
- H-COLORING

- $Sub(\mathcal{H})$
- #Sub(*H*)
- MAXIMUM DISJOINT *H*-PATHS

Conclusions

- For numerous problems, we can prove that every fixed graph (or graph class) is either easy or hard.
- Good research programs: easy to formulate, hard to solve, but not completely impossible.
- Possible outcomes:
 - Everything is hard, except some trivial cases.
 - Everything is hard, except the famous known nontrivial positive cases.
 - Some unexpected easy cases are found.
- Requires attacking the problem both from the algorithmic and the complexity side.