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Abstract

Coloring circular arcs was shown to be NP-complete by Garey, John-
son, Miller and Papadimitriou [5]. Here we present a simpler proof of this
result.
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1 Introduction

A graph G is a circular arc graph if it is the intersection graph of arcs on a
circle, that is, the vertices of G can be placed in one-to-one correspondence
with a set of arcs in such a way that two vertices in G are adjacent if and
only if the corresponding two arcs intersect each other. Clearly, interval graphs
form a subset of circular arc graphs. It is well-known that interval graphs can
be colored in polynomial time (cf. [6]). On the other hand, it was shown by
Garey, Johnson, Miller and Papadimitriou [5] that coloring circular arc graphs
is NP-complete. The aim of this note is to give a somewhat shorter proof of
this result.

After [5], the NP-completeness of circular arc coloring was used to establish
NP-completeness for other problems. It is not very surprising that the NP-
hardness of wavelength assignment in WDM rings can be proved by reduction
from circular arc coloring [2]. It is much more surprising that the NP-hardness
of wavelength assignment in bidirected WDM binary trees is also proved by
reduction from circular arc coloring [2, 7]. Another example is [1], where the
NP-completeness of precoloring extension on interval graphs is proved by re-
duction from circular arc coloring.

In Section 2 we introduce the disjoint paths problem and present a lemma
of Vygen [9]. In Section 3 we reduce an NP-complete disjoint paths problem
to circular arc coloring.
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2 Disjoint paths

In the disjoint paths problem a graph G and a set of source-destination pairs
(s1, t1), (s2, t2), . . . , (sk, tk) called the terminals are given. The goal is to find k

disjoint paths P1, . . . , Pk such that path Pi connects vertex si to vertex ti. There
are four basic variants of the problem: the graph can be directed or undirected,
and we can require edge disjoint or vertex disjoint paths. Henceforth the edge
disjoint directed version of the problem will be considered. The problem is often
described in terms of a supply graph and a demand graph, as follows:

Disjoint Paths

Input: The supply graph G and the demand graph H on the same
set of vertices, both directed

Goal: Find a path Pe in G for each e ∈ E(H) such that these paths
are edge disjoint and path Pe together with edge e forms a directed
circuit

The disjoint paths problem is a classical NP-complete problem:

Theorem 2.1 (Even, Itai and Shamir, 1976 [3]). The disjoint path problem
is NP-complete even if G is acyclic.

A directed graph is Eulerian if the indegree equals the outdegree at every
vertex. In the Eulerian disjoint paths problem it is assumed that G+H is Eu-
lerian. For various theoretical reasons, this special case was intensively studied
(see [8, 4]). However, the problem remains NP-complete even with the Eule-
rian restriction. This can be proved by a simple argument due to Vygen. For
completeness, we repeat the proof here.

Lemma 2.2 (Vygen [9]). The disjoint path problem remains NP-complete
even if G is acyclic and G+H is Eulerian.

Proof. By Theorem 2.1 the problem is NP-complete for acyclic supply graphs.
In order to make G+H Eulerian, we add two new vertices s, t, and new edges
as follows. If the indegree of vertex x in G + H is smaller than the outdegree
(δ−

G+H
(x) < δ+

G+H
(x)), then add δ+

G+H
(x)− δ−

G+H
(x) parallel copies of the edge

−→sx to G. If δ−
G+H

(x) > δ+

G+H
(x), then add δ−

G+H
(x) − δ+

G+H
(x) copies of the

edge
−→
xt to G. Denote by G′ the modified version of G. Denote by H ′ the graph

obtained from H after adding δ+

G′(s) = δ−
G′(t) copies of the edge

−→
ts . Clearly,

G′ +H ′ is Eulerian.
We claim that (G,H) has a solution if and only if (G′, H ′) has. First, it is

clear that a solution to (G′, H ′) induces a solution to (G,H), since the demands
in H cannot use the new edges in G′. On the other hand, given a solution of
(G,H), delete the corresponding demand and supply edges from G′+H ′. Since
G′ + H ′ is Eulerian, and we have deleted directed cycles from it, then what
remains is also an Eulerian graph. An Eulerian graph can be decomposed into
edge disjoint cycles. In every such cycle at most one copy of the demand edge
−→
ts can be present, hence all the remaining demands of H ′ can be satisfied. ¥
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The following simple observation will be useful:

Lemma 2.3. If G+H is Eulerian and G is acyclic, then every solution of the
disjoint path problem uses every edge of G.

Proof. Consider a solution to the disjoint path problem. Delete from G + H

all the directed circuits of the solution. Since G+H is Eulerian, and we delete
directed circuits, hence the resulting graph is also Eulerian. However, this graph
is a subgraph ofG (since every edge ofH is part of some deleted directed circuit),
thus it is acyclic. If an Eulerian graph is acyclic, then it has no edges, which
means that the disjoint paths use all the edges of G. ¥

3 Circular arc coloring

In this section we show that it is NP-complete to decide whether a given cir-
cular arc graph can be colored with k colors. The proof is by reduction from
the Eularian disjoint path problem. Note that Garey, Johnson, Miller and Pa-
padimitriou [5] also used a disjoint paths problem as a base for their reduction.

Theorem 3.1. Circular arc coloring is NP-complete.

Proof. We reduce the Eulerian directed disjoint path problem to circular arc
coloring. Let 1, 2, . . . , n be the vertices of G in a topological ordering. We
construct a circular arc graph as follows. Let 0, 1, 2, . . . , n be points on the
circle in clockwise order. For every edge −→xy ∈ G in G, we add an arc from x

to y (going in clockwise direction, i.e., not covering 0). It can be assumed that
x > y for every edge −→xy ∈ H, otherwise there is no solution, since such an x

cannot be reached from y. For every edge −→xy ∈ H (x > y) we add an arc going
from x to y in clockwise direction (i.e., covering 0). Let k be the number of
edges in H. We claim that the constructed circular arc graph is k-colorable if
and only if there is a solution for the disjoint paths problem.

First assume that the disjoint path problem has a solution. By Lemma 2.3,
every edge is used by one of the paths, hence G + H can be partitioned into
exactly k disjoint directed circuits. For each such circuit, assign the same color
to the arcs corresponding to the edges of the circuit. Every circuit contains an
edge −→xy from H and a path going from y to x in G. The arcs corresponding to
these edges do not intersect: the arc corresponding to −→xy ∈ H covers the circle
from x to y (including 0), while the arcs corresponding to the path in G covers
the cycle from y to x. Therefore we obtain a proper k-coloring of the circular
arc graph.

Now assume that the arcs have a k-coloring. Notice first that 0 is covered by
exactly k arcs. Moreover, all the other points of the circle are also covered by
exactly k arcs. This follows from the fact that G+H is Eulerian: the number
of arcs that end at a given point 1 ≤ i ≤ n equals the number of arcs that start
at i. The arcs corresponding to the edges in H have different colors, since they
all go through point 0. For an arbitrary edge −→xy ∈ H, consider those arcs that
have the same color as the arc corresponding to −→xy. Since every point of the
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circle is covered by every color, these arcs determine a directed path from y to
x. We use this path to satisfy the demand −→xy. Repeating this for every edge of
H, we obtain a solution to the disjoint path problem. Every edge of G will be
used in only one path, since every arc has only one color. ¥
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