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Abstract. In the deletion version of the list homomorphism problem, we are given graphs G
and H, a list L(v) ⊆ V (H) for each vertex v ∈ V (G), and an integer k. The task is to decide
whether there exists a set W ⊆ V (G) of size at most k such that there is a homomorphism from
G \W to H respecting the lists. We show that DL-Hom(H), parameterized by k and |H|, is
fixed-parameter tractable for any (P6, C6)-free bipartite graph H; already for this restricted class
of graphs, the problem generalizes Vertex Cover, Odd Cycle Transversal, and Vertex Multiway
Cut parameterized by the size of the cutset and the number of terminals. We conjecture that DL-
Hom(H) is fixed-parameter tractable for the class of graphs H for which the list homomorphism
problem (without deletions) is polynomial-time solvable; by a result of Feder et al. [10], a graph
H belongs to this class precisely if it is a bipartite graph whose complement is a circular arc
graph. We show that this conjecture is equivalent to the fixed-parameter tractability of a single
fairly natural satisfiability problem, Clause Deletion Chain-SAT.

1 Introduction

Given two graphs G and H (without loops and parallel edges; unless otherwise stated, we
consider only such graphs throughout this paper), a homomorphism φ : G→ H is a mapping
φ : V (G) → V (H) such that {u, v} ∈ E(G) implies {φ(u), φ(v)} ∈ E(H); the corresponding
algorithmic problem Graph Homomorphism asks if G has a homomorphism to H. It is easy to
see that G has a homomorphism into the clique Kc if and only if G is c-colorable; therefore, the
algorithmic study of (variants of) Graph Homomorphism generalizes the study of graph color-
ing problems (cf. Hell and Nešetřil [17]). Instead of graphs, one can consider homomorphism
problems in the more general context of relational structures. Feder and Vardi [13] observed
that the standard framework for Constraint Satisfaction Problems (CSP) can be formulated
as homomorphism problems for relational structures. Thus variants of Graph Homomorphism
form a rich family of problems that are more general than classical graph coloring, but does
not have the full generality of CSPs.

List Coloring is a generalization of ordinary graph coloring: for each vertex v, the in-
put contains a list L(v) of allowed colors associated to v, and the task is to find a coloring
where each vertex gets a color from its list. In a similar way, List Homomorphism is a gen-
eralization of Graph Homomorphism: given two undirected graphs G,H and a list function
L : V (G)→ 2V (H), the task is to decide if there exists a list homomorphism φ : G→ H, i.e.,
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a homomorphism φ : G → H such that for every v ∈ V (G) we have φ(v) ∈ L(v). The List
Homomorphism problem was introduced by Feder and Hell [9] and has been studied exten-
sively [8, 12, 10, 11, 16, 19]. The problem of finding a list homomorphism from G to H is also
referred to as List H-Coloring, since in the special case of H = Kc, the problem is equivalent
to list coloring where every list is a subset of {1, . . . , c}.

An active line of research on homomorphism problems is to study the complexity of the
problem when the target graph is fixed. Let H be an undirected graph. The Graph Homo-
morphism and List Homomorphism problems with fixed target H are denoted by Hom(H)
and L-Hom(H), respectively. A classical result of Hell and Nešetřil [18] states that Hom(H)
is polynomial-time solvable if H is bipartite and NP-complete otherwise. For the more gen-
eral List Homomorphism problem, Feder et al. [10] showed that L-Hom(H) is in P if H is a
bipartite graph whose complement is a circular arc graph, and it is NP-complete otherwise.
Egri et al. [8] further refined this characterization and gave a complete classification of the
complexity of L-Hom(H): they showed that the problem is complete for NP, NL, or L, or
otherwise the problem is first-order definable. In particular, they showed that Hom(H) is in
L if H is a (P6, C6)-free bipartite graph (that is, a bipartite graph that excludes the path P6

on six vertices and the cycle C6 on six vertices as induced subgraphs) and NL-hard otherwise.

In this paper, we increase the expressive power of (list) homomorphisms by allowing a
bounded number of vertex deletions from the left-hand side graph G. Formally, in the DL-
Hom(H) problem we are given as input an undirected graph G, an integer k, a list function
L : V (G)→ 2V (H) and the task is to output a deletion set W ⊆ V (G) such that |W | ≤ k and
the graph G \W has a list homomorphism to H, or an answer “no” if no such set exists. Let
us note that DL-Hom(H) is NP-hard already when H consists of a single isolated vertex:
in this case the problem is equivalent to Vertex Cover, since removing the set W has to
destroy every edge of G.

Our Results. We study the parameterized complexity of DL-Hom(H) parameterized
by the number of allowed vertex deletions and the size of the target graph H. Our goal is to
characterize those graphs H for which DL-Hom(H) is FPT. Clearly, if L-Hom(H) is NP-
complete, then DL-Hom(H) is NP-complete already for k = 0, hence we cannot expect it
to be FPT. Therefore, by results of Feder et al. [10], we need to consider only the case when
H is a bipartite graph whose complement is a circular arc graph. We focus first on those
graphs H for which the characterization of Egri et al. [8] showed that L-Hom(H) is not only
polynomial-time solvable, but also in logspace. As mentioned above, these graphs are precisely
the (P6, C6)-free bipartite graphs, and in fact, they also admit a decomposition using certain
simple operations (see Section 4 and [8]). To emphasize this decomposition, we also call this
class of graphs skew-decomposable graphs. Note that the class of skew-decomposable graphs is a
strict subclass of chordal bipartite graphs (P6 is chordal bipartite but not skew-decomposable),
and bipartite cographs and bipartite trivially perfect graphs are strict subclasses of skew-
decomposable graphs.

The following examples show that even for simple skew-decomposable graphs H, DL-
Hom(H) is nontrivial, and in fact, we can express some well-studied problems this way:

– Vertex Cover asks for a set of k vertices whose deletion removes every edge. This
problem is equivalent to DL-Hom(H) where H is a single vertex.
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– Odd Cycle Transversal (also known as Vertex Bipartization) asks for a set of at
most k vertices whose deletion makes the graph bipartite. This problem can be expressed
by DL-Hom(H) when H consists of a single edge.

– In Vertex Multiway Cut parameterized by the size of the cutset and the number of
terminals, a graph G is given with terminals t1, . . . , td, and the task is to find a set of at
most k vertices whose deletion disconnects ti and tj for any i 6= j. This problem can be
expressed as DL-Hom(H) when H is a matching of d edges, in the following way. Let us
obtain G′ by subdividing each edge of G (making it bipartite) and let the list of ti contain
the vertices of the i-th edge ei; all the other lists contain every vertex of H. It is easy to see
that the deleted vertices must separate the terminals otherwise there is no homomorphism
to H and, conversely, if the terminals are separated from each other, then the component
of ti has a list homomorphism to ei.

Note that all three problems described above are NP-hard but known to be fixed-parameter
tractable [5, 6, 24, 30].

Our first result is that the DL-Hom(H) problem is fixed-parameter tractable for the class
of skew-decomposable graphs.

Theorem 1.1. DL-Hom(H) is FPT parameterized by solution size and |H|, if H is restricted
to be skew decomposable.

That is, DL-Hom(H) can be solved in time f(k,H) · nO(1) if H is skew decomposable,
where f is a computable function that depends only of k and |H| (see [6, 15, 28] for more
background on fixed-parameter tractability).

As the graphs considered in the examples above are all skew-decomposable bipartite
graphs, Theorem 1.1 is an algorithmic meta-theorem unifying the fixed-parameter tractability
of Vertex Cover, Odd Cycle Transversal, and Vertex Multiway Cut parameter-
ized by the size of the cutset and the number of terminals, and various combinations of these
problems.

Theorem 1.1 shows that, for a particular class of graphs where L-Hom(H) is known to be
polynomial-time solvable, the deletion version DL-Hom(H) is fixed-parameter tractable. We
conjecture that this holds in general: whenever L-Hom(H) is polynomial-time solvable (i.e.,
the cases described by Feder et al. [10]), the corresponding DL-Hom(H) problem is FPT.

Conjecture 1.1. If H is a fixed bipartite graph whose complement is a circular arc graph,
then DL-Hom(H) is FPT parameterized by solution size.

It might seem unsubstantiated to conjecture fixed-parameter tractability for every bipartite
graph H whose complement is a circular arc graph, but we show that, in a technical sense,
proving Conjecture 1.1 boils down to the fixed-parameter tractability of a single fairly natural
problem. We introduce a variant of maximum `-satisfiability, where the clauses of the formula
are implication chains4 x1 → x2 → · · · → x` of length at most `, and the task is to make
the formula satisfiable by removing at most k clauses; we call this problem Clause Deletion `-
Chain-SAT (`-CDCS) (see Definition 5.1). We conjecture that for every fixed `, this problem
is FPT parameterized by k.

Conjecture 1.2. For every fixed ` ≥ 1, Clause Deletion `-Chain-SAT is FPT parameterized
by solution size.

4 The notation x1 → x2 → · · · → x` is a shorthand for (x1 → x2) ∧ (x2 → x3) ∧ · · · ∧ (x`−1 → x`).
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We show that for every bipartite graph H whose complement is a circular arc graph, the
problem DL-Hom(H) can be reduced to `-CDCS for some ` depending only on |H|. Somewhat
more surprisingly, we are also able to show a converse statement: for every `, there is a
bipartite graph H` whose complement is a circular arc graph such that `-CDCS can be reduced
to DL-Hom(H`). That is, the two conjectures are equivalent. Therefore, in order to settle
Conjecture 1.1, one necessarily needs to understand Conjecture 1.2 as well. Since the latter
conjecture considers only a single problem (as opposed to an infinite family of problems
parameterized by |H|), it is likely that connections with other satisfiability problems can be
exploited, and therefore it seems that Conjecture 1.2 is a more promising target for future
work.

Theorem 1.2. Conjectures 1.1 and 1.2 are equivalent.

Note that one may state Conjectures 1.1 and 1.2 in a stronger form by claiming fixed-
parameter tractability with two parameters, considering |H| and ` also as parameters (sim-
ilarly to the statement of Theorem 1.1). One can show that the equivalence of Theorem 1.2
remains true with this version of the conjectures as well. However, stating the conjectures
with fixed H and fixed ` gives somewhat simpler and more concrete problems to work on.

Even though we are unable to prove Conjecture 1.1, we can state a weaker result: a
constant-factor approximation. Formally, let P be a parameterized problem where the param-
eter k is an integer appearing in the input and the task is to find some object of size at most
k or report “no” if no such object exists (i.e., we are considering a minimization problem).
Following [1, 25], we say that problem P is fixed-parameter approximable (FPA) with ratio r
(r ≥ 1) if there is an f(k) · nO(1) time algorithm that either returns an object satisfying all
output specifications except that its size is at most r · k, or “no” and in the latter case it is
guaranteed that there is no object of size at most k satisfying the output specifications.

Theorem 1.3. If H is a fixed bipartite graph whose complement is a circular arc graph,
then DL-Hom(H) is FPA with ratio |H|+ 1, and the running time of the FPA-algorithm is
f(k,H) · nO(1).

Note that we made no effort here to optimize the ratio |H|+1. We are stating Theorem 1.3
for two reasons. First, we get it essentially for free: it is easy to observe that `-VDCS (a version
of CDCS that is more convenient to work with) has an approximation algorithm with ratio `
by a reduction to the minimum cut problem, and hence the reduction from DL-Hom(H) to
`-VDCS appearing in Theorem 1.2 gives us a constant-factor approximation for DL-Hom(H)
as well. Second, this approximation will be useful in the proof of Theorem 1.1, as it allows us
to avoid the use of iterative compression in the induction step, which is crucial for obtaining
exponent independent of |H|.

Our Techniques: For our fixed-parameter tractability/approximability results, we use a
combination of several techniques (some of them classical, some of them very recent) from the
toolbox of parameterized complexity. Our first goal is to reduce DL-Hom(H) to the special
case where for each vertex v, L(v) contains vertices only from one or the other side of one com-
ponent of the (bipartite) graph H; we call this special case the “fixed-side, fixed-component”
version. We note that the reduction to this special case is non-trivial: as the examples above
illustrate, expressing Odd Cycle Transversal seems to require that the lists contain ver-
tices from both sides of H, and expressing Vertex Multiway Cut (parameterized by the
size of the cutset and the number of terminals) seems to require that the lists contain vertices
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from more than one component of H. This suggests that a large part of the technical difficulty
of the problem is encapsulated by this reduction.

We start our reduction by using the standard technique of iterative compression to obtain
an instance where, besides a bounded number of precolored vertices, the graph is bipartite.
We look for obvious conflicts in this instance. Roughly speaking, if there are two precolored
vertices u and v in the same component of G with colors a and b, respectively, such that either
(i) a and b are in different components of H, or (ii) a and b are in the same component of
H but the parity of the distance between u and v is different from the parity of the distance
between a and b, then the deletion set must contain a u− v separator.

We use the treewidth reduction technique of Marx et al. [26] to obtain a bounded-treewidth
region K of the graph that contains all such separators. As we know that K contains at least
one deleted vertex, every component outside this region can contain at most k − 1 deleted
vertices. Thus we can recursively solve the problem for each such component, and collect this
information in relations R1, . . . , Rm, each relation having bounded arity. Finally, we are able
to model the problem as a Monadic Second Order (MSO) formula (of a fixed size) over the
graph of the region K, and the relations R1, . . . , Rm, and evaluate this formula in linear time
employing Courcelle’s Theorem [4].

Even if the instance has no obvious conflicts as described above, we might still need to
delete certain vertices due to more implicit conflicts. But now we know that for each vertex
v, there is at most one component C of H and one side of C that is consistent with the
precolored vertices appearing in the component of v, that is, the precolored vertices force this
side of C on the vertex v. This seems to be close to our goal of being able to fix a component
C of H and a side of C for each vertex. However, there is a subtle detail here: if the deleted
set separates a vertex v from every precolored vertex, then the precolored vertices do not
force any restriction on v. Therefore, it seems that at each vertex v, we have to be prepared
for two possibilities: either v is reachable from the precolored vertices, or not. Unfortunately,
this prevents us from assigning each vertex to one of the sides of a single component. We get
around this problem by invoking the “randomized shadow removal” technique introduced by
Marx and Razgon [27] (and subsequently used in [2, 3, 20, 21, 23]) to modify the instance in
such a way that we can assume that the deletion set does not separate any vertex from the
precolored vertices, hence we can fix the components and the sides.

By the chain of reductions described above, in order to prove Theorem 1.1 (FPT algorithm
when H is skew decomposable), we need to solve the fixed-side, fixed-component version of
the problem for skew-decomposable graphs. The inductive characterization of such graphs,
given by [8] allows us to reduce the problem to subproblems with strictly simpler H, proving
Theorem 1.1 inductively.

If H is a bipartite graph whose complement is a circular arc graph (recall that this class
strictly contains all skew-decomposable graphs), then we show how to formulate the DL-
Hom(H) problem as an instance of `-CDCS (showing that Conjecture 1.2 implies Conjec-
ture 1.1). Let us emphasize that our reduction to `-CDCS works only if the lists of the
DL-Hom(H) instance have the “fixed-side” property, and therefore our proof for the equiva-
lence of the two conjectures (Theorem 1.2) utilizes the reduction machinery described above.
For the reverse direction of Theorem 1.2, we give a self-contained proof with the construction
of H` and the reduction from `-CDCS to DL-Hom(H`).

Finally, to establish Theorem 1.3, we use parts of the above reduction machinery together
with the aforementioned approximation algorithm for `-VDCS.
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It is interesting to point out the difference between the two algorithms establishing The-
orems 1.1 and 1.3. In the algorithm for Theorem 1.3, once there are no conflicts in the sense
explained above we reduce the problem to a number of minimum cut problems, and we are
done. In the algorithm for Theorem 1.1, once there are no conflicts left we reduce the problem
to a number of instances with smaller target graphs (and having some additional properties).
However, now these new instances could again contain conflicts. We get rid of them as before,
and repeat until we end up in one of the base cases: either the parameter k is reduced to 0,
or the target graph becomes trivial.

2 Preliminaries

Given a graph G, let V (G) denote its vertices and E(G) denote its edges. If G = (U, V,E) is
bipartite, we call U and V the sides or bipartite classes of H. Let G be a graph and W ⊆ V (G).
Then G[W ] denotes the subgraph of G induced by the vertices in W . To simplify notation,
we often write G \W instead of G[V (G) \W ]. The set N(W ) denotes the neighborhood of
W in G, that is, the vertices of G which are not in W , but have a neighbor in W . Similarly
to [26], we define two notions of separation: between two sets of vertices and between a pair
(s, t) of vertices; note that in the latter case we assume that the separator is disjoint from s
and t.

Definition 2.1. A set S of vertices separates the sets of vertices A and B if no component
of G \ S contains vertices from both A \ S and B \ S. If s and t are two distinct vertices of
G, then an s − t separator is a set S of vertices disjoint from {s, t} such that s and t are in
different components of G \ S.

Definition 2.2. Let G,H be graphs and L be a list function V (G)→ 2V (H). A list homomor-
phism φ from (G,L) to H (or if L is clear from the context, from G to H) is a homomorphism
φ : G→ H such that φ(v) ∈ L(v) for every v ∈ V (G). In other words, each vertex v ∈ V (G)
has a list L(v) specifying the possible images of v. The right-hand side graph H is called the
target graph.

When the target graph H is fixed, we have the following problem:

L-Hom(H)
Input: A graph G and a list function L : V (G)→ 2V (H).
Question: Does there exist a list homomorphism from (G,L) to H?

The main problem we consider in this paper is the vertex deletion version of the L-
Hom(H) problem, i.e., we ask if a set of vertices W can be deleted from G such that the
remaining graph has a list homomorphism to H. Obviously, the list function is restricted to
V (G) \W , and for ease of notation, we denote this restricted list function L|V (G)\W by L\W .
Since we will provide both an FPT and an FPA algorithm, we state our problems with the
approximation ratio r, and note that setting r = 1 yields the FPT problem. We can now ask
the following formal question:
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DL-Hom(H) (with approximation ratio r)
Input: A graph G, a list function L : V (G)→ 2V (H), and an integer k.
Parameters: k , |H|
Output: A set W ⊆ V (G) of size at most r · k such that there is a list homomorphism
from (G \W,L \W ) to H, or “no”, and then it is guaranteed that there is no such
set of size at most k.

Notice that if k = 0 (and r is arbitrary), then DL-Hom(H) becomes L-Hom(H).

2.1 Iterative Compression

We finish the preliminaries with discussing the fairly standard iterative compression technique
[30] adapted to our setting. We show that it is sufficient to solve the following compression
problem:

DL-Hom(H) Compression (with approximation ratio r)
Input: A graph G0, a list function L : V (G0) → 2V (H), an integer k, and a set
W0 ⊆ V (G0), |W0| ≤ r · k + 1 such that (G0 \W0, L \W0) has a list homomorphism
to H.
Parameters: k, |H|
Output: A set W ⊆ V (G0) disjoint from W0 such that |W | ≤ r ·k and (G0 \W,L\W )
has a list homomorphism to H, or “no”, and then it is guaranteed that there is no
such set of size at most k.

In order to be able to prove the approximation result Theorem 1.3, we defined the com-
pression problem in a way that it may return a constant-factor approximation of the optimum.
However, this does not create any complication in the application of iterative compression.

Lemma 2.3. DL-Hom(H) can be solved by 2O(kr) ·n calls to an algorithm for DL-Hom(H)
Compression (with approximation ratio r), where n is the number of vertices in the input
graph, and f is some function of k and r.

Proof. Assume that V (G) = {v1, . . . , vn} and for i ∈ [n], let V0 = ∅ and Vi = {v1, . . . , vi}. We
construct a sequence of subsets X0 ⊆ V0, X1 ⊆ V1, . . . , Xn ⊆ Vn such that Xi is a deletion set
of size at most r · k for the instance (G[Vi], L|Vi) of DL-Hom(H) (i.e., deleting Xi from G[Vi]
results in a homomorphism to H). Trivially, X0 = ∅ is a deletion set for (G[V0], L|V0).

Observe that if Xi is deletion set of size at most r · k for (G[Vi], L|Vi), then Xi ∪ {vi+1} is
deletion set for (G[Vi+1], L|Vi+1) of size at most r · k + 1. Therefore, for each i ∈ [n − 1], we
set W0 = Xi ∪ {vi+1} and use, as a black-box, an algorithm for DL-Hom(H) Compression
to construct a deletion set Xi+1 of size at most r · k for (G[Vi+1], L|Vi+1). There is a technical
difficulty here: the specification of DL-Hom(H) Compression asks for a deletion set W
disjoint from W0. However, there is an easy and standard way of resolving this problem: we
invoke the algorithm for DL-Hom(H) Compression 2|W0| = 2O(rk) times, trying all possible
intersection of W0 and the solution W we are looking for.

If the algorithm for DL-Hom(H) Compression returns that there is no deletion set of
size at most k for (G[Vi], L|Vi) for some i ∈ [n], then there is no such deletion set for the whole
graph G. Therefore, in this case the algorithm can return a “no” answer. Moreover, since
Vn = V (G), if all the calls to the compression algorithm are successful, then Xn is deletion
set of size at most r · k for the graph G. ut
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We note that the compression algorithm needs an actual solution as part of its input,
and therefore in all reduction steps, we will carry around with us a solution. We note that
producing an actual solution for our subproblems will occasionally be non-trivial.

3 Reducing the Bipartite Compression Problem

At this stage, we have to solve the compression problem. We start with a few observations that
allow us a reduction to the so-called bipartite compression problem. Consider the compression
problem from Section 2.1. Since the new solution W is required to be disjoint from W0,
every list homomorphism from (G0 \W,L \W ) induces a partial list homomorphism from
(G0[W0], L|W0) to H. We guess all such partial list homomorphisms γ from(G0[W0], L|W0) to
H, and we hope that we can find a set W disjoint from W0 such that γ can be extended to a
total list homomorphism from (G0\W,L\W ) to H. To guess these partial homomorphisms, we
simply enumerate all possible mappings from W0 to H and check whether the given mapping
is a list homomorphism from (G0[W0], L|W0) to H. If not, we discard the given mapping.
Observe that we need to consider only |V (H)||W0| ≤ |V (H)|r·k+1 mappings. Hence, in what
follows we can assume that we are given a partial list homomorphism γ from G0[W0] to H.

We propagate the consequences of γ to the lists of the vertices in the neighborhood of W0,
as follows. For each neighbor u ∈ N(W0) of v ∈W0, we trim L(u) as L(u)← L(u)∩N(γ(v)).
Since H is bipartite, the list of each vertex in N(W0) is now a subset of one of the sides of a
single connected component of H. We say that such a list assignment is fixed side and fixed
component.

Recall that G0 \W0 has a list homomorphism φ to the bipartite graph H, and therefore
G0 \W0 must be bipartite. However, after propagating the effect of γ to the neighborhood
of W0 as above, the homomorphism φ may not be a valid list homomorphism for G0 \W0.
Therefore, we keep only the restriction of φ to G0 \ (W0∪N(W0)), which we denote by φ0. To
summarize the properties of the problem we have at hand, we define it formally below. Note
that we do not need the graph G0 and the set W0 any more, only the graph G0 \W0, and the
neighborhood N(W0). To simplify notation, we refer to G0 \W0 and N(W0) as G and N0,
respectively.

DL-Hom(H) Bipartite-Compression (with approximation ratio r), denoted
by BC(H)
Input: A bipartite graph G, a list function L : V (G) → 2V (H), a set N0 ⊆ V (G),
where for each v ∈ N0, the list L(v) is fixed side and fixed component, and an integer
k. Furthermore, it is assumed that there is a list homomorphism φ0 from G \ N0 to
H.
Parameters: k, |H|
Output: A set W ⊆ V (G), such that |W | ≤ r · k and (G \ W,L \ W ) has a list
homomorphism to H, or “no”, and then it is guaranteed that there is no such set of
size at most k.

The main goal of this section is to further reduce the problem to the fixed-side, fixed-
component problem. To define this problem, consider a generic instance (G,L,N0, k) of
BC(H). Let u, v ∈ V (G), assume that {u, v} ∈ E(G), and that L(u) and L(v) are fixed-
side, fixed-component H-lists. We say that L(u) and L(v) are pairwise consistent, if L(u) and
L(v) are subsets of the same component C of H, and of different sides of C. If for all such
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pairs u and v the lists L(u) and L(v) are pairwise consistent, then we say that the (fixed-side,
fixed-component) list function L is consistent (with respect to H). The formal definition of
the problem is given below.

DL-Hom(H) Fixed-Side Fixed-Component (with approximation ratio r),
denoted by FS-FC(H)
Input: A bipartite graph G, a consistent fixed-side, fixed-component list function
L : V (G)→ 2V (H), and an integer k.
Parameters: k, |H|
Output: A set W ⊆ V (G) such that |W | ≤ r · k and G \W has a list homomorphism
to H, or “no”, and then it is guaranteed that there is no such set of size at most k.

The main technical result that we prove in the following section is that BC(H) can be reduced
to DL-Hom(H) Fixed-Side Fixed-Component.

Theorem 3.1. If the FS-FC(H) problem is FPA (where H is bipartite) with approximation
ratio r and running time f(k,H) · xc · logd x (where x is the size of the input, i.e., number of
vertices in the input graph, and c is a sufficiently large constant), then the BC(H) problem
is also FPA with approximation ratio r and running time g(k,H) · xc · logd+1 x, for some
functions f and g depending only on k and H.

Note again that in the special case when r = 1, the above theorem can be understood as
an FPT reduction result.

Theorems 1.1 and 1.3 are proved through Theorem 3.1. To prove Theorem 1.3, we first use
iterative compression (see Section 2.1) to reduce to BC(H) and then Theorem 3.1 to reduce
to FS-FC(H). If H is a bipartite graph whose complement is a circular arc graph, then
we are able to obtain a polynomial-time approximation algorithm for FS-FC(H) with ratio
|V (H)|+1. In fact, for this approximation result we need only the “fixed-side” property of the
lists, the “fixed-component” property is not required; we denote by FS(H) this generalization
of FS-FC(H). For reference, let us state this approximation result formally (the proof appears
in Section 5).

Corollary 5.8. Let H be a bipartite graph whose complement is a circular arc graph. Then
there is a polynomial-time approximation algorithm for FS(H) with ratio |V (H)|+ 1.

For the proof of Theorem 1.1, we use double induction: we assume that the required
FPT algorithm exists for every parameter value strictly smaller than k and for every proper
subgraph of H. To solve an instance of FS-FC(H) when H is skew decomposable, we observe
that the inductive construction of skew-decomposable graphs allows us to reduce the problem
to instances where H has strictly smaller size. Then we can invoke Theorem 1.1 inductively
with strictly smaller H. Additionally, if some obvious conflicts arise, we need to branch on
deleting one endpoint of an edge and we can invoke Theorem 1.1 inductively with strictly
smaller k.

To facilitate understanding, it is a good place to present the main road map of the two
algorithms in Figure 1. We started with iterative compression to reduce the problem to BC(H),
and the main task is to show how BC(H) can be solved recursively. Given an instance of
BC(H), we proceed the following way. We look for certain “conflicts” between vertices of N0

(formally defined in the next section), which imply that two vertices of N0 have to be separated
in the solution. If we find such a conflict, then we follow the conflict branch, where we use the
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Using the induction hypthesis
that BC(H) can be solved for
parameter k − 1, and using
treewidth reduction, the problem
can be encoded as an MSO for-
mula over a structure of bounded
treewidth, and this formula can
be evaluated in FPT-time using
Courcelle’s theorem.

DL-Hom(H) Fixed-Side
Fixed-Component
Isolated-Good

DL-Hom(H) Fixed-Side
Fixed-Component

Using the inductive definition
of bipartite skew-decomposable
graphs, an algorithm for DL-
Hom(H) Fixed-Side Fixed-
Component is constructed us-
ing the assumption that BC can
be solved for the two building
blocks of H.

DL-Hom(H)-Bipartite-Compression

DL-Hom(H)-Compression

DL-Hom(H)

conflict no conflict

Fig. 1. The structure of the reductions that establish the fixed-parameter tractability of DL-Hom(H) when
H is a skew-decomposable graph.

treewidth reduction technique of Marx et al. [26] to reduce the problem to several instances
with strictly smaller parameter and we jump back to bipartite compression. Although the
number m of branches is not bounded by a function of k and |H|, the overall running time
can still be shown to be sufficiently small. Intuitively, this is because the recursion calls BC(H)
for subinstances that partition the original input. The base case (when no vertices are allowed
to be removed) can be solved using a known algorithm for the list-homomorphism problem
(see, e.g., [10]).

If there is no conflict, we follow the “no conflict” branch in the figure. Here, the main
technical result is to reduce the FS-FC-IG(H) problem to the FS-FC(H) problem. We note
that the branching factor here will include log(|V (G)|), coming from the “shadow removal”
technique of Marx and Razgon [27]. Note that this is the source of the log factors in Theo-
rem 3.1.

3.1 The case when there is a conflict

We define two types of conflicts between the vertices of N0. Recall that the lists of the vertices
in N0 in a BC(H) instance are fixed side and fixed component.

Definition 3.2. Let (G,L,N0, k) be an instance of BC(H). Let u and v be vertices of N0

in the same component of G. We say that u and v are in component conflict if L(u) and
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L(v) are subsets of vertices of different components of H. Furthermore, u and v are in parity
conflict if u and v are not in component conflict, and either

– u and v belong to the same side of G but L(u) is a subset of one of the sides of a component
of C of H and L(v) is a subset of the other side of C,

– or u and v belong to different sides of G but L(u) and L(v) are subsets of the same side
of a component of H.

The following lemma is immediate from the definitions.

Lemma 3.3. Let (G,L,N0, k) be an instance of BC(H). If u and v are any two vertices in
N0 that are in component or parity conflict, then any solution W must contain a set S that
separates the sets {u} and {v}.

In this section, we handle the case when a conflict, as described in Definition 3.2 exists,
and the other case is handled in Section 3.2. If a conflict exists, its presence allows us to invoke
the treewidth reduction technique of Marx et al. [26] to split the instance into a bounded-
treewidth part, and into instances having parameter value strictly less than k. After solving
these instances with smaller parameter value recursively, we encode the problem in Monadic
Second Order (MSO) logic, and apply Courcelle’s theorem [4]. In fact, we will apply a version
of this result, stated by Flum et al. [14] that can be used to output a solution for the problem.

Before we can prove the main lemma of this section (Lemma 3.10), first we need the
definitions of tree decomposition and treewidth.

Definition 3.4. A tree decomposition of a graph G is a pair (T,B) in which T is a tree and
B = {Bi | i ∈ V (T )} is a family of subsets of V (G) such that

1.
⋃

i∈V (T )Bi = V (G);
2. For each e ∈ E(G), there exists an i ∈ V (T ) such that e ⊆ Bi;
3. For every v ∈ V (G), the set of nodes {i ∈ I | v ∈ Bi} forms a connected subtree of T .

The width of a tree decomposition is the number max{|Bt| − 1 | t ∈ V (T )}. The treewidth
tw(G) is the minimum of the widths of the tree decompositions of G.

It is well known that the maximum clique size of a graph is at most its treewidth plus one.
A vocabulary τ is a finite set of relation symbols or predicates. Every relation symbol R

in τ has an arity associated to it. A relational structure A over a vocabulary τ consists of a
set A, called the domain of A, and a relation RA ⊆ Ar for each R ∈ τ , where r is the arity
of R.

Definition 3.5. The Gaifman graph of a τ -structure A is the graph GA such that V (GA) = A
and {a, b} (a 6= b) is an edge of GA if there exists an R ∈ τ and a tuple (a1, . . . , ar) ∈ RA

such that a, b ∈ {a1, . . . , ar}, where r is the arity of R. The treewidth of A is defined as the
treewidth of the Gaifman graph of A.

The result we need from [26] states that all the minimal s−t separators of size at most k in
G can be covered by a set C inducing a bounded-treewidth subgraph of G. In fact, a stronger
statement is true: this subgraph has bounded treewidth even if we introduce additional edges
in order to take into account connectivity outside C. This is expressed by the operation of
taking the torso:
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Definition 3.6. Let G be a graph and C ⊆ V (G). The graph torso(G,C) has vertex set C
and two vertices a, b ∈ C are adjacent if {a, b} ∈ E(G) or there is a path in G connecting a
and b whose internal vertices are not in C.

Observe that by definition, G[C] is a subgraph of torso(G,C).

Lemma 3.7 ([26]). Let s and t be two vertices of G. For some k ≥ 0, let Ck be the union of all
minimal sets of size at most k that are s−t separators. There is an O(g1(k)·(|E(G)|+|V (G)|))
time algorithm that returns a set C ⊇ Ck ∪ {s, t} such that the treewidth of torso(G,C) is at
most g2(k), for some functions g1 and g2 of k.

Lemma 3.3 gives us a pair of vertices that must be separated. Lemma 3.7 specifies a bounded-
treewidth region C of the input graph which must contain at least one vertex of the above
separator, that is, we know that at least one vertex must be deleted in this bounded-treewidth
region.

Courcelle’s Theorem gives an easy way of showing that certain problems are linear-time
solvable on bounded-treewidth graphs: it states that if a problem can be formulated in MSO5,
then there is a linear-time algorithm for it. This theorem also holds for relational structures
of bounded treewidth instead of just graphs, a generalization we need because we introduce
new relations R1, . . . , Rm to encode the properties of the components of G \C. We note that
the arity of these relations will be bounded by a function of k, resulting from the fact that
any component of G \ C has a bounded (in k) number of neighbors in G[C].

Theorem 3.8 (Courcelle’s Theorem, cf. [15]). The following problem is fixed-parameter
tractable:

p∗ − tw −MC(MSO)
Input : A structure A and an MSO-sentence ϕ;
Parameter : tw(A) + |ϕ|;
Problem : Decide whether A |= ϕ.

Moreover, there is a computable function f and an algorithm that solves it in time f(|ϕ|, tw(A))·
|A|+O(|A|).

The more general result, which also returns a solution, can be stated the following way:

Theorem 3.9 (Flum et al. [14, Corollary 4.15]). There exist a function f : N ×N → N
and an algorithm that, given a structure A and an MSO-formula ϕ(X1, . . . , Xl, x1, . . . , xm)
decides in time f(|ϕ|, tw(A)) · |A| if there are B1, . . . , Bl ⊆ A and a1, ..., am ∈ A such that
A |= ϕ(B1, . . . , Bl, a1, . . . , am), and, if this is the case, computes such sets and elements.

In the lemma below, we first show how to solve the decision version of the bipartite
compression problem. This is not enough though, one reason being that in the recursive call,
we actually assume that we have a deletion set we can work with. At the end of Lemma 3.10,
we explain how we can keep track of information and use Theorem 3.9 to output an actual
(approximate) solution.

5 For background on MSO, we refer the reader to, e.g., the textbook of Flum and Grohe [15]; very briefly,
MSO is a logical language that allows quantification over the elements and subsets of the universe of a
relational structure.
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Lemma 3.10. Let A be an FPA algorithm with approximation ratio r that correctly solves
BC(H) for input instances in which the first parameter is at most k − 1. Suppose that the
running time of A is f(k − 1, H) · xc · logd x, where x is the size of the input (the number
of vertices in the input graph), c is a sufficiently large constant, and d is some non-negative
integer. Let I be an instance of BC(H) with parameter k that contains a component or parity
conflict. Then for instance I, either a solution of size at most r · k can be produced, or a
“no”answer, in which case it is guaranteed that no solution of size at most k exists. The
running time of the algorithm is f(k,H) · xc · logd x (where f is inductively defined at the end
of the proof).

Proof. For clarity, first we solve the decision version of the problem with approximation ratio
r = 1, and explain after how to handle the general case. Let I = (G,L,N0, k) be an instance
of BC(H). Let v, w ∈ N0 such that v and w are in component or parity conflict. Then by
Lemma 3.3, the deletion set must contain a v − w separator. Using Lemma 3.7, we can find
a set C with the properties stated in the lemma (and note that we will also make use of
the functions g1 and g2 in the statement of the lemma). Most importantly, C contains at
least one vertex that must be removed in any solution, so the maximum number of vertices
that can be removed from any connected component of G[V (G) \ C] without exceeding the
budget k is at most k − 1. Therefore, the outline of our strategy is the following. We use A
to solve the problem for some slightly modified versions of the components of G[V (G) \ C],
and using these solutions, we construct an MSO formula that encodes our original problem I.
Furthermore, since the relational structure over which this MSO formula must be evaluated
has bounded treewidth, and the size of the formula depends only on |H| and k (in particular,
it is independent of the size of the input structure), the formula can be evaluated in linear
time using Theorem 3.8.

Assume without loss of generality that V (H) = {1, . . . , h}. The MSO formula has the
form

∃K0, . . . ,Kh

[
ϕpart(K0, . . . ,Kh) ∧ ϕC(K0, . . . ,Kh)∧

k∨
i=0

(
ϕ|K0|≤i(K0) ∧ ϕC̄,k−i(K0, . . . ,Kh)

) ]
.

The set K0 represents the deletion set that is removed from G[C], and K1, . . . ,Kh specifies
the colors of the vertices in the subgraph G[C \ K0]. The sub-formula ϕpart(K0, . . . ,Kh)
checks if K0, . . . ,Kh is a valid partition of C, and ϕC checks if K1, . . . ,Kh is an H-coloring
of G[C \K0]. The third subformula checks whether there is an additional set X ⊆ V (G) \ C
such that |K0| + |X| ≤ k, and the coloring K1, . . . ,Kh of G[C \ K0] can be extended to
G[V (G)\ (K0∪X)]. In this part, the formula ϕ|K0|≤i(K0) checks if the size of K0 is at most i,
and the formula ϕC̄,k−i(K0, . . . ,Kh) checks if the coloring of G[C \K0] can be extended with
k− i additional deletions. Thus the disjunction is true if the set X with |K0|+ |X| ≤ k exists.

In what follows, we describe how to construct these subformulas, and we also construct
the relational structure S from G over which this formula must be evaluated. To simplify the
presentation, we refer to K0, . . . ,Kh as a coloring, even if the vertices in K0 are not mapped
to V (H) but removed.
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The formula ϕpart. To check whether K0, . . . ,Kh is a partition of V (G), we use the
formula

ϕpart ≡
(
∀x

h∨
i=0

Ki(x)

)
∧

∀x∧
i 6=j

¬(Ki(x) ∧Kj(x))

 .

The formula ϕC . To check whether a partition K0, . . . ,Kh is a list homomorphism from
G to H, we first define unary relations Ut, t ∈ {1, . . . , h}, such that Ut(v) holds if and only if
t ∈ L(v). Note that adding a unary relation to S does not increase its treewidth. The following
formula checks if K0, . . . ,Kh is a list-homomorphism.

ϕC(K0, . . . ,Kh) ≡

∀x, y

(¬K0(x) ∧ ¬K0(y) ∧ E(x, y))→

 ∨
(i,j)∈E(H)

(Ki(x) ∧Kj(y))

∧
h∧

i=1

(∀x (Ki(x)→ Ui(x))) .

The formula ϕ|K0|≤j. To check whether |K0| ≤ j, we use the formula

ϕ|K0|≤j ≡ ¬∃x1, . . . , xj+1

j+1∧
i=1

K0(xi) ∧
∧

i 6=i′ 1≤i,i′≤j+1

(xi 6= xi′)

 .

The formula ϕC̄,j. First we construct a set of “indicator” predicates. For all q ∈ {1, . . . , g2(k)+
1} (where g2 is from Lemma 3.7), for all q-tuples (c1, . . . , cq) ∈ {0, 1, . . . , h}q, and for all
` ∈ {0, . . . , j}, we produce a predicate R = R(c1,...,cq),` of arity q. Intuitively, the meaning of
a tuple (v1, . . . , vq) being in this relation is that if {v1, . . . , vq} is a clique in the torso and
has the coloring (c1, . . . , cq) (where ci = 0 means that the vertex is deleted), then to extend
this coloring to the components of G \ C that attach precisely to the clique {v1, . . . , vq},
at least ` further deletions in these components are required. Formally, we place a q-tuple
(v1, . . . , vq) ∈ V (G)q into R using the procedure below. (We argue later how to do this in
FPT time.)

Fix an arbitrary ordering ≺ on the vertices of C. The purpose of ≺ will be to avoid counting
the number of vertices that must be removed from a single component more than once, as we
will see later. Let D be the union of all components of G[V (G) \C] whose neighborhood in C
is precisely {v1, . . . , vq}, and assume without loss of generality that v1 ≺ · · · ≺ vq. We call such
a union of components a common neighborhood component. For each such D, for each i ∈ [q],
if ci 6= 0, then for all neighbors u of vi in D, remove any vertex of H from the list L(u) which
is not a neighbor of ci. Let L′ be the new lists obtained this way. Observe that the coloring
(c1, . . . , cq) of the vertices (v1, . . . , vq) can be extended to (D,L) after removing j vertices
from D if and only if (D,L′) can be H-colored after removing j vertices from D. Now we
use algorithm A (details given later) to determine the minimum number z of such deletions.
The tuple (v1, . . . , vq) is placed into R if z ≥ `. Observe that if we did not order {v1, . . . , vq}
according to ≺, then {v1, . . . , vq} would be associated with more than one indicator relation,
which would lead to counting the vertices needed to be removed from D multiple times.
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Let R1, . . . , Rm be an enumeration of all possible R(c1,...,cq),` as defined above. Let S be
the relational structure (C;E(G[C]), R1, . . . , Rm). Observe that if (v1, . . . , vq) is a tuple in
one of these relations, then {v1, . . . , vq} is a clique in torso(G,C), since it is the neighborhood
of a component of G \ C. Thus the Gaifman graph of S is a subgraph of torso(G,C), which
means that tw(S) ≤ g2(k). Moreover, for every component of G \ C, as its neighborhood in
C is a clique in torso(G,C), the neighborhood cannot be larger than g2(k) + 1: a graph with
treewidth at most g2(k) has no clique larger than g2(k) + 1.

We express the statement that a coloring of G[C] cannot be extended to G \ C with at
most j deletions by stating that there is a subset of (common neighborhood) components of
G \ C such that the total number of deletions needed for these components is more than j.
We construct a separate formula for each possible way the required number of deletions can
add up to more than j and for each possible coloring appearing on the neighborhood of these
components. Formally, we define a formula ψ for every combination of

– integer 0 ≤ t ≤ j (number of common neighborhood components considered),

– integers 1 ≤ q1, . . . , qt ≤ g2(k) + 1 (sizes of the neighborhoods of components),

– integers ci1, . . . , c
i
qi for every 1 ≤ i ≤ t (colorings of the neighborhoods), and

– integers 0 ≤ `1, `2, . . . , `t ≤ j + 1 such that
∑t

i=1 `i ≥ j + 1 (number of deletions required
in the neighborhoods)

in the following way:

ψ(K0, . . . ,Kh) ≡ ∃x1,1, . . . , x1,q1 , x2,1, . . . , x2,q2 , . . . , xt,1, . . . , xt,qt
t∧

i=1

(
Kci1

(xi,1) ∧ · · · ∧Kciqi
(xi,qi) ∧R(ci1,...,c

i
qi

),`i
(xi,1, . . . , xi,qi)

)
.

Let ψ1, . . . , ψp be an enumeration of all these formulas. (Notice that the size and the number
of these formulas is bounded by a function of k.) We define

ϕC̄,j(K0, . . . ,Kh) ≡ ¬
p∨

i=1

ψi.

We argue now that ϕC̄,j is true if and only if it suffices to remove j additional vertices. It
follows from the definition that given an H-coloring K0, . . . ,Kh of G[C], if ϕC̄,j is false, then
there is a subset of the components G \ C witnessing that at least j + 1 vertices must be
removed from G[V (G) \ C] in order to extend the coloring K0, . . . ,Kh to G \ C.

Conversely, assume that more than j vertices must be removed from G[V (G)\C] in order to
extend the coloring K0, . . . ,Kh. Then there are neighborhoods N1, . . . , Nt ⊆ C with t ≤ j+ 1
such that at least j+ 1 vertices must be removed from the components of G[V (G) \C] whose
neighborhoods are among N1, . . . , Nt. By definition, this is detected by one of the ψi’s in the
disjunction, and therefore ϕC̄,j is false.

Running time of the decision algorithm and the inputs for A. For the running
time, by the comments above and by Theorem 3.8, we just need to give an upper bound
on the time to construct the relations R1, . . . , Rm. First we need to determine the common
neighborhood components. Let D1, . . . , Dp be the components of G[V (G) \ C]. Find N(D1)
(note that N(D1) ⊆ C), and find all other components in the list D1, . . . , Dp having the
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same neighborhood (in C) as D1. This produces the common neighborhood component of D1.
To find the next common neighborhood component, find the smallest j such that N(Dj) 6=
N(D1), and find all other components among D1, . . . , Dp that have the same neighborhood
(in C) as Dj . This produces the common neighborhood component of Dj . We repeat this
procedure until all common neighborhood components are determined. Let Q1, . . . , Qn be an
enumeration of all the common neighborhood components.

Observe that V (Qi) ∩ V (Qj) = ∅ whenever i 6= j, implying
∑n

i=1 |V (Qi)| ≤ |V (G)|. For
each Qi, for all possible colorings of N(Qi), all possible ways of removing at most k vertices

from N(Qi) (which is at most
(g2(k)+1

k

)
), we determine the lists L′ as described above. Then

we run A on (Qi, L
′) with parameters 0, 1, . . . , k − 1 to determine the smallest number of

vertices that must be removed. To view (Qi, L
′) as an instance of BC(H), observe that Qi is

bipartite. We need to specify a set N i
0 for (Qi, L

′), which is just V (Qi) ∩ N0. The property
that L(v) is fixed side and fixed component is obviously inherited, and clearly, there is a list
homomorphism from Qi \N i

0 to H.

Resuming the main argument, assume that N(Qi) = {v1, . . . , vq}, where v1 ≺ · · · ≺ vq.
Then if (c1, . . . , cq) is the tuple that encodes the current vertex coloring and the vertices
removed from N(Qi), and at least ` vertices have to be removed from Qi, then (v1, . . . , vq) is
placed into the relation R(c1,...,cq),`.

The number of times we run A for Qi (for different modifications L′ of the lists of the
vertices of Qi) is h(k,H) for some h depending only on k and |H|, and |N(Qi)| ≤ g2(k) + 1.
Recall that the running time of A is f(k − 1, H) · xc · logd x, where x is the size of the input.
Therefore, the total time A is running is at most

n∑
i=1

h(k,H) · f(k − 1, H) · |V (Qi)|c logd |V (Qi)| ≤

h(k,H) · f(k − 1, H) ·
(

n∑
i=1

|V (Qi)|
)c

logd

(
n∑

i=1

|V (Qi)|
)
≤

h(k,H) · f(k − 1, H) · |V (G)|c logd |V (G)|.

The first inequality follows from the convexity of the function xc·logd(x) when x ≥ 1 (c, d ≥ 0).

Returning a solution and handling the case when r > 1. Now we argue how we
can output K0 ∪X, which is a solution with the desired properties. By Theorem 3.9, we can
produce a collection of sets {K0,K1, . . . ,Kh} that make our MSO formula true in FPT time.
To output X, we keep track of the deletion sets produced by A for each tuple (v1, . . . , vq)
placed into each relation R(c1,...,cq),`. To do this, we color and remove vertices from C as
indicated by the sets K0,K1, . . . ,Kh. Then for each common neighborhood component Qi,
we check which vertices of N(Qi) are removed (in K0), and which are colored with what color.
From this information, we can construct L′ as above, and once we have this, we can look up
the deletion set returned by A on input (Qi, L

′).

When r > 1, the subroutine A either returns a solution of size at most r · k′, where k′ is
the parameter for the given subproblem, or a “no” answer, in which case it is guaranteed that
no solution of size k′ for that subproblem exists. Clearly, the union of such solutions together
K0 yields a solution that has size at most r · k, and when the algorithm outputs “no”, there
cannot be a solution of size at most k. ut
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3.2 The case when there is no conflict

Recall that, in the BC(H) problem, the lists of the vertices in N0 are fixed side and fixed
component, and by assumption, there exists a list homomorphism φ0 from G \N0 to H. To
ensure that the list function L is consistent fixed side and fixed component, we process the
BC(H) instance in the following way. First, if a component of G does not contain any vertex
of N0, then this component can be colored using φ0. Hence such components can be removed
from the instance without changing the problem. Consider a component C of G and let v be
a vertex in C ∩ N0. Recall that L(v) is fixed side and fixed component by the definition of
BC(H); let Hv be the component of H such that L(v) ⊆ Hv in H, and let (Sv, S̄v) be the
bipartition of Hv such that L(v) ⊆ Sv. For every vertex u in C that is in the same side of C as
v, let L′(u) = L(u)∩Sv; for every vertex u that is in the other side of C, let L′(u) = L(u)∩ S̄v.
Note that since the instance does not contain any component or parity conflicts, this operation
on u is the same no matter which vertex v ∈ C ∩N0 is selected: every vertex in C ∩N0 forces
L(u) to the same side of the same component of H. The definition of L′ is motivated by the
observation that if u remains connected to v in G \W , then u has to use a color from L′(u):
its color has to be in the same component Hv as the colors in L(v), and whether it uses colors
from Sv or S̄v is determined by whether it is on the same side as L(v) or not.

If the consistent fixed-side fixed-component instance (G,L′, N0, k) has a solution, then
clearly (G,L,N0, k) has a solution as well. Unfortunately, the converse is not true: by moving
to the more restricted set L′, we may lose solutions. The problem is that even if a vertex u
is in the same side of the same component of G as some v ∈ N0, if u is separated from v in
G \W , then the color of u does not have to be in the same side of the same component of
H as L(v); therefore, restricting L(u) to L′(u) is not justified. However, we observe that the
vertices of G that are separated from N0 in G \W do not significantly affect the solution: if
C is a component of G \W disjoint from N0, then φ0 can be used to color C. Therefore, we
redefine the problem in a way that if a component of G \W is disjoint from N0, then it is
“good” in the sense that we do not require a coloring for these components.

DL-Hom(H) Fixed-Side Fixed-Component Isolated-Good (with approxi-
mation ratio r), denoted by FS-FC-IG(H)
Input: A bipartite graph G, a consistent fixed-side fixed-component list function
L : V (G)→ 2V (H), a set of vertices N0 ⊆ V (G), and an integer k.
Parameters: k, |H|
Output: A set W ⊆ V (G) such that |W | ≤ r · k and for every component C of G \W
with C ∩N0 6= ∅, there is a list homomorphism from (G[C], L|C) to H, or “no”, and
then it is guaranteed that there is no such set of size at most k.

If the instance (G,L,N0, k) of BC(H) has a solution, then the modified FS-FC-IG(H)
instance (G,L′, N0, k) also has a solution: for every component C of G\W intersecting N0, the
vertices in C ∩N0 force every vertex of C to respect the more restricted lists L′. Conversely, a
solution of instance (G,L′, N0, k) of FS-FC-IG(H) can be turned into a solution for instance
(G,L,N0, k) of BC(H): for every component of G \W intersecting N0, the coloring using
the lists L′ is a valid coloring also for the less restricted lists L and each component disjoint
from N0 can be colored using φ0. Thus we have established a reduction from BC(H) to FS-
FC-IG(H). In the rest of this section, we further reduce FS-FC-IG(H) to FS-FC(H), thus
completing the proof of Theorem 3.1.
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3.3 Reducing FS-FC-IG(H) to FS-FC(H)

If we could ensure that the solution W has the property that G \ W has no component
C disjoint from N0, then FS-FC-IG(H) and FS-FC(H) would be equivalent. Intuitively, we
would like to somehow remove every such component C from the instance to ensure this
equivalence. This seems to be very difficult for at least two reasons: first, we do not know
the deletion set W (finding it is what the problem is about), hence we do not know where
these components are, and, second, it is not clear how to argue that removing certain sets of
vertices does not make the problem easier. Nevertheless, the “shadow removal” technique of
Marx and Razgon [27] does precisely this: it allows us to remove components separated from
N0 in the solution.

Let us explain how the shadow removal technique can be invoked in our context. We need
the following definitions:

Definition 3.11. (closest) Let S ⊆ V (G). We say that a set R ⊇ S is an S-closest set if
there is no R′ ⊂ R with S ⊆ R′ and |N(R′)| ≤ |N(R)|.

Definition 3.12. (reach) Let G be a graph and A,X ⊆ V (G). Then RG\X(A) is the set of
vertices reachable from a vertex in A \X in the graph G \X.

The following lemma connects these definitions with our problem: we argue that solving FS-
FC-IG(H) essentially requires finding a closest set. For technical reasons, we construct a
new auxiliary graph G′ from G by adding a new vertex s to G, and all edges of the form
{s, v}, v ∈ N0. We fix a deletion set W ∗ for the FS-FC-IG(H)-instance G which we will use
throughout the rest of this section:

Among all deletion sets for G that have minimum size, W ∗ is chosen so that
RG′\W ∗({s}) = RG\W ∗(N0) ∪ {s} has minimum size.

(1)

We also set R∗ = RG′\W ∗({s}).

Lemma 3.13. It holds that W ∗ = N(R∗) and R∗ is an {s}-closest set.

Proof. We note that s 6∈ W ∗. Clearly, N(R∗) ⊆ W ∗. If W ∗ 6= N(R∗), then let us define
W ′ = N(R∗). Now G \ W ∗ and G \ W ′ have the same components intersecting N0: every
vertex of W ∗ \W ′ is in a component of G \W ′ that is disjoint from N0. Therefore, FS-FC-
IG(H) has a solution with deletion set W ′, contradicting the minimality of W ∗.

If R∗ is not an {s}-closest set, then there exists a set R′ such that {s} ⊆ R′ ⊂ R∗ and
|N(R′)| ≤ |N(R∗)| = |W ∗|. Let W ′ = N(R′), we have |W ′| ≤ |W ∗| ≤ k. We now claim that W ′

can be used as a deletion set for FS-FC-IG(H). If we show this, then RG′\W ′({s}) ⊆ R′ ⊂ R∗
contradicts the minimality of W ∗.

For a vertex x, let CG(x) denote the vertices of the component of G that contains x. We
now show that if x ∈ N0, then CG\W ′(x) ⊆ CG\W ∗(x). Let x ∈ N0 and y ∈ CG\W ′(x). Then
x, y are in the same component of R′, and hence also in R∗ as R′ ⊂ R∗, i.e., y ∈ CG\W ∗(x)
and therefore CG\W ′(x) ⊆ CG\W ∗(x) indeed holds. This shows that W ′ is also a solution,
since we know that W ∗ is a solution for FS-FC-IG(H), i.e., each component of G\W ∗ which
intersects N0 has a homomorphism to H, and hence so does any subgraph. ut

The following theorem states the derandomized version of the shadow removal technique.
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Theorem 3.14 (Marx and Razgon [27, Theorem 3.17]). There is an algorithm
DeterministicSets(G,S, k) that, given an undirected graph G, a set S ⊆ V (G), and an
integer k, produces t = 2O(k3) · log |V (G)| subsets Z1, Z2, . . . , Zt of V (G) \ S such that the
following holds: For every S-closest set R with |N(R)| ≤ k, there is at least one i ∈ [t] such
that

1. N(R) ∩ Zi = ∅, and
2. V (G) \ (R ∪N(R)) ⊆ Zi.

The running time of the algorithm is 2O(k3) · nO(1).

By Lemma 3.13 we know that R∗ = RG′\W ∗({s}) is an {s}-closest set and W ∗ = N(R∗).
Thus we can use Theorem 3.14 with S = {s} to construct the sets Z1, . . . , Zt. Then we branch
on choosing one such Z = Zi, and we can assume for the rest of this section that we have a
set Z satisfying the following properties:

W ∗ ∩ Z = ∅ and V (G) \ (R∗ ∪W ∗) ⊆ Z. (2)

That is, Z does not contain any vertex of the deletion set W ∗, but it completely covers the set
of vertices separated from N0 by W ∗, and possibly covers some other vertices not separated
from N0. Now we show how to use this property of the set Z to reduce FS-FC-IG(H) to
FS-FC(H).

For each component C of G[Z], we run the decision algorithm (see, for example, [10]) for
L-Hom(H) with the list function L|C . If C has no list homomorphism to H, then we call C a
bad component of Z; otherwise, we call C a good component of Z. The following lemma shows
that all neighbors of a bad component C in the graph G \ Z must be in the solution W ∗.

Lemma 3.15. Let Z be a set satisfying (2) above. If C is a bad component of G[Z] (i.e.,
(C,L|C) has no list homomorphism to H), then all vertices of the neighborhood of C in G \Z
belong to W ∗.

Proof. Recall that by assumption, Z contains any vertex that is separated from N0 by W ∗.
Therefore, if a neighbor v of C is in G \ Z, then v is connected to N0 in G \W ∗. It follows
that C is also connected to N0 as Z (and hence C) is disjoint from W ∗. Since (C,L|C) has no
list homomorphism to H, this contradicts that W ∗ is a solution for FS-FC-IG(H). ut

By Lemma 3.15, we may safely remove the neighborhood of every bad component C (decreas-
ing the parameter k appropriately) and then, as the component C becomes separated from
N0, we can remove C as well. More precisely, we define

BZ = {v | v is a vertex in a bad component}

and
XZ = {v | v 6∈ Z and v has a neighbor in BZ}.

The following lemma concludes our reduction.

Lemma 3.16. If the FS-FC-IG(H)-instance I1 = (G,L,N0, k) has a deletion set, then there
is a set Z among the sets Z1, . . . , Zt returned by the algorithm in Theorem 3.14 (on input G′,
S = {s}, and parameter k) such that the following holds:
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(a) The FS-FC(H)-instance I2 = (G \ (XZ ∪BZ), L|G\(XZ∪BZ), k − |XZ |) has a deletion set.
(b) If W ′′ is an r-approximate deletion set for I2, then W ′′∪XZ is an r-approximate deletion

set for I1.

Moreover, given Z, we can compute I2 from I1 and W ′′ ∪XZ from W ′′ in polynomial time.

Proof. Assume that FS-FC-IG(H) has a deletion set, and choose this set to be W ∗, as defined
at (1). Also choose Z to be the set defined at (2).

To prove (a), let ϕ be a list homomorphism from the components of G \W ∗ that contain
a vertex of N0 to H. We set W ′ = W ∗ \ XZ , and claim that W ′ is a solution for I2. By
Lemma 3.15, we have that XZ is a subset of W ∗. Therefore the size of W ′ is clearly at most
k− |XZ |, and (G \ (XZ ∪BZ)) \W ′ = (G \ (XZ ∪BZ)) \ (W ∗ \XZ)) = (G \W ∗) \BZ . Thus,
it is sufficient to show that there is a list homomorphism from (G \W ∗) \ BZ to H. Recall
that Z contains all components separated from N0 by W ∗, and for each such component we
checked whether there was a list homomorphism to H. The (bad) components which did not
have a list homomorphism to H are not present in (G\W ∗)\BZ . For the (good) components
which had a list homomorphism ψ to H, we can obviously just use ψ. Since the rest of the
components have a vertex from N0, for these components we can use ϕ.

For (b), suppose that the FS-FC(H)-instance I2 has an r-approximate deletion set W ′′.
Then the set W ′′∪XZ is an r-approximate deletion set for the instance (G,L,N0, k) of FS-FC-
IG(H): every vertex of BZ is separated from N0 by XZ , and W ′′ is a solution for the rest of G.
Observe that if |W ′′| ≤ r·(k−|XZ |), then |W ′′∪XZ | = |W ′′|+|XZ | ≤ r·(k−|XZ |)+|XZ | ≤ r·k,
since r ≥ 1.

Finally, polynomial-time computability of I2 and W ′′ ∪ XZ is clear from the comments
above. ut

Note that this concludes the proof of Theorem 3.1:

Proof (of Theorem 3.1). An instance I of BC(H) is given. We induct on k. Assume first
that I contains a component or parity conflict. Then the algorithm for BC(H) described
in Lemma 3.10 reduces I to a number of smaller BC(H) instances. This recursion proceeds
as long as the smaller instances contain a conflict. Note that as shown in Lemma 3.10, the
approximation ratios are preserved. If some branch reaches k = 0, then we can solve the
instance using any known polynomial-time decision algorithm for the problem (see, e.g., [10]).

If I contains no conflict, then I is reduced to an instance of FS-FC-IG (see the discussion
in Section 3.2). This FS-FC-IG instance is reduced to a number of FS-FC instances, one for
each Zi obtained from Theorem 3.14. If the FS-FC-IG instance has a deletion set, then there
is at least one set Z among the Zi-s that guarantees properties (a) and (b) in Lemma 3.16.
As shown in that lemma, the approximation ratios are preserved.

For the running time analysis, we also induct on k. If the BC(H) instance contains a
component or parity conflict, then we obtain the claim directly from Lemma 3.10. If there is
no conflict, then BC(H) is reduced to 2O(k3) · log |V (G)| FS-FC instances (see the branching
at Theorem 3.14). ut

4 Solving the BC(H) problem for skew-decomposable graphs

We prove Theorem 1.1 in this section. Since we need an FPT algorithm, in all the reductions
above, we set r = 1. Essentially, the principal mechanism behind the FPT-algorithm is a
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double induction on k and the inductive construction (defined below) of skew-decomposable
graphs. The induction on k is already taken care of by Theorem 3.1, so we need to worry
only about the induction on the construction of H. Roughly speaking, we solve an instance of
FS-FC(H) by solving f(k,H) instances of BC(H ′) for some proper subgraphs H ′ of H. Since
H ′ is a proper subgraph of H, the depth of the recursion is at most |H|. Using Theorem 3.1,
at every iteration, we obtain an additional log x factor in the running time, and therefore
the overall running time at the end will be at most f ′(k,H) · xc · log|H|(x) (where f ′ is some
function of k and H). This can be bounded by f ′(k,H) ·xc+1: it is well known that logk n can
be bounded, for example, by 2O(k2) · n.

We define the inductive construction of skew-decomposable graphs below. We note that
this construction was used to inductively build a logspace algorithm for L-Hom(H), where
H is skew decomposable (Egri et al. [8]), and in a somewhat similar manner, we also use this
construction here to build our FPT algorithm. The special sum operation is an operation to
compose bipartite graphs.

Definition 4.1. (special sum) Let H1, H2 be two bipartite graphs with bipartite classes
T1, B1 and T2, B2, respectively, such that neither T1 nor B2 is empty. The special sum H1�H2

is obtained by taking the disjoint union of the graphs, and adding all edges {u, v} such that
u ∈ T1 and v ∈ B2.

Definition 4.2. (skew decomposable) A bipartite graph H is called skew decomposable if
H ∈ S, where the graph class S is defined as follows:

– S contains the graph that is a single vertex;
– If H1, H2 ∈ S, then their disjoint union H1 ]H2 also belongs to S;
– If H1, H2 ∈ S, then H1 �H2 also belongs to S.

The following two lemmas, together with the base case of the induction discussed after
the lemmas, complete the proof.

Lemma 4.3. Assume that H = H1 ] H2. (Note that H could have more than 2 connected
components.) Then we can produce a solution for the FS-FC(H) instance G with at most
f(k,H) calls to BC(H1) or BC(H2), where the inputs have size at most the size of G, and
the parameters are at most k.

Proof. Since G is component consistent, each connected component of G has lists that are all
subsets of either V (H1) or V (H2). Let G1 be the subgraph of G that is induced by all those
vertices whose lists are subsets of V (H1). We similarly define G2. For i = 1, 2, let ki be the
smallest integer such that there is a set W i ⊆ V (Gi) of size at most ki such that there is a list
homomorphism from Gi \W i to Hi. Then clearly, there is a deletion set for G if and only if
k1 +k2 ≤ k. Note that if there are such k1 and k2, then the solution set for G is just the union
of the solutions for G1 and G2. We focus on G1 (and proceed similarly for G2). We try to find
a solution with parameters k1 = 0, . . . , k, so let’s fix a specific k1 ≤ k. By the definition of
FS-FC(H), the bipartite graph G1 has consistent fixed-side fixed-component H1-lists. Thus,
we can use Corollary 5.8 (whose proof appears in Section 5) to find an approximate solution
W 1

0 of size at most s = k(|H1| + 1) for the FS(H1)-problem instance G1. This is sufficient
for our purposes, as we show now. Following the same steps as in the iterative compression
section in the Preliminaries (except that instead of W0, we use W 1

0 as our starting solution)
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and the beginning of Section 3, we can reduce this problem to solving g(k,H) instances of
BC(H1). ut

Lemma 4.4. Assume that H = H1�H2. Then we can produce a solution for the FS-FC(H)
instance G with at most f(k,H) calls to BC(H1) or BC(H2), where the inputs have size at
most the size of G, and the parameters are at most k.

Proof. Let (G,L) be an instance of FS-FC(H). Assume that the bipartite classes of Hi are
Ti, Bi, i ∈ {1, 2} and we have added all edges between T1 and B2 in the special sum operation.
For any u ∈ V (G) such that L(u) ⊆ T1 ∪ T2 and L(u) ∩ T1 6= ∅, we take the intersection of
L(u) and T1 to obtain L?(u) (we “trim” the lists). Similarly, for every v ∈ V (G) such that
L(v) ⊆ B1 ∪ B2 and L(v) ∩ B2 6= ∅, we obtain L?(v) ← L(v) ∩ B2. Because for any x1 ∈ T1

and any x2 ∈ T2 it holds that N(x1) ⊇ N(x2), and for any y1 ∈ B1 and any y2 ∈ B2 it holds
that N(y2) ⊇ N(y1), it is easy to see that (G,L) and (G,L?) are equivalent.

If {u, v} is an edge such that L?(u) ⊆ B1 and L?(v) ⊆ T2, we call {u, v} a bad edge: clearly,
we must remove at least one endpoint of a bad edge. We branch on which endpoint of a bad
edge to remove (from both G and L?) until either there are no more bad edges, or we exceed
the budget k, in which case we abort the current computation branch. Note that we produce
at most 2k instances without bad edges. From now on we can assume that there are no bad
edges.

Recall that there is a bipartite clique on T1 and B2. This has the consequence that if
{u, v} is an edge of G such that L?(u) ⊆ T1 and L?(v) ⊆ B2, then no matter to which element
of L?(u) the vertex u is mapped, and no matter to which element of L?(v) the vertex v is
mapped, the edge {u, v} is always mapped to an edge of H. Therefore, we can simply remove
these edges from G without changing the solution space. Let G? be this modified version of
G. Observe now that for any connected component C of G?, for every edge {u, v} ∈ E(C)
(where u is in the top bipartite class of G), we have that either L?(u) ⊆ T1 and L?(v) ⊆ B1,
or L?(u) ⊆ T2 and L?(v) ⊆ B2. That is, no edge can be mapped to the edges between T1

and B2. It follows that C has lists that are all subsets of either V (H1) or V (H2) (we note
that C is not necessarily component consistent, because H1 or H2 could consist of more than
components). Since G? meets the condition in the first sentence of Lemma 4.3 (i.e., each
connected component of G? has lists that are all subsets of either V (H1) or V (H2)), now we
can proceed exacty the same way as we did there. ut

The base case, when H consists of a single vertex, is simply the fixed-parameter tractable
vertex cover problem. In fact, since the input is bipartite, we can alternatively use König’s
theorem to solve the base case optimally. To sum up, we proved Theorem 1.1.

Theorem 1.1. DL-Hom(H) is FPT parameterized by solution size and |H|, if H is restricted
to be skew decomposable.

5 Relation between DL-Hom(H) and Satisfiability Problems

The purpose of this section is to prove Theorem 1.2: the equivalence of DL-Hom(H) with
the Clause Deletion `-Chain SAT (`-CDCS) problem (defined below), in the cases when L-
Hom(H) is characterized as polynomial-time solvable by Feder et al. [10], that is, when H is a
bipartite graph whose complement is a circular arc graph. This satisfiability problem belongs
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to the family of clause deletion problems (e.g., Almost 2-SAT [29, 5, 22]), where the goal is to
make a formula satisfiable by the deletion of at most k clauses. At the end of the section, the
reductions proven here will allow us to finish the construction of the FPA-algorithm.

Definition 5.1. A chain clause is a conjunction of the form

(x0 → x1) ∧ (x1 → x2) ∧ · · · ∧ (xm−1 → xm),

where xi and xj are different variables if i 6= j. The length of a chain clause is the number
of variables it contains. (A chain clause of length 1 is a variable, and it is satisfied by both
possible assignments.) To simplify notation, we denote chain clauses of the above form as

x0 → x1 → · · · → xm.

An `-Chain-SAT formula consists of:

– a set of variables V ;
– a set of chain clauses over V such that any chain clause has length at most `;
– a set of unary clauses (a unary clause is a variable or its negation).

Clause Deletion `-Chain-SAT (`-CDCS)
Input: An `-Chain-SAT formula F .
Parameter: k
Output: A set of clauses of size at most k such that removing these clauses from F makes
F satisfiable, or “no” if no such set exists.

5.1 The variable-deletion version

For technical reasons, it will be convenient to work with a variant of the problem where
instead of constraints, certain sets of variables are allowed to be removed, a certain disjointness
condition is required, and some chain clauses of length 2 behave differently from chain clauses
having length 1 or length at least 3:

Variable Deletion `-Chain-SAT (`-VDCS)
Input: An `-Chain-SAT formula F (containing some unary and chain clauses) in which the
chain clauses are partitioned into ordinary and implicational clauses satisfying the following
properties. The ordinary clauses are on pairwise vertex-disjoint sets of variables, and each
implicational clause is of length exactly 2, with the two variables appearing in two distinct
ordinary clauses.
Parameter: k
Output: A set of at most k ordinary clauses such that removing all variables of these ordi-
nary clauses, and also removing any clause that contains any of these variables, makes F
satisfiable, or “no” if no such set exists.

The following two lemmas show the equivalence of the two versions of the problem. Note
that the first reduction increases the value of `, but the equivalence holds in the sense that
`-CDCS is FPT for every fixed ` if and only if `-VDCS is FPT for every fixed `.

To simplify the exposition of the proofs that follow, we introduce some terminology. In
the context of the CDCS problem, we say that a clause is undeletable if it has at least k + 1
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an ordinary clause of length 4

an implicational clause

an ordinary clause of length 1

x1 x2 x3 x4

y1 y2
w1

z2
z1

¬x2 z1

unary clauses

y3

Fig. 2. Illustration of a VDCS instance. Chains of black arrows represent ordinary clauses. Gray arrows rep-
resent implicational clauses. Unary clauses are given explicitly as ¬x2 and z1.

identical copies in the given formula, where k is the maximum number of clauses allowed to
be removed. By “adding an undeletable clause” we mean adding k + 1 copies of the given
clause, and by “making a clause undeletable” we mean adding sufficiently many copies of that
clause so that it becomes undeletable.

Lemma 5.2. There is a parameterized reduction from `-VDCS to (2`+ 2)-CDCS.

Proof. Let F be a given `-VDCS instance. Before we construct a CDCS instance with pa-
rameter k, we transform F into a more standard form. First we obtain an instance F1 from
F as follows. Let x0 → · · · → xm be an ordinary clause of F with the property that there
exist indices i ≤ j such that F contains the unary clauses xi and ¬xj . The variables of such a
clause must be removed in any solution, so we remove all variables x0, . . . , xm from F (and any
clause that contains any of these variables), and reduce the parameter accordingly. Clearly,
F is equivalent to F1 (with the reduced parameter).

We produce an instance F2 from F1 as follows. Let C = x0 → · · · → xm be an ordinary
clause such that there are indices i < j such that F1 contains unary clauses ¬xi and xj . Take
the largest index i such that F1 contains the unary clause ¬xi, and the smallest index j such
that F1 contains the unary clause xj . Observe that in any satisfying variable assignment of
this clause, for any i′ < i, the variable xi′ must take on the value 0. Therefore, we collapse
all variables xi′ , i

′ ≤ i, into the variable xi. Using a similar reasoning, we can collapse all
variables xj′ , j ≤ j′ into xj . Notice that F2 can be made satisfiable by k deletions if and only
if F1 can be made satisfiable by k deletions.

By construction, if x0 → x1 → · · · → xm is an ordinary clause of F2, then if this clause
contains a negative unary clause, it must be ¬x0, and if it contains a positive unary clause,
it must be xm. Furthermore, if both unary clauses ¬x0 and xm are present, then m ≥ 1.

We are now ready to construct the (2`+ 2)-CDCS instance F ′ from F2. For each ordinary
clause x0 → x1 → · · · → xm of F2, we place a chain clause

x0 → x′0 → x̃0 → x1 → x′1 → x2 → x′2 → · · · → xm−1 → x′m−1 → x̃m → xm → x′m

into F ′. If ¬x0 is a unary clause in F2, then we add the unary clause ¬x̃0 and make it
undeletable. Similarly, if xm is a unary clause in F2, then we add the unary clause x̃m to F ′,
and make it undeletable. Each implicational clause xi → yj in F2 yields an undeletable chain
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clause α → β in F ′, where we define α and β as follows. Let y0 → y1 → · · · → yn be the
ordinary clause in F2 that contains yj . Then the corresponding chain clause in F ′ is

y0 → y′0 → ỹ0 → y1 → y′1 → y2 → y′2 → · · · → yn−1 → y′n−1 → ỹn → yn → y′n,

and α = x′i, β = yj . It is easy to see that there is a deletion set for the modified VDCS problem
instance F2 of size k if and only if there is a deletion set of size k for the (2`+2)-CDCS instance
F ′, and we can easily get a deletion set F for the VDCS instance from a deletion set for the
CDCS instance F ′. ut

Lemma 5.3. There is a parameterized reduction from `-CDCS to `-VDCS.

Proof. Let F be the `-CDCS instance. We produce the desired instance F ′ of VDCS as follows.
For each variable x, let C1, . . . , Cq be all the clauses (both unary and chain) that contain x.
We make q copies x1, . . . , xq of x, and for each i ∈ [q], if Ci is a chain clause in F , then it
becomes an ordinary clause in F ′, and if Ci as a unary clause, then Ci remains a unary clause
in F ′, and in addition, an ordinary clause xi is added to F ′. To ensure that the copies of x
behave similarly, for each i, j ∈ [q], i 6= j, we add an implicational clause xi → xj to F ′.

Removing a chain clause in F corresponds to removing the variables of the corresponding
ordinary clause in F ′. Removing a unary clause in F also corresponds to removing the variable
in the chain clause associated with that unary clause. The converse is equally easy. We can
easily produce a deletion set for F from a deletion set for F ′.

Note that if ` = 1 in `-CDCS, then we would have a reduction from 1-CDCS to 2-VDCS.
We can avoid this blow-up by solving the 1-CDCS instance directly (which is easy), and then
producing a 1-VDCS formula requiring the same number of deletions. ut

5.2 Reductions

Bipartite graphs whose complement is a circular arc graph admit a simple representation (see
[11, 31]).

Definition 5.4. The class of bipartite graphs whose complement is a circular arc graph cor-
responds to the class of graphs that can be represented as follows. Let C be a circle, and N
and S be two different points on C. A northern arc is an arc that contains N but not S. A
southern arc is an arc that contains S but not N . Each vertex v ∈ V (H) is represented by a
northern or a southern arc Av. The pair {u, v} is an edge of H if and only if the arcs Av and
Au do not intersect.

First we reduce `-VDCS to DL-Hom(H), where H is a bipartite graph whose complement
is a circular arc graph. In fact, we reduce it to the special case FS-FC(H) (making the
statement somewhat stronger).

Lemma 5.5. For every `, there is a bipartite graph H` whose complement is a circular arc
graph such that there is a parameterized reduction from `-VDCS to FS-FC(H`).

Proof. Let F be any instance of `-VDCS. We construct in parallel a graph H` and an instance
GF of DL-Hom(H) such that F is satisfiable after removing the variables of k clauses if and
only if GF maps to H` after removing k vertices. We will see that the construction of H` is
independent of F and depends only on `.
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Fig. 3. Construction of the graph H` and the gadgets in the proof of Lemma 5.5.

To define H`, first fix a circle with two different points N and S. For each ordinary clause
C of F , we introduce a vertex α(C) in (the top bipartite class of) GF . There are at most `+1
satisfying assignments of the clause C, and therefore we introduce `+1 arcs a0, . . . , a` in H` to
encode all these possibilities. To define these arcs, we place `+ 1 points p0, . . . , p`−1, p` on the
semicircle from S to N in the clockwise direction such that p0 6= S and p` 6= N . Similarly, we
place `+ 1 points q0, q1, . . . , q` on the semicircle from N to S in the clockwise direction such
that q0 6= N and q` 6= S. The arc ai goes from pi to qi crossing N (but not S), i ∈ {0, . . . , `}.
See Figure 3. We refer to these arcs as value arcs.

From any ordinary clause to any other ordinary clause, there are at most `2 possible
implicational clauses. Therefore for all possible pairs (i, j), 0 ≤ i, j ≤ ` − 1 we introduce a
set of 6 arcs in H`: u

1
i,j , u

2
i,j , v

1
i,j , v

2
i,j , w

1
i,j , w

2
i,j . The role of these sets of arcs is to simulate

the implicational clauses as follows. For each implicational clause D in F , let C and C ′ be
the two (distinct) ordinary clauses associated with it. For each such C, C ′ and D, the graph
GF contains a path P = α(C) − U(D) − V (D) −W (D) − α(C ′). The clauses C and C ′ will
determine the lists of α(C) and α(C ′). The clause D will determine i and j, and i and j
determine the lists of U(D), V (D) and W (D): L(U(D)) = {u1

i,j , u
2
i,j}, L(V (D)) = {v1

i,j , v
2
i,j}

and L(W (D)) = {w1
i,j , w

2
i,j}.

Suppose that C = x0 → · · · → xt, C
′ = y0 → · · · → yt′ , and D = xr → yr′ . We set the

list of α(C) to be {a0, . . . , at+1}, and the list of α(C ′) to {a0, . . . , at′+1}. Finally, we define
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the lists of U(D), V (D) and W (D). We set the list of U(D) to be {u1
r,r′ , u

2
r,r′}, where u1

r,r′ is

an arc in H` that starts at S, and goes clockwise to include pr but not pr+1. The arc u2
r,r′

starts at S and goes anticlockwise to a point e that is (strictly) between S and q`. Arc v2
r,r′

starts at N and goes clockwise until it includes e (but not S). Arc v1
r,r′ starts at N , it goes

anticlockwise to a point f that is (strictly) between p0 and S. The arc w1
r,r′ starts at S and

goes clockwise until it includes f but not p0. Finally, w2
r,r′ starts at S and goes anticlockwise

until it includes qr′+1 but not qr′ .

Assume now that α(C) is mapped to a value arc ai such that i ≤ r. Then ai intersects u1
r,r′ ,

so U(D) must be mapped to u2
r,r′ . The arc u2

r,r′ intersects v2
r,r′ , so V (D) must be mapped to

v1
r,r′ which in turn intersects w1

r,r′ , so W (D) must be mapped to w2
r,r′ . The arc w2

r,r′ intersects
any value arc ai′ such that i′ > r′, so α(C ′) must be mapped to an arc ai′ such that i′ ≤ r′.

On the other hand, if α(C) is mapped to a value arc ai such that i > r, then the above
“chain reaction” is not triggered, so α(C ′) can be mapped to any vertex in its list. More
precisely, U(D) can be mapped to u1

r,r′ , V (D) can be mapped to v2
r,r′ , and W (D) can be

mapped to w1
r,r′ , which does not intersect any of the value arcs, so α(C ′) can be mapped to

anything in its list.

The above analysis suggests the following correspondence between variable assignments
of F and homomorphisms from GF to H`. Mapping α(C) to ai precisely corresponds to the
assignment x0 = · · · = xi−1 = 0, xi = · · · = xq = 1 of the variables of C. It is clear that using
this correspondence, given a satisfying assignment we can construct a homomorphism and vice
versa. The unary clauses are encoded using the lists of the variables corresponding to ordinary
clauses. For example, if xi is a unary clause and xi is among the variables of the ordinary clause
C, then in any valid variable assignment we must have that xi = 1, xi+1 = 1, . . . , xq = 1. In
our interpretation, this corresponds to restricting the possible images of α(C) to a0, a1, . . . , ai,
so we simply remove the rest of the arcs form L(α(C)). Similarly, if ¬xi is a unary clause,
then we must remove aj from L(α(C)) for j ≤ i.

We give a simple example. Assume that C = x0 → x1 → x2 → x3 → x4 and C ′ = y0 →
y1 → y2 → y3 are ordinary clauses and D = x2 → y2 is an implicational clause. Then given a
satisfying variable assignment such that at least one of x0, x1, and x2 is true, e.g., x0 = 0 and
x1 = x2 = 1, we assign α(C) to a1. Because we were given a satisfying assignment, we must
have that y2 = y3 = 1. So for example, if y1 is the first among y0, y1, y2 that has value 1, then
we assign α(C ′) to a1. We verify that this mapping can be extended to the other 3 vertices of
the path between α(C) and α(C ′). Arc a1 intersects u1

2,2, so U(D) can be assigned (only) to

u2
2,2. Then V (D) can be assigned (only) to v1

2,2, and W (D) (only) to w2
2,2, which intersects a3.

Therefore α(C ′) can be assigned to any of {a0, a1, a2} (but not to a3 or a4), corresponding to
the three possible ways the variables of C ′ could be assigned. If y1 is the first having value 1,
then we assign α(C ′) to a1.

On the other hand, if x0, x1, and x2 are all false, then we assign α(C) to ai where xi is
the first variable in C with value 1, or if all the variables have value 0, then i = 5. In all these
cases, the first variable among y0, y1, y2, y3 that has value 1 could be any of these variables,
or all variables could be assigned 0. If the first variable that has value 1 is yj , then we assign
α(C ′) to aj . If all variables are 0, we assign α(C ′) to a4. We can check that this mapping can
be extended to the variables of the path between α(C) and α(C ′).

For the converse, α(C) and α(C ′) are prevented by the path between them to be assigned
to value arcs that encode a variable assignment violating the conjunction of C, C ′ and D. If
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α(C) is mapped to ai, where i ≤ 2 (i.e., all those cases where x2 has value 1), then there is
no homomorphism that maps α(C ′) to a3 or a4.

Finally, we need to ensure that only vertices corresponding to ordinary clauses can be
removed, i.e., vertices of the form α(C) and α(C ′). To achieve this, for every path α(C) −
U(D)−V (D)−W (D)−α(C ′) we make the inner vertices “undeletable” as follows. We replace
U(D), V (D), and W (D) with k+ 1 copies, where the copies inherit the lists. We add an edge
between α(C) and any copy of U(D), an edge between any copy of U(D) and any copy of
V (D), an edge between any copy of V (D) and any copy of W (D), and an edge between any
copy of W (D) and α(C ′). This obviously works.

Now we check the correctness of the reduction. Clearly, if after removing k vertices there
is a homomorphism from GF to H`, then we can remove the corresponding ordinary clauses
from the formula and use the homomorphism to define a satisfying assignment. Notice that
the parameters are preserved, i.e., that there is a satisfying assignment of the formula F
after removing the variables corresponding to k ordinary clauses if and only if there is a
homomorphism from GF to H` after removing k vertices. Furthermore, we also obtained a
deletion set for F from the deletion set for GF .

Conversely, if there is a satisfying assignment after removing k ordinary clauses, then we
remove the corresponding vertices from GF and define a homomorphism from the satisfying
assignment. To do this, note that if either endpoint of a path α(C)−U(D)−V (D)−W (D)−
α(C ′) is removed, say α(C ′), then for any assignment of the remaining end vertex (e.g.,
α(C)), we can find images for the vertices U(D), V (D) and W (D) such that each edge of
α(C)−U(D)− V (D)−W (D) is mapped to an edge of H`. Clearly, this argument also works
when we work with the copies of the inner vertices instead of the originals.

Instance GF is obviously “fixed side”. Since H` has a single component, GF is also “fixed
component”. (Observing that w1

r,r′ and u2
r,r′ are connected to all the value arcs easily gives

that H` is connected.) ut

For the converse direction, the following lemma reduces the special case FS(H) to `-VDCS,
where FS(H) is the relaxation of the problem FS-FC(H) where a list could contain vertices
from more than one component of H (that is, we only require that the lists are consistent
fixed side). Together with Theorem 3.1, it gives a reduction from (a general instance of)
DL-Hom(H) to `-VDCS.

Lemma 5.6. Let H be a bipartite graph whose complement is a circular arc graph. Then
there is a parameterized reduction from FS(H) to `-VDCS, where ` = |V (H)|+ 1.

Proof. Let G be an instance of the fixed-side problem with bipartition classes T and B, and
assume we are given a representation of H as in Definition 5.4, where the special points on
the circle are N and S. Let u ∈ T . Clearly, we can assume that no arc a ∈ L(u) contains
any other arc in L(u), as then we can remove a from L(u). Suppose that t = |L(u)|, and
that the arcs in L(u) are a0, . . . , at−1 (recall that these arcs contain N but not S; for clarity,
sometimes we write aui instead of ai). Furthermore, let pi and qi be points on the circle such
that arc ai is the segment of the circle that begins at pi, goes clockwise passing N , and ends
at point qi. By renaming the arcs if necessary, we can assume that when we traverse the circle
in the clockwise direction starting at pt−1, we visit the endpoints of the arcs in L(u) in the
order pt−1, pt−2, . . . , p0, qt−1, qt−2, . . . , q0. See Figure 4 for an example. Similarly, let v ∈ B
and t′ = |L(v)|. Let the arcs in L(v) be b0, . . . , bt′−1, and suppose that ri and si are points
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Fig. 4. The graph H in the proof of Lemma 5.6.

on the circle such that the arc obtained by going from ri to si in the anticlockwise direction
(thus traversing S) is precisely the arc bi. Just as before, we assume that traversing the circle
in the anticlockwise direction starting at r0, we visit the endpoints of the arcs in L(u) in the
order r0, r1, . . . , rt′−1, s0, s1, . . . , st′−1. Note, however, that the relative ordering of the pi’s and
ri’s can be arbitrary; in particular, it is not always true that they strictly alternate (e.g., in
Figure 4, we have the ordering p0, r0, r1, p1, p2, r2).

For a vertex u ∈ T , we introduce t + 1 (t = |L(u)|) variables x0, . . . , xt in our VDCS
instance. Arc ai is associated with the pair (xi, xi+1). We add the ordinary clause x0 → · · · →
xt, and the unary clauses ¬x0, xt. Notice that if these clauses are satisfied by a variable
assignment, then there is a unique index i such that xi = 0 and xi+1 = 1. Intuitively, this
0− 1 transition indicates that vertex u of G is assigned to ai. Any vertex v ∈ B is handled in
a similar fashion, i.e., we introduce an ordinary chain clause y0 → · · · → yt′ and unary clauses
¬y0 and yt′ , where t′ = |L(v)|. See Figure 4.

We define implicational clauses to encode that edges of G must be mapped to edges of H.
Let {u, v} be an edge of G. We interpret xi = 1 as u being assigned to one of a0, . . . , ai−1, and
xi = 0 as u being assigned to one of ai, . . . , at−1. Similarly for v ∈ B, yj = 1 is interpreted as
assigning v to one of b0, . . . , bj−1, and yj = 0 as v being assigned to bj , . . . , bt′−1.

We introduce two sets of implicational clauses, the first one consisting of t clauses, and
the second one consisting of t′ clauses. The role of the first set is to ensure that if u is mapped
to an arc ai, then v is mapped to an arc bj that does not intersect ai on the arc from N to S
in the clockwise direction. The role of the second set is to ensure that if v is mapped to an
arc bj , then u is mapped to an arc ai that does not intersect bj on the arc from N to S in the
anticlockwise direction. We define the first set only, as the second set is defined analogously.

The first set of implicational clauses are xi → yji , one for each i ∈ {1, . . . , t}, where ji
is defined as follows. Let j′ be the largest integer such that we can get from qi−1 to sj′ on
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the circle in the clockwise direction without crossing S. Then ji = j′ + 1. In Figure 4, this
corresponds to finding the “outermost” arc containing S that “still” does not intersect ai−1.
For example, let i = 2 in Figure 4. Then ji = 2, and we obtain the implicational clause
x2 → y2. The rest of the implicational clauses in the figure are x1 → y1 and x3 → y3. In
the example in the figure, the second set of implicational clauses are y1 → x1, y2 → y1, and
y3 → x3.

If we have a homomorphism h from G to H, we can construct a satisfying assignment for
the VDCS formula by setting the variables as suggested above. That is, if vertex u is in the
bipartite class T of G and u is mapped to an arc aui ∈ L(u) then we set xj = 0 for all j ≤ i, and
xj = 1 for all j > i. We similarly set the values of the variables of any chain clause associated
with a vertex in the bipartite class B of G. Notice that this assignment automatically satisfies
all the chain clauses.

Consider an arbitrary implicational clause xi → yj , where xi is a variable in a chain clause
associated with a vertex u ∈ T , and yj is a variable associated with a vertex v ∈ B. For the
sake of contradiction, assume that xi = 1 and yj = 0. The way we assigned the values of the
variables indicates that h(u) ∈ {a0, . . . , ai−1}, and v ∈ {bj , . . . , bt′}. But because the clause
xi → yj exists, we know that {u, v} is an edge of G, so we conclude from the definition of
xi → yj that each arc a0, . . . , ai−1 is intersected by the arc bj , and also by each of bj+1, . . . , bt′

because of the ordering of the arcs. This contradicts the fact that h is a homomorphism.
Conversely, assume that the VDCS formula is satisfied. Then for each vertex of u ∈ T , we

find the (unique) index i of the chain clause associated with u such that xi = 0 and xi+1 = 1,
and we define h(u) to be ai. We similarly define the images of vertices in B. To see that h is
a homomorphism, assume for the sake of contradiction that an edge {u, v} of G is assigned
to a non-edge of H. Let a and b be the arcs to which u and v are assigned, respectively, and
let x0, . . . , xt and y0, . . . , yt′ be the variables associated with u and v, respectively. Then for
some i and j, we have that xi = 0, xi+1 = 1 and yj = 0, yj+1 = 1; from our definition of
how to map the vertices of G to V (H), we have that a = ai and b = bj . Assume without loss
of generality that ai and bj intersect on the semi-circle from N to S going in the clockwise
direction. Find the smallest j′ such that bj′ intersects ai on the semi-circle from N to S going
in the clockwise direction. Then by definition, the implicational clause xi+1 → yj′ is present
in the VDCS formula. Since the formula is satisfied, yj′ = 1, and because j′ ≤ j, yj = 1, a
contradiction.

Regarding the parameters and the deletion sets, if there is a homomorphism from G to
H after removing k vertices v1, . . . , vk, then the `′-VDCS formula obtained by removing the
variables of the ordinary clauses associated with v1, . . . , vk gives exactly the formula obtained
from G[V (G) \ {v1, . . . , vk}] directly. The converse works similarly. ut

5.3 Approximability

As a consequence of Lemma 5.6 (reduction from FS(H) to `-VDCS), we can obtain a constant-
factor approximation algorithm for FS(H). First, let us observe that `-VDCS admits an
approximation algorithm with ratio ` invoking an algorithm for minimum cut.

Lemma 5.7. The `-VDCS problem has a polynomial-time approximation algorithm with ratio
`.

Proof. Given an `-VDCS instance I, we obtain a digraph GI as follows. Vertices of GI are the
variables of I. There is an edge (u, v) from vertex u to vertex v, if u→ v is an implicational
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clause, or u = xi and v = xj , where xi and xj belong to the same ordinary clause, and i < j.
Furthermore, we add two new vertices s and t, and for every unary clause forcing a variable
w to be 1, we add the edge (s, w), and for every unary clause forcing a variable z to be 0, we
add the edge (w, t). Let C be an st-vertex-cutset of minimum size; such a set can be found in
polynomial time. Then it is easy to see that the set of those ordinary clauses that contain a
variable corresponding to a vertex in C is a valid deletion set W for I: after removing variables
that belong to a clause in W , we can assign 1 to every variable that is reachable from 1, and
0 to every other variable. Our approximation algorithm returns this set of ordinary clauses as
a solution.

To show that this algorithm has approximation ratio at most `, suppose that U is an
optimal solution for I. Then it is easy to verify that the vertices that correspond to the
variables of the ordinary clauses in U form an st-vertex-cutset. The size of this cutset is at
most ` · |U |. Therefore, the minimum st-vertex-cutset size and size of the optimum solution
`-VDCS differ at most by a factor of `, hence the approximation ratio follows. ut

Corollary 5.8. Let H be a bipartite graph whose complement is a circular arc graph. Then
there is a polynomial-time approximation algorithm for FS(H) with ratio |V (H)|+ 1.

Proof. It follows from Lemmas 5.6 and 5.7 ut

Now we have everything at our hands to prove the main approximation result, Theo-
rem 1.3:

Theorem 1.3. If H is a fixed bipartite graph whose complement is a circular arc graph,
then DL-Hom(H) is FPA with ratio |H|+ 1, and the running time of the FPA-algorithm is
f(k,H) · nO(1).

Proof. It follows from the initial iterative compression argument, Theorem 3.1, and Corol-
lary 5.8. ut

6 Concluding Remarks

The list homomorphism problem is a widely investigated problem in classical complexity the-
ory. In this work, we initiated the study of this problem from the perspective of parameterized
complexity: we have shown that the DL-Hom(H) is FPT for any skew-decomposable graph
H parameterized by the solution size and |H|, an algorithmic meta-result unifying the fixed-
parameter tractability of some well-known problems. To achieve this, we welded together a
number of classical and recent techniques from the FPT toolbox in a novel way. Our research
suggests many open problems, four of which are:

1. If H is a fixed bipartite graph whose complement is a circular arc graph, is DL-Hom(H)
FPT parameterized by solution size? (Conjecture 1.1.)

2. If H is a fixed digraph such that L-Hom(H) does not contain a circular N , is DL-Hom(H)
FPT parameterized by solution size? The digraphs which do not contain a circular N are
precisely those for which L-Hom(H) is in logspace, assuming NL is different from L
(cf. [7]).

3. If H is a matching consisting of n edges, is DL-Hom(H) FPT, where the parameter is
only the size of the deletion set?
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4. Consider DL-Hom(H) for target graphs H in which both vertices with and without loops
are allowed. It is known that for such target graphs L-Hom(H) is in P if and only if H
is a bi-arc graph assuming P is different from NP (cf. [11]), or equivalently, if and only if
H has a majority polymorphism. If H is a fixed bi-arc graph, is there an FPT reduction
from DL-Hom(H) to `-CDCS, where ` depends only on |H|?

Note that for the first problem, we already do not know if DL-Hom(H) is FPT when H is a
path on 7 vertices. (If H is a path on 6 vertices, once we ensured that the instance has fixed-
side lists, there is a simple reduction to Almost 2-SAT.) Observe that the third problem is
a generalization of the Vertex Multiway Cut problem parameterized only by the cutset.
For the fourth problem, we note that the FPT reduction from DL-Hom(H) to CDCS for
graphs without loops relies on the fixed-side nature of the lists involved. Since the presence
of loops in H makes the concept of a fixed-side list meaningless, it is not clear how to achieve
such a reduction.
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