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Abstract. In the deletion version of the list homomorphism problem,
we are given graphs G and H, a list L(v) ⊆ V (H) for each vertex
v ∈ V (G), and an integer k. The task is to decide whether there exists a
set W ⊆ V (G) of size at most k such that there is a homomorphism from
G \W to H respecting the lists. We show that DL-Hom(H), parame-
terized by k and |H|, is fixed-parameter tractable for any (P6, C6)-free
bipartite graph H; already for this restricted class of graphs, the problem
generalizes Vertex Cover, Odd Cycle Transversal, and Vertex Multiway
Cut parameterized by the size of the cutset and the number of termi-
nals. We conjecture that DL-Hom(H) is fixed-parameter tractable for
the class of graphs H for which the list homomorphism problem (without
deletions) is polynomial-time solvable; by a result of Feder et al. [9], a
graph H belongs to this class precisely if it is a bipartite graph whose
complement is a circular arc graph. We show that this conjecture is
equivalent to the fixed-parameter tractability of a single fairly natural
satisfiability problem, Clause Deletion Chain-SAT.

1 Introduction

Given two graphs G and H (without loops and parallel edges; unless otherwise
stated, we consider only such graphs throughout this paper), a homomorphism
φ : G → H is a mapping φ : V (G) → V (H) such that {u, v} ∈ E(G) implies
{φ(u), φ(v)} ∈ E(H); the corresponding algorithmic problem Graph Homomor-
phism asks if G has a homomorphism to H. It is easy to see that G has a
homomorphism into the clique Kc if and only if G is c-colorable; therefore, the
algorithmic study of (variants of) Graph Homomorphism generalizes the study
of graph coloring problems (cf. Hell and Nešetřil [15]). Instead of graphs, one can

? Supported by ERC Starting Grant PARAMTIGHT (No. 280152)
?? Supported in part by NSF CAREER award 1053605, NSF grant CCF-1161626, ONR

YIP award N000141110662, DARPA/AFOSR grant FA9550-12-1-0423, a University
of Maryland Research and Scholarship Award (RASA) and a Summer International
Research Fellowship from University of Maryland.



consider homomorphism problems in the more general context of relational struc-
tures. Feder and Vardi [12] observed that the standard framework for Constraint
Satisfaction Problems (CSP) can be formulated as homomorphism problems for
relational structures. Thus variants of Graph Homomorphism form a rich family
of problems that are more general than classical graph coloring, but does not
have the full generality of CSPs.

List Coloring is a generalization of ordinary graph coloring: for each vertex
v, the input contains a list L(v) of allowed colors associated to v, and the task
is to find a coloring where each vertex gets a color from its list. In a similar
way, List Homomorphism is a generalization of Graph Homomorphism: given
two undirected graphs G,H and a list function L : V (G) → 2V (H), the task is
to decide if there exists a list homomorphism φ : G→ H, i.e., a homomorphism
φ : G → H such that for every v ∈ V (G) we have φ(v) ∈ L(v). The List
Homomorphism problem was introduced by Feder and Hell [8] and has been
studied extensively [7, 11, 9, 10, 14, 17]. It is also referred to as List H-Coloring
the graph G since in the special case of H = Kc the problem is equivalent to list
coloring where every list is a subset of {1, . . . , c}.

An active line of research on homomorphism problems is to study the com-
plexity of the problem when the target graph is fixed. Let H be an undirected
graph. The Graph Homomorphism and List Homomorphism problems with fixed
target H are denoted by Hom(H) and L-Hom(H), respectively. A classical re-
sult of Hell and Nešetřil [16] states that Hom(H) is polynomial-time solvable
if H is bipartite and NP-complete otherwise. For the more general List Homo-
morphism problem, Feder et al. [9] showed that L-Hom(H) is in P if H is a
bipartite graph whose complement is a circular arc graph, and it is NP-complete
otherwise. Egri et al. [7] further refined this characterization and gave a complete
classification of the complexity of L-Hom(H): they showed that the problem is
complete for NP, NL, or L, or otherwise the problem is first-order definable.

In this paper, we increase the expressive power of (list) homomorphisms by
allowing a bounded number of vertex deletions from the left-hand side graph
G. Formally, in the DL-Hom(H) problem we are given as input an undirected
graph G, an integer k, a list function L : V (G)→ 2V (H) and the task is to decide
if there is a deletion set W ⊆ V (G) such that |W | ≤ k and the graph G \W has
a list homomorphism to H. Let us note that DL-Hom(H) is NP-hard already
when H consists of a single isolated vertex: in this case the problem is equivalent
to Vertex Cover, since removing the set W has to destroy every edge of G.

We study the parameterized complexity of DL-Hom(H) parameterized by
the number of allowed vertex deletions and the size of the target graph H. We
show that DL-Hom(H) is fixed parameter tractable (FPT) for a rich class of
target graphs H. That is, we show that DL-Hom(H) can be solved in time
f(k, |H|) · nO(1) if H is a (P6, C6)-free bipartite graph, where f is a computable
function that depends only of k and |H| (see [5, 13, 24] for more background on
fixed parameter tractability). This unifies and generalizes the fixed parameter
tractability of certain well-known problems in the FPT world:
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– Vertex Cover asks for a set of k vertices whose deletion removes every
edge. This problem is equivalent to DL-Hom(H) where H is a single vertex.

– Odd Cycle Transversal (also known as Vertex Bipartization) asks
for a set of at most k vertices whose deletion makes the graph bipartite. This
problem can be expressed by DL-Hom(H) when H consists of a single edge.

– In Vertex Multiway Cut parameterized by the size of the cutset and the
number of terminals, a graph G is given with terminals t1, . . . , td, and the
task is to find a set of at most k vertices whose deletion disconnects ti and
tj for any i 6= j. This problem can be expressed as DL-Hom(H) when H is
a matching of d edges, in the following way. Let us obtain G′ by subdividing
each edge of G (making it bipartite) and let the list of ti contain the vertices
of the i-th edge ei; all the other lists contain every vertex of H. It is easy to
see that the deleted vertices must separate the terminals otherwise there is
no homomorphism to H and, conversely, if the terminals are separated from
each other, then the component of ti has a list homomorphism to ei.

Note that all three problems described above are NP-hard but known to be
fixed-parameter tractable [4, 5, 21, 25].

Our Results: Clearly, if L-Hom(H) is NP-complete, then DL-Hom(H) is
NP-complete already for k = 0, hence we cannot expect it to be FPT. Therefore,
by the results of Feder et al. [9], we need to consider only the case when H is
a bipartite graph whose complement is a circular arc graph. We focus first on
those graphs H for which the characterization of Egri et al. [7] showed that L-
Hom(H) is not only polynomial-time solvable, but actually in logspace: these
are precisely those (bipartite) graphs that exclude the path P6 on six vertices
and the cycle C6 on six vertices as induced subgraphs. This class of graphs
admits a decomposition using certain operations (see [7]), and to emphasize this
decomposition, we also call this class of graphs skew decomposable graphs. Let
us emphasize that these graphs are bipartite by definition. Note that the class
of skew decomposable graphs is a strict subclass of chordal bipartite graphs (P6

is chordal bipartite but not skew decomposable), and bipartite cographs and
bipartite trivially perfect graphs are trivially skew decomposable.

Our first result is that the DL-Hom(H) problem is fixed-parameter tractable
for this class of graphs.

Theorem 1. If H is a skew decomposable bipartite graph, then DL-Hom(H)
is FPT parameterized by solution size and |H|.
Observe that the graphs considered in the examples above are all skew decompos-
able bipartite graphs, hence Theorem 1 is an algorithmic meta-theorem unifying
the fixed-parameter tractability of Vertex Cover, Odd Cycle Transver-
sal, and Vertex Multiway Cut parameterized by the size of the cutset and
the number of terminals, and various combinations of these problems.

Theorem 1 shows that, for a particular class of graphs where L-Hom(H)
is known to be polynomial-time solvable, the deletion version DL-Hom(H) is
fixed-parameter tractable. We conjecture that this holds in general: whenever
L-Hom(H) is polynomial-time solvable (i.e., the cases described by Feder et
al. [9]), the corresponding DL-Hom(H) problem is FPT.
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Conjecture 2. If H is a fixed graph whose complement is a circular arc graph,
then DL-Hom(H) is FPT parameterized by solution size.

It might seem unsubstantiated to conjecture fixed-parameter tractability for ev-
ery bipartite graph H whose complement is a circular arc graph, but we show
that, in a technical sense, proving Conjecture 2 boils down to the fixed-parameter
tractability of a single fairly natural problem. We introduce a variant of max-
imum `-satisfiability, where the clauses of the formula are implication chains3

x1 → x2 → · · · → x` of length at most `, and the task is to make the formula
satisfiable by removing at most k clauses; we call this problem Clause Deletion
`-Chain-SAT (`-CDCS) (see Definition 14). We conjecture that for every fixed
`, this problem is FPT parameterized by k.

Conjecture 3. For every fixed ` ≥ 1, Clause Deletion `-Chain-SAT is FPT pa-
rameterized by solution size.

We show that for every bipartite graph H whose complement is a circular arc
graph, the problem DL-Hom(H) can be reduced to CDCS for some ` depending
only on |H|. Somewhat more surprisingly, we are also able to show a converse
statement: for every `, there is a bipartite graph H` whose complement is a
circular arc graph such that `-CDCS can be reduced to DL-Hom(H`). That is,
the two conjectures are equivalent. Therefore, in order to settle Conjecture 2,
one necessarily needs to understand Conjecture 3 as well. Since the latter con-
jecture considers only a single problem (as opposed to an infinite family of prob-
lems parameterized by |H|), it is likely that connections with other satisfiability
problems can be exploited, and therefore it seems that Conjecture 3 is a more
promising target for future work.

Theorem 4. Conjectures 2 and 3 are equivalent.

Our Techniques: For our fixed-parameter tractability results, we use a com-
bination of several techniques (some of them classical, some of them very recent)
from the toolbox of parameterized complexity. Our first goal is to reduce DL-
Hom(H) to the special case where each list contains vertices only from one side
of one component of the (bipartite) graph H; we call this special case the “fixed
side, fixed component” version. We note that the reduction to this special case
in non-trivial: as the examples above illustrate, expressing Vertex Multiway
Cut seems to require that the lists contain vertices from more than one com-
ponent of H, and expressing Odd Cycle Transversal seems to require that
the lists contain vertices from both sides of H.

We start our reduction by using the standard technique of iterative com-
pression to obtain an instance where, besides a bounded number of precolored
vertices, the graph is bipartite.

We look for obvious conflicts in this instance. Roughly speaking, if there are
two precolored vertices u and v in the same component of G with colors a and b,

3 The notation x1 → x2 → · · · → x` is a shorthand for (x1 → x2) ∧ (x2 → x3) ∧ · · · ∧
(x`−1 → x`).
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respectively, such that either a and b are in different components of H, or a and
b are in the same component of H but the parity of the distance between u and
v is different from the parity of the distance between a and b, then the deletion
set must contain a u− v separator. We use the treewidth reduction technique of
Marx et al. [22] to find a bounded-treewidth region of the graph that contains
all such separators. As we know that this region contains at least one deleted
vertex, every component outside this region can contain at most k − 1 deleted
vertices. Thus we can recursively solve the problem for each such component,
and collect all the information that is necessary to solve the problem for the
remaining bounded-treewidth region. We are able to encode our problem as a
Monadic Second Order (MSO) formula, hence we can apply Courcelle’s Theorem
[3] to solve the problem on the bounded-treewidth region.

Even if the instance has no obvious conflicts as described above, we might
still need to delete certain vertices due to more implicit conflicts. But now we
know that for each vertex v, there is at most one component C of H and one side
of C that is consistent with the precolored vertices appearing in the component
of v, otherwise a direct conflict between two precolored vertices would arise. This
seems to be close to our goal of being able to fix a component C of H and a side
of C for each vertex. However, there is a subtle detail here: if the deleted set
separates a vertex v from every precolored vertex, then the precolored vertices
do not force any restriction on v. Therefore, it seems that at each vertex v, we
have to be prepared for two possibilities: either v is reachable from the precolored
vertices, or not. Unfortunately, this prevents us from assigning each vertex to
one of the sides of a single component. We get around this problem by invoking
the “randomized shadow removal” technique introduced by Marx and Razgon
[23] (and subsequently used in [1, 2, 18–20]) to modify the instance in such a way
that we can assume that the deletion set does not separate any vertex from the
precolored vertices, hence we can fix the components and the sides.

Note that the above reductions work for any bipartite graph H, and the
requirement that H be skew decomposable is used only at the last reduction
step: if H is a skew decomposable graph, then the fixed side fixed component
version of the problem can be solved by appealing to the inductive construction
of such graphs given by Egri et al. [7] and using bounded depth search.

If H is a bipartite graph whose complement is a circular arc graph (recall that
this class strictly contains all skew decomposable graphs), then we show how to
formulate the problem as an instance of `-CDCS (showing that Conjecture 3
implies Conjecture 2). Let us emphasize that the reduction to `-CDCS works
only if the lists of the DL-Hom(H) instance have the “fixed side” property, and
therefore our proof for the equivalence of the two conjectures (Theorem 4) needs
the reduction machinery described above.

2 Preliminaries

Given a graph G, let V (G) denote its vertices and E(G) denote its edges. If
G = (U, V,E) is bipartite, we call U and V the sides of H. Let G be a graph
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and W ⊆ V (G). Then G[W ] denotes the subgraph of G induced by the vertices
in W . To simplify notation, we often write G \W instead of G[V (G) \W ]. The
set N(W ) denotes the neighborhood of W in G, that is, the vertices of G which
are not in W , but have a neighbor in W . Similarly to [22], we define two types
of separators:

Definition 5. A set S of vertices separates the sets of vertices A and B if no
component of G \ S contains vertices from both A \ S and B \ S. If s and t are
two distinct vertices of G, then an s− t separator is a set S of vertices disjoint
from {s, t} such that s and t are in different components of G \ S.

Definition 6. Let G,H be graphs and L be a list function V (G)→ 2V (H). A list
homomorphism φ from (G,L) to H (or if L is clear from the context, from G to
H) is a homomorphism φ : G→ H such that φ(v) ∈ L(v) for every v ∈ V (G). In
other words, each vertex v ∈ V (G) has a list L(v) specifying the possible images
of v. The right-hand side graph H is called the target graph.

When the target graph H is fixed, we have the following problem:

L-Hom(H)
Input : A graph G and a list function L : V (G)→ 2V (H).
Question : Does there exist a list homomorphism from (G,L) to H?

The main problem we consider in this paper is the vertex deletion version of
the L-Hom(H) problem, i.e., we ask if a set of vertices W can be deleted from
G such that the remaining graph has a list homomorphism to H. Obviously, the
list function is restricted to V (G) \W , and for ease of notation, we denote this
restricted list function L|V (G)\W by L\W . We can now ask the following formal
question:

DL-Hom(H)
Input : A graph G, a list function L : V (G)→ 2V (H), and an integer k.
Parameters : k , |H|
Question : Does there exist a set W ⊆ V (G) of size at most k such that there
is a list homomorphism from (G \W,L \W ) to H?

Notice that if k = 0, then DL-Hom(H) becomes L-Hom(H). In the first part of
the paper, we reduce DL-Hom(H) to a more restricted version of the problem
where every list L(v) contains vertices only from one component of H, and
moreover, only from one side of that component (recall that we are assuming that
H is bipartite). We call lists satisfying this property fixed side fixed component.

DL-Hom(H)-Fixed-Side-Fixed-Component, where H is bipartite
(FS-FC(H))
Input : A graph G, a fixed side fixed component list function
L : V (G)→ 2V (H), and an integer k.
Parameters : k, |H|
Question : Does there exist a set W ⊆ V (G) such that |W | ≤ k and G \W
has a list homomorphism to H?
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We argue that it is sufficient to solve the FS-FC(H) problem:

Theorem 7. If the FS-FC(H) problem is FPT (where H is bipartite), then the
DL-Hom(H) problem is also FPT.

The main ideas in the reduction from DL-Hom(H) to FS-FC(H) are presented
below. The proof is by induction on k, i.e., we are assuming that such a reduction
is possible for k − 1. In the full version of the paper, we solve FS-FC(H) for
skew decomposable graphs, completing the proof of Theorem 1.

Theorem 8. If H is a skew decomposable graph, then the FS-FC(H) problem
is FPT.

3 The Algorithm

The algorithm proving Theorem 1 is constructed through a series of reductions.
We begin with applying the standard technique of iterative compression [25], and
this is followed by some preprocessing of the disjoint version of the compression
problem.

DL-Hom(H)-Disjoint-Compression
Input : A graph G0, a list function L : V (G0)→ 2V (H), an integer k, and a set
W0 ⊆ V (G0) of size at most k+1 such that G0\W0 has a list homomorphism
to H.
Parameters : k, |H|
Question : Does there exist a set W ⊆ V (G0) disjoint from W0 such that
|W | ≤ k and (G0 \W,L \W ) has a list homomorphism to H?

Since the techniques related to iterative compression are folklore, we just note
here that any FPT algorithm for the DL-Hom(H)-Disjoint-Compression
problem defined below translates into an FPT algorithm for DL-Hom(H) with
an additional blowup factor of O(2|W0|n) in the running time. The details of this
reduction are given in the full version of the paper. In the rest of the paper,
we concentrate on giving an FPT algorithm for the DL-Hom(H)-Disjoint-
Compression problem.

Since the new solution W can be assumed to be disjoint from W0, for any
solution set W , we must have a partial homomorphism from G0[W0] to H.
We guess all such partial list homomorphisms γ from G0[W0] to H, and we
hope that we can find a set W such that γ can be extended to a total list
homomorphism from G0[W ] to H. To guess these partial homomorphisms, we
simply enumerate all possible mappings from W0 to H and check whether the
given mapping is a list homomorphism from (G0[W0], L|W0) to H. If not we
discard the given mapping. Observe that we need to consider only |V (H)||W0| ≤
|V (H)|k+1 mappings. Hence, in what follows we can assume that we are given a
partial list homomorphism γ from G0[W0] to H.

Recall that we are assuming that H is bipartite. Since we have a fixed par-
tial homomorphism γ from W0 to H, we can propagate the consequences of this
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homomorphism to the lists of the vertices in the neighborhood of W0, as follows.
For every v ∈ W0, let Hv be the component of H in which γ(v) appears. Fur-
thermore, let Sv be the side of Hv in which γ(v) appears, and let S̄v be the other
side of Hv. For each neighbor u of v in N(W0), trim L(u) as L(u)← L(u) ∩ S̄v.
The list of each vertex in N(W0) is now contained in one of the sides of a single
component of H. We say that such a list is fixed side and fixed component. Note
that while doing this, some of the lists might become empty. We delete those
vertices from the graph, and reduce the parameter accordingly.

Recall that G0 \W0 has a list homomorphism to the bipartite graph H, and
therefore G0\W0 must be bipartite. We will later make use of the homomorphism
from G0\{W0∪N(W0)} to H, so we name this homomorphism φ0. To summarize
the properties of the problem we have at hand, we define it formally below. Note
that we will not need the graph G0 and the set W0 any more, only the graph
G0\W0, and the neighborhood N(W0). To simplify notation, we refer to G0\W0

and N(W0) as G and N0, respectively.

DL-Hom(H)-Bipartite-Compression (BC(H))
Input : A bipartite graph G, a list function L : V (G) → 2V (H), a set N0 ⊆
V (G), where for each v ∈ N0, the list L(v) is fixed side and fixed component,
a list homomorphism φ0 from (G \N0, L \N0) to H, and an integer k.
Parameters : k, |H|
Question : Does there exist a set W ⊆ V (G), such that |W | ≤ k and (G \
W,L \W ) has a list homomorphism to H?

We define two types of conflicts between the vertices of N0 (Definition 9).
Our algorithm has two subroutines, one to handle the case when such a conflict
is present, and one to handle the other case.

3.1 There is a Conflict

If a conflict exists, its presence allows us to invoke the treewidth reduction tech-
nique of Marx et al. [22] to split the instance into a bounded-treewidth part,
and into instances having parameter value strictly less than k. After solving
these instances with smaller parameter value recursively, we encode the problem
in Monadic Second Order logic, and apply Courcelle’s theorem [3]. We outline
these ideas, as follows.

Recall that the lists of the vertices in N0 in a BC(H) instance are fixed side
fixed component.

Definition 9. Let (G,L,N0, φ0, k) be an instance of BC(H). Let u and v be
vertices in the same component of G. We say that u and v are in component
conflict if L(u) and L(v) are subsets of vertices of different components of H.
Furthermore, u and v are in parity conflict if u and v are not in component
conflict, and either u and v belong to the same side of G but L(u) is a subset of
one of the sides of a component of C of H and L(v) is a subset of the other side
of C, or u and v belong to different sides of G but L(u) and L(v) are subsets of
the same side of a component of H.
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The following lemma easily follows from the definitions.

Lemma 10. Let (G,L,N0, φ0, k) be an instance of BC(H). If u and v are any
two vertices in N0 that are in component or parity conflict, then any solution W
must contain a set S that separates the sets {u} and {v}.

The result we need from [22] states that all the minimal s − t separators of
size at most k in G can be covered by a set C inducing a bounded-treewidth
subgraph of G. In fact, a stronger statement is true: this subgraph has bounded
treewidth even if we introduce additional edges in order to take into account
connectivity outside C. This is expressed by the operation of taking the torso:

Definition 11. Let G be a graph and C ⊆ V (G). The graph torso(G,C) has
vertex set C and two vertices a, b ∈ C are adjacent if {a, b} ∈ E(G) or there is
a path in G connecting a and b whose internal vertices are not in C.

Observe that by definition, G[C] is a subgraph of torso(G,C).

Lemma 12 ([22]). Let s and t be two vertices of G. For some k ≥ 0, let Ck be
the union of all minimal sets of size at most k that are s− t separators. There is
a O(g1(k) · (|E(G) + V (G)|)) time algorithm that returns a set C ⊃ Ck ∪ {s, t}
such that the treewidth of torso(G,C) is at most g2(k), for some functions g1
and g2 of k.

Lemma 10 gives us a pair of vertices that must be separated, and Lemma 12
gives us a bounded-treewidth region C of the input graph in which we know that
at least one vertex must be deleted.

Courcelle’s Theorem gives an easy way of showing that certain problems are
linear-time solvable on bounded-treewidth graphs: it states that if a problem
can be formulated in MSO, then there is a linear-time algorithm for it. This
theorem also holds for relational structures of bounded-treewidth instead of just
graphs, a generalization we need because we introduce new relations to encode
the properties of the components of G \ C.

The following lemma formalizes the above ideas to prove that the subroutine
used to handle the case when a conflict exists is correct:

Lemma 13. Let A be an algorithm that correctly solves DL-Hom(H) for input
instances in which the first parameter is at most k−1. Suppose that the running
time of A is f(k−1, |H|)·xc, where x is the size of the input, and c is a sufficiently
large constant. Let I be an instance of BC(H) with parameter k that contains a
component or parity conflict. Then I can be solved in time f(k, |H|) · xc (where
f is defined in the proof).

Proof. Let I = (G,L,N0, φ0, k) be an instance of BC(H). Let v, w ∈ N0 such
that v and w are in component or parity conflict. Then by Lemma 10, the
deletion set must contain a v − w separator. Using Lemma 12, we can find
a set C with the properties stated in the lemma (and note that we will also
make use of the functions g1 and g2 in the statement of the lemma). Most
importantly, C contains at least one vertex that must be removed in any solution,
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so the maximum number of vertices that can be removed from any connected
component of G[V (G) \ C] without exceeding the budget k is at most k − 1.
Therefore, the outline of our strategy is the following. We use A to solve the
problem for some slightly modified versions of the components of G[V (G) \ C],
and using these solutions, we construct an MSO formula that encodes our original
problem I. Furthermore, the relational structure over which this MSO formula
must be evaluated has bounded treewidth, and therefore the formula can be
evaluated in linear time using Courcelle’s theorem. The details of the proof are
deferred to the full version of the paper. 2

3.2 There is no Conflict

In the case when there is no component or parity conflict, the problem FS-FC-
IG(H) is the same as FS-FC(H) except that if the solution separates a vertex v
from N0, then we do not require that v is assigned to any vertex of H. We first
trim the lists which allows us to reduce the BC(H) problem to the FS-FC-IG(H)
problem. Then we use the “shadow removal” technique of Marx and Razgon [23]
which allows us to reduce the FS-FC-IG(H) problem to the FS-FC(H) problem.
Finally, we use the inductive construction of skew decomposable bipartite graphs
[7] which allows us to solve the FS-FC(H) problem recursively. The details about
this case are deferred to the full version of the paper.

4 Relation between DL-Hom(H) and Satisfiability
Problems

Theorem 4 establishes the equivalence of DL-Hom(H) with the Clause Deletion
`-Chain SAT (`-CDCS) problem, where H is restricted to be a graph for which
L-Hom(H) is characterized as polynomial-time solvable by Feder et al. [9], that
is, where H is restricted to be a bipartite graph whose complement is a circular
arc graph. Here we only define the `-CDCS problem, and the technical proof of
Theorem 4 can be found in the full version of the paper.

Definition 14. A chain clause is a conjunction of the form

(x0 → x1) ∧ (x1 → x2) ∧ · · · ∧ (xm−1 → xm),

where xi and xj are different variables if i 6= j. The length of a chain clause
is the number of variables it contains. (A chain clause of length 1 is a variable,
and it is satisfied by both possible assignments.) To simplify notation, we denote
chain clauses of the above form as

x0 → x1 → · · · → xm.

An `-Chain-SAT formula consists of:

– a set of variables V ;
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– a set of chain clauses over V such that any chain clause has length at most
`;

– a set of unary clauses (a unary clause is a variable or its negation).

Clause Deletion `-Chain-SAT (`-CDCS)
Input : An `-Chain-SAT formula F .
Parameter : k
Question : Does there exist a set of clauses of size at most k such that removing
these clauses from F makes F satisfiable?

5 Concluding Remarks

The list homomorphism problem is a widely investigated problem in classical
complexity theory. In this work, we initiated the study of this problem from the
perspective of parameterized complexity: we have shown that the DL-Hom(H)
is FPT for any skew decomposable graph H parameterized by the solution size
and |H|, an algorithmic meta-result unifying the fixed parameter tractability
of some well-known problems. To achieve this, we welded together a number
of classical and recent techniques from the FPT toolbox in a novel way. Our
research suggests many open problems, four of which are:

1. If H is a fixed bipartite graph whose complement is a circular arc graph, is
DL-Hom(H) FPT parameterized by solution size? (Conjecture 2.)

2. If H is a fixed digraph such that L-Hom(H) is in logspace (such digraphs
have been recently characterised in [6]), is DL-Hom(H) FPT parameterized
by solution size?

3. If H is a matching consisting of n edges, is DL-Hom(H) FPT, where the
parameter is only the size of the deletion set?

4. Consider DL-Hom(H) for target graphs H in which both vertices with and
without loops are allowed. It is known that for such target graphs L-Hom(H)
is in P if and only if H is a bi-arc graph [10], or equivalently, if and only if H
has a majority polymorphism. If H is a fixed bi-arc graph, is there an FPT
reduction from DL-Hom(H) to `-CDCS, where ` depends only on |H|?

Note that for the first problem, we already do not know if DL-Hom(H) is FPT
when H is a path on 7 vertices. (If H is a path on 6 vertices, there is a simple
reduction to Almost 2-SAT once we ensure that the instance has fixed side
lists.) Observe that the third problem is a generalization of the Vertex Mul-
tiway Cut problem parameterized only by the cutset. For the fourth problem,
we note that the FPT reduction from DL-Hom(H) to CDCS for graphs without
loops relies on the fixed side nature of the lists involved. Since the presence of
loops in H makes the concept of a fixed side list meaningless, it is not clear how
to achieve such a reduction.
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