
Tight Bounds for Planar Strongly Connected Steiner Subgraph with
Fixed Number of Terminals (and Extensions)

Rajesh Chitnis∗ MohammadTaghi Hajiaghayi† Dániel Marx‡

Abstract
Given a vertex-weighted directed graph G = (V,E) and a
set T = {t1, t2, . . . tk} of k terminals, the objective of the
STRONGLY CONNECTED STEINER SUBGRAPH (SCSS)
problem is to find a vertex set H ⊆V of minimum weight
such that G[H] contains a ti→ t j path for each i 6= j. The
problem is NP-hard, but Feldman and Ruhl (FOCS ’99;
SICOMP ’06) gave a novel nO(k) algorithm for the SCSS
problem, where n is the number of vertices in the graph
and k is the number of terminals. We explore how much
easier the problem becomes on planar directed graphs.

• Our main algorithmic result is a 2O(k logk) ·nO(
√

k) al-
gorithm for planar SCSS, which is an improvement
of a factor of O(

√
k) in the exponent over the algo-

rithm of Feldman and Ruhl.
• Our main hardness result is a matching lower bound

for our algorithm: we show that planar SCSS does
not have an f (k) · no(

√
k) algorithm for any com-

putable function f , unless the Exponential Time Hy-
pothesis (ETH) fails.

The algorithm eventually relies on the excluded grid
theorem for planar graphs, but we stress that it is not
simply a straightforward application of treewidth-based
techniques: we need several layers of abstraction to
arrive to a problem formulation where the speedup due
to planarity can be exploited. To obtain the lower bound
matching the algorithm, we need a delicate construction
of gadgets arranged in a grid-like fashion to tightly control
the number of terminals in the created instance.
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The following additional results put our upper and
lower bounds in context:

• Our 2O(k logk) · nO(
√

k) algorithm for planar directed
graphs can be generalized to graphs excluding a fixed
minor.

• In general graphs, we cannot hope for such a dra-
matic improvement over the nO(k) algorithm of Feld-
man and Ruhl: assuming ETH, SCSS in general
graphs does not have an f (k) · no(k/ logk) algorithm
for any computable function f .

• Feldman and Ruhl generalized their nO(k) algorithm
to the more general DIRECTED STEINER FOREST
(DSF) problem; here the task is to find a subgraph of
minimum weight such that for every source si there
is a path to the corresponding terminal ti. We show
that that, assuming ETH, there is no f (k) ·no(k) time
algorithm for DSF on acyclic planar graphs.

1 Introduction
The STEINER TREE (ST) problem is one of the earliest
and most fundamental problems in combinatorial opti-
mization: given an undirected graph G = (V,E) and a set
T ⊆V of terminals, the objective is to find a tree of mini-
mum size which connects all the terminals. The STEINER
TREE problem is believed to have been first formally de-
fined by Gauss in a letter in 1836. The first combinatorial
formulation of the ST problem is attributed independently
to Hakimi [23] and Levin [29] in 1971. The ST problem
is known be to NP-complete, and was in fact was one of
Karp’s original list [27] of 21 NP-complete problems. In
the directed version of the ST problem, called DIRECTED
STEINER TREE (DST), we are also given a root vertex
r and the objective is to find a minimum size arbores-
cence which connects the root r to each terminal from T .
An easy reduction from SET COVER shows that the DST
problem is also NP-complete.

Steiner-type of problems arise in the design of net-
works. Since many networks are symmetric, the directed
versions of Steiner type of problems were mostly of the-
oretical interest. However in recent years, it has been ob-
served [37, 38] that the connection cost in various net-
works such as satellite or radio networks are not sym-
metric. Therefore, directed graphs form the most suitable



model for such networks. In addition, Ramanathan [37]
also used the DST problem to find low-cost multicast
trees, which have applications in point-to-multipoint com-
munication in high bandwidth networks. We refer the
interested reader to Winter [39] for a survey on appli-
cations of Steiner problems in networks. In this paper
we consider two generalizations of the DST problem,
namely the STRONGLY CONNECTED STEINER SUB-
GRAPH and the DIRECTED STEINER FOREST problems.
In the STRONGLY CONNECTED STEINER SUBGRAPH
(SCSS) problem, given a directed graph G = (V,E) and
a set T = {t1, t2, . . . , tk} of k terminals the objective is to
find a set S ⊆ V such that G[S] contains a ti→ t j path for
each 1 ≤ i 6= j ≤ k. In the DIRECTED STEINER FOREST
(DSF) problem, given a directed graph G = (V,E) and a
set T = {(s1, t1),(s2, t2), . . . ,(sk, tk)} of k pairs of termi-
nals, the objective is to find a set S ⊆ V such that G[S]
contains an si → ti path for each 1 ≤ i ≤ k. The follow-
ing reduction shows that SCSS is a special case of DSF:
an instance of SCSS with k terminals can be viewed as an
instance of DSF with k(k−1) pairs by listing all ordered
two-tuples of the terminals. We first describe the known
results for both SCSS and DSF before stating our results
and techniques.

Previous Work. Since both DSF and SCSS are
NP-complete, one can try to design polynomial-time
approximation algorithms for these problems. An α-
approximation for DST implies a 2α-approximation for
SCSS as follows: fix a terminal t ∈ T and take the union
of the solutions of the DST instances (G, t,T \ t) and
(Grev, t,T \ t), where Grev is the graph obtained from G
by reversing the orientations of all edges. The best known
approximation ratio in polynomial time for SCSS is kε for
any ε > 0 [10]. A result of Halperin and Krauthgamer [24]
implies SCSS has no Ω(log2−ε n)-approximation for any
ε > 0, unless NP has quasi-polynomial Las Vegas al-
gorithms. For the more general DSF problem, the best
known approximation ratio is n2/3+ε for any ε > 0.
Berman et al. [3] showed that DSF has no Ω(2log1−ε n)-
approximation for any 0 < ε < 1, unless NP has a quasi-
polynomial time algorithm.

Rather than finding approximate solutions in polyno-
mial time, one can look for exact solutions in time that is
still better than the running time obtained by brute force
solutions. For both SCSS and DSF problems, brute force
can be used to check in time nO(p) if a solution of size
at most p exists: one can go through all sets of size at
most p. Recall that a problem is fixed-parameter tractable
(FPT) with a particular parameter p if it can be solved
in time f (p)nO(1), where f is an arbitrary function de-
pending only on p; see [15, 20, 35] for more background.
One can also consider parameterization by the number k
of terminals (terminal pairs); with this parameterization,
it is not even clear if there is a polynomial-time algorithm

for every fixed k, much less if the problem is FPT. It is
known that STEINER TREE on undirected graphs is FPT:
the classical algorithm of Dreyfus and Wagner [16] solves
the problem in time 3k · nO(1), where k is the number of
terminals. The running time was recently improved to
2k · nO(1) by Björklund et al. [4]. The same algorithms
work for DIRECTED STEINER TREE as well.

For the SCSS and DSF problems, we cannot expect
fixed-parameter tractability: Guo et al. [22] showed that
SCSS is W[1]-hard parameterized by the number of termi-
nals k, and DSF is W[1]-hard parameterized by the num-
ber of terminal pairs k. In fact, it is not even clear how to
solve these problems in polynomial time for small fixed
values of the number k of terminals/pairs. The case of
k = 1 in DSF is the well-known shortest path problem in
directed graphs, which is known to be polynomial time
solvable. For the case k = 2 in DSF, an O(n5) algorithm
was given by Li et al. [30] which was later improved to
O(mn+n2 logn) by Natu and Fang [34]. The question re-
garding the existence of a polynomial algorithm for DSF
when k = 3 was open. Feldman and Ruhl [19] solved this
question by giving an nO(k) algorithm for DSF, where k is
the number of terminal pairs. They first designed an nO(k)

algorithm for SCSS, where k is the number of terminals,
and used it as a subroutine in the algorithm for the more
general DSF problem.

Our Results and Techniques. Given the amount
of attention the planar version of Steiner-type problems
received from the viewpoint of approximation (see, e.g.,
[1, 2, 8, 13, 17]) and the availability of techniques for
parameterized algorithms on planar graphs (see, e.g.,
[6, 12, 21]), it is natural to explore SCSS and DSF
restricted to planar graphs. In general, one can have the
expectation that the problems restricted to planar graphs
become easier, but sophisticated techniques might be
needed to exploit planarity. Our main algorithmic result
is the following:

THEOREM 1.1. An instance (G,T ) of the STRONGLY
CONNECTED STEINER SUBGRAPH problem with |G|= n
and |T |= k can be solved in 2O(k logk) ·nO(

√
k) time, when

the underlying undirected graph of G is planar (or more
generally, H-minor-free for any fixed graph H).

This algorithm presents a major improvement over
Feldman-Ruhl algorithm for SCSS in general graphs
which runs in nO(k) time. Let us give a very high-level in-
tuition of our algorithm. The algorithm of Feldman-Ruhl
for SCSS is based on defining a game with 2k tokens and
costs associated with the moves of the tokens such that
the minimum cost of the game is equivalent to the min-
imum cost of a solution of the SCSS problem; then the
minimum cost of the game can be computed by explor-
ing a state space of size nO(k). We slightly generalize this
game by introducing supermoves, which are sequences of



certain types of moves. The generalized game still has a
state space of nO(k), but it has the advantage that we can
now give a bound of O(k) on the number of supermoves
required for the game (such a bound is not possible for
the original version of the game). We define a description
of Feldman-Ruhl game: it is essentially a running com-
mentary of the moves that occur in Feldman-Ruhl game
in the sense that we report each move as it happens. As
we can bound the length of the description by O(k), we
can guess the description (types and order of moves etc.),
with the exception of the actual location of the vertices
appearing in the description. We then need to map each
of the O(k) vertices appearing in the description to an ac-
tual vertex of the planar graph; trying all possibilities by
brute force would still need nO(k) time. This is the point
where planarity comes into play. With each description Γ

we associate a graph DΓ where the edges are added ac-
cording to the moves in the description. Since the number
of supermoves was bounded by O(k), we are able to con-
clude that there is a description of Feldman-Ruhl game
whose associated graph is also planar and has O(k) non-
isolated vertices. It is well-known that a planar graph with
O(k) vertices has treewidth O(

√
k), hence the treewidth of

the graph DΓ associated with the description is O(
√

k).
Therefore, we can use an embedding theorem given in
Marx and Klein [28] to find in time nO(

√
k) a minimum

cost mapping of the vertices in the description and obtain
a minimum-cost subgraph corresponding to the given de-
scription of the Feldman-Ruhl game. Our algorithm uses
planarity in a very robust way: the only result on planarity
we need is the planar grid minor theorem; we argue that
DΓ is planar by showing that it is a minor of the input
graph. This allows transparent generalization to the case
when the underlying undirected graph is H-minor-free.
All we need to do is to use the grid minor theorem for H-
minor-free graphs due to Demaine and Hajiaghayi [14],
which implies for any fixed graph H, every H-minor-free
graph G has treewidth O(

√
|V (G)|).

Can we get a better speedup in planar graphs than the
improvement from O(k) to O(

√
k) in the exponent of n?

Our main hardness result matches our algorithm: it shows
that O(

√
k) is best possible.

THEOREM 1.2. The STRONGLY CONNECTED STEINER
SUBGRAPH problem restricted to the case when the un-
derlying undirected graph is planar is W[1]-hard param-
eterized by the number of terminals, and cannot be solved
in time f (k)no(

√
k) unless ETH fails, where f is any com-

putable function, k is the number of terminals, and n is the
number of vertices in the instance.

This also answers the question of Guo et al. [22], who
showed the W[1]-hardness of these problems on general
graphs and left the fixed-parameter tractability status on
planar graphs as an open question. Recall that ETH

can be stated as the assumption that n-variable 3SAT
cannot be solved in time 2o(n) [25]. There are relatively
few parameterized problems that are W[1]-hard on planar
graphs [7, 9, 18, 33]. The reason for the scarcity of such
hardness results is mainly because for most problems, the
fixed-parameter tractability of finding a solution of size k
in a planar graph can be reduced to a bounded-treewidth
problem by standard layering techniques. However, in our
case the parameter k is the number of terminals, hence
such a simple reduction to the bounded-treewidth case
does not seem to be possible. Our reduction is from
the GRID TILING problem formulated by Marx [31, 33],
which is a convenient starting point for parameterized
reductions for planar problems. Two types of gadgets,
namely the connector gadget and main gadget, need to
be constructed and then they are arranged in a grid-
like structure (see Figure 2). The main technical part
of the reduction is the structural results regarding the
existence and construction of particular types of connector
gadgets and main gadgets (Lemma 7.1 and Lemma 7.2).
Interestingly, the construction of the connector gadget
poses a greater challenge: here we exploit in a fairly
delicate way the fact that the ti→ t j and the t j → ti paths
appearing in the solution subgraph might need to share
edges to reduce the weight.

We present additional results that put our algorithm
and lower bound for SCSS in a wider context. Given
our speedup for SCSS in planar graphs, one may ask if
it is possible to get any similar speedup in general graphs.
Our next result shows that the nO(k) algorithm of Feldman-
Ruhl is almost optimal in general graphs:

THEOREM 1.3. The STRONGLY CONNECTED STEINER
SUBGRAPH problem cannot be solved in time
f (k)no(k/ logk) where f is an arbitrary function, k is the
number of terminals and n is the number of vertices in the
instance, unless ETH fails.

Our proof is similar to the W[1]-hardness proof of Guo et
al. [22]. They showed the W[1]-hardness of SCSS on gen-
eral graphs parameterized by the number k of terminals by
giving a reduction from k-CLIQUE. However, this reduc-
tion uses “edge selection gadgets” and since a k-clique has
Θ(k2) edges, the parameter is increased at least to Θ(k2).
Combining with the result of Chen et al. [11] regarding the
non-existence of an f (k) · no(k) algorithm for K-CLIQUE

under ETH, this gives a lower bound of f (k) · no(
√

k) for
SCSS on general graphs. To avoid the quadratic blowup in
the parameter and thereby get a stronger lower bound, we
use the COLORED SUBGRAPH ISOMOMORPHISM (CSI)
problem as the source problem of our reduction. For this
problem, Marx [32] gave a f (k) · no(k/ logk) lower bound
under ETH, where k = |E(G)| is the number of edges
of the subgraph G to be found in graph H. The reduc-
tion of Guo et al. [22] from CLIQUE can be turned into

3



a reduction from CSI which uses only |E(G)| edge selec-
tion gadgets, and hence the parameter is Θ(|E(G)|). Then
the lower bound of f (k) · no(k/ logk) transfers from CSI to
SCSS.

Even though Feldman and Ruhl were able to general-
ize their nO(k) time algorithm from SCSS to DSF, we show
that, surprisingly, such a generalization is not possible for
our 2O(k logk) ·nO(

√
k) time algorithm for planar SCSS.

THEOREM 1.4. The DIRECTED STEINER FOREST prob-
lem on planar directed acyclic graphs (DAGs) is W[1]-
hard parameterized by the number k of terminal pairs and
there is no f (k)no(k) algorithm for any function f , unless
the ETH fails.

This implies that the Feldman-Ruhl algorithm for DSF
is optimal, even on planar directed acyclic graphs. As
in out lower bound for planar SCSS, the proof is by re-
duction from an instance of k× k GRID TILING prob-
lem. However, unlike in the reduction to SCSS where
we needed O(k2) terminals, the reduction to DSF needs
only O(k) pairs of terminals (see Figure 4). Since the
parameter blowup is linear, the f (k) · no(k) lower bound
for GRID TILING from [31] transfers to DSF. All our
hardness results are shown for edge versions with integer
weights. A simple reduction shows that the unweighted
vertex version is more general than the integer weighted
edge version, and hence all our results also hold for the
unweighted vertex versions.

Finally, instead of parameterizing by the number of
terminals, we can consider parameterization by the num-
ber of edges/vertices. Let us briefly and informally dis-
cuss this parameterization. Note that the number of termi-
nals is a lower bound on the number of edges/vertices of
the solution (up to a factor of 2 in the case of DSF param-
eterized by the number of edges), thus fixed-parameter
tractability could be easier to obtain by parameteriz-
ing with the number of edges/vertices. However, our
lower bound for SCSS or general graphs (as well as the
W[1]-hardness of Guo et al. [22]) actually proves hard-
ness also with these parameterizations, making fixed-
parameter tractability unlikely. On the other hand, it fol-
lows from standard techniques that both SCSS and DSF
are FPT on planar graphs when parameterizing by the
number k of edges/vertices in the solution. The main ar-
gument here is that the solution is fully contained in the
k-neighborhood of the terminals, whose number is O(k).
It is known that the k-neighborhood of O(k) vertices in a
planar graph has treewidth O(k), thus one can use stan-
dard techniques on bounded-treewidth graphs (dynamic
programming or Courcelle’s Theorem). Alternatively, at
least in the unweighted case, one can formulate the prob-
lem as a first order formula of size depending only on k
and then invoke the result of Frick and Grohe [21] stating
that such problems are FPT. Therefore, as fixed-parameter

tractability is easy to establish on planar graphs, the chal-
lenge here is to obtain optimal dependence on k. One
would expect a subexponential dependence on k (e.g.,
2O(
√

k) or kO(
√

k)) at least for SCSS, but this is not yet fully
understood even for undirected STEINER TREE [36]. A
slightly different parameterization is to consider the num-
ber k of nonterminal vertices in the solution, which can be
much smaller than the number of terminals. This leads to
problems of somewhat different flavor, see, e.g., [26].

2 Feldman-Ruhl Algorithm for SCSS
In this section we give a self-contained description of
Feldman-Ruhl algorithm for SCSS [19]. They consider
the two connectivity problems of SCSS and DSF. We first
define the two problems below:

k-STRONGLY CONNECTED STEINER SUBGRAPH
(k-SCSS)
Input : A directed graph G = (V,E) and a set of
terminals T = {t1, t2, . . . , tk}.
Question : Find the smallest H ⊆ V (G) such that
T ⊆ H and G[T ] is strongly connected.

Feldman and Ruhl [19] give an algorithm for k-
SCSS which runs in O(mn2k−3 +n2k−2 logn) time, where
|V (G)| = n and |E(G)| = m. The SCSS problem is more
well-known as a special case of the DSF problem:

k-DIRECTED STEINER FOREST (k-DSF)
Input : A directed graph G = (V,E) and a set of
terminal pairs T = {(s1, t1),(s2, t2), . . . ,(sk, tk)}.
Question : Find the smallest H ⊆V (G) such that G[H]
has a si→ ti path for each i ∈ [k].

The following reduction shows that SCSS is a special
case of DSF: an instance of SCSS with k terminals can
be viewed as an instance of DSF with k(k− 1) pairs by
listing all ordered two-tuples of the terminals. Feldman
and Ruhl [19] give an algorithm for k-SCSS which runs in
O(mn2k−3+n2k−2 logn) time. Their algorithm also works
for vertex weighted and edge weighted versions of the
problem. For the sake of simplicity we only describe the
algorithm for the unweighted vertex version.

2.1 Legal Token Moves Let the set of terminals for
SCSS be T = {t1, t2, . . . , tk}. For ease of notation, we
set q := k− 1 and r = tk. Any solution H for SCSS
contains paths from each of t1, t2, . . . , tk−1 to r. These
paths together can be chosen to form an in-tree Tin rooted
at r. Similarly H must also contain paths from r to
each of t1, t2, . . . , tk−1: these paths together can be chosen
to form an out-tree Tout rooted at r. Furthermore, any
subgraph H which is the union of such an in-tree and an
out-tree rooted at r is a solution for SCSS. However, a



crucial feature of the problem is that these two trees can
share edges/vertices, thus taking the union of an optimum
in-tree and an optimum out-tree is not necessarily an
optimum solution.

The algorithm can be visualized as follows: we have
two types of tokens, namely F-tokens and B-tokens. Place
a “F-token” and a “B-token” at each ti for i ∈ [q]. The
F-tokens move forward along edges of the in-tree Tin
towards r. The B-tokens move backward along edges of
the out-tree Tout towards r. The set of tokens left at any
stage are called “alive” tokens. Since tokens of the same
type trace out a tree, as soon as two tokens of the same
type arrive at a common vertex we can merge them into
one token. This can also be viewed as one token “eating
up” the other token, which then becomes dead. Therefore
it is enough to describe the pair of sets 〈F,B〉which denote
the set of nodes occupied by the F-tokens and B-tokens,
respectively. Since there are at most q tokens of each type,
the sets F,B have size at most q. Let

( V
≤q

)
denote the set

of subsets of V (G) of size at most q. We now define the
set of “legal” token moves in Table 1, and show that a
minimum solution corresponds to a solution for SCSS.

Cost of flips. There is a technical issue about the cost
of a flipping move that is not explained in detail in [19].
Initially, [19] defines the cost c of the move as the size of
the set M of vertices of a shortest walk from f to b in G
going through all vertices in F ′ ∪B′, excluding f ,b and
vertices in F ′∪B′. The problem is that it is not clear how
to find a walk minimizing this definition of cost. However,
one can try all possible ordering of the tokens in F ′ ∪B′,
and find a shortest walk that visits the tokens in this order.
Then we can define the cost of the walk as its lengths
plus one (i.e., the number of visited vertices, possibly with
repetitions), minus the size of the set { f ,b}∪F ′∪B′. We
will denote the cost as c1-cost and c2-cost if the cost of
a flip is interpreted these two ways, respectively. Clearly,
the c1-cost is at most the c2-cost. It turns out that these two
costs are the same in optimum solutions (see Lemmas 2.1
and 2.2 below).

Figure 1: Flipping move between f and b: the black nodes
form the set M and tokens F ′∪B′ need to be “picked up”.

Intuition about the legal moves. A single move for
an F-token corresponds to that F-token moving forward
along an edge. Similarly, a single move for a B-token
corresponds to that B-token moving backward along an

edge. We charge only if the new vertex (where the token
has now moved to) does not already have a token on
it. The flipping move allows F-tokens and B-tokens to
pass each other. The two outer tokens are an F-token
f and a B-token b (see Figure 1). In between the outer
tokens f and b, there are other F-tokens moving forward
along the edges and trying to pass b, and B-tokens moving
backward along edges and trying to pass f . These tokens,
which occupy the vertex sets F ′ and B′ respectively, are
picked up during the flipping move.

Building the game graph G̃. Let Ṽ =
( V
≤q

)
×
( V
≤q

)
.

Build a game graph G̃ = (Ṽ , Ẽ), where Ẽ is the set of
all legal token moves. We assign weights to the edges
of G̃ according to the costs of the corresponding legal
moves. Consider a single move for an F-token given
by 〈F,B〉 c−→ 〈(F \ u)∪{v},B〉. Its cost can be computed
easily: it is 1 if v /∈ F ∪B, and 0 otherwise. Similarly,
the cost of a single move for a B-token can be computed
easily. On the other hand, to compute the cost of a flipping
move between f and b, we need to find the size of the
shortest f ; b walk in G that passes through all vertices
in F ′ ∪B′. The main observation is the following: if we
know the order in which the vertices from F ′ ∪B′ appear
on the f ; b walk, then the shortest walk is just the
concatenation of shortest paths between two consecutive
nodes in the ordering. The number of tokens is at most
2q and hence |F ′ ∪B′| ≤ 2q− 2. We try all the at most
(2q−2)! permutations of vertices from F ′∪B′, and select
the one that gives the shortest walk. In this way, we can
build the game graph G̃ and assign weights to its edges.

2.2 Algorithm for SCSS Recall that initially each of
the vertices t1, t2, . . . tq has an F-token and a B-token as
well. Finally we want all the F-tokens and all the B-tokens
to reach the vertex r via legal moves. This suggests the
following algorithm for SCSS.

Algorithm 1 Feldman-Ruhl Algorithm for SCSS

1: Construct the game graph G̃ = (Ṽ , Ẽ), where Ẽ is the
set of all legal token moves.

2: Find a minimum weight path P in G̃ from
({t1, t2, . . . , tq},{t1, t2, . . . , tq}) to (r,r).

3: Let H be the union of {t1, t2, . . . , tq,r} and all nodes
given by P (including those in sets M for flipping
moves).

4: return H

To show the correctness, the main idea is that when
we move the tokens, we only pay a cost when a new vertex
is encountered. The following two lemmas demonstrate
the correctness of Algorithm 1:

LEMMA 2.1. (Lemma 3.1 from [19]) If there is a move
sequence from ({t1, t2, . . . , tq},{t1, t2, . . . , tq}) to (r,r) of
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Legal Token Moves for SCSS

1. Single Moves for F-tokens: For each edge (u,v) ∈ E and all token sets F,B ∈
( V
≤q

)
such that u ∈ F , we

have the move
〈F,B〉 c−→ 〈(F \u)∪{v},B〉.

The cost c of this move is 1 if v /∈ F ∪B and 0 otherwise.
2. Single Moves for B-tokens: For each edge (u,v) ∈ E and all token sets F,B ∈

( V
≤q

)
such that v ∈ B we

have the move
〈F,B〉 c−→ 〈F,(B\ v)∪{u}〉.

The cost c of this move is 1 if u /∈ F ∪B and 0 otherwise.
3. Flipping: For every pair f ,b and vertex sets F,B,F ′ ⊂ F,B′ ⊂ B such that

• f ∈ F and F ∈
( V
≤q

)
,

• b ∈ B and B ∈
( V
≤q

)
, and

• there is an f ; b walk in G going through all vertices in F ′∪B′,

we have the move
〈F,B〉 c−→ 〈(F \ ({ f}∪F ′)∪{b}),(B\ ({b}∪B′)∪{ f})〉.

The cost c of this move is discussed below.

Table 1:

c1-cost c, then there is a solution H for k-SCSS of size
≤ c+q. Moreover given the move sequence the subgraph
H can be easily constructed.

The proof of Lemma 2.1 follows easily from the definition
of the legal moves for the game. The converse statement
saying that there is a move sequence corresponding to an
optimum solution is more surprising and its proof is more
involved.

LEMMA 2.2. (Lemma 3.2 from [19]) For any minimal
solution H∗ to SCSS there is a move sequence from
({t1, t2, . . . , tq},{t1, t2, . . . , tq}) to (r,r) of c2-cost at most
|H∗|−q.

Note that having c1-cost in Lemma 2.1 (instead of c2-
cost) makes it stronger and having c2-cost in Lemma 2.2
(instead of c1-cost) makes it stronger. Lemmas 2.1 and
2.2 together imply that if a move sequence minimizes
the c2-cost, then its c1-cost is the same as its c2-cost.
Henceforth, we define the cost as the c2-cost and note that
for minimum move sequences the two functions give the
same value. It follows that all the flips of a minimum
move sequence should have the same cost under both
interpretations:

PROPOSITION 2.1. For every move sequence from
({t1, t2, . . . , tq},{t1, t2, . . . , tq}) to (r,r) having minimum
cost, every flip in the move sequence has the following
proprety: the walk of minimum length visiting F ′∪B′ is a
simple path.

The crucial point in the proof of Lemma 2.2 is
that when moving the tokens, we “pay” each time we
encounter a new vertex. However, it can happen that we
pay twice for a vertex if a token enters the vertex, then
leaves it, then later some token visits the vertex again.
Feldman and Ruhl are able to avoid this situation by
enforcing the following rule:

Once a token moves off a vertex, no other token
will ever move to that vertex again. (*)

They say that a vertex becomes “dead” once a token
moves from it, so that tokens are allowed to only move
to vertices in H∗ that are “alive.” We need to clarify
what we mean by “moving off” in a flipping move. We
imagine that tokens f and b change places by following
the walk, hence we consider all vertices of M becoming
dead. However, Feldman and Ruhl do not state explicitly
whether or not the original locations of f and b become
dead in a flipping move. Observation of [19, Claim 3.4]
shows that we may make f and b dead (the proof of Claim
3.4 works even in the case when some token f ′ requires
b itself; in fact, the first step of the proof is to conclude
that f ′ requires b). Therefore, we interpret Property (*) in
such a way that the locations of f and b also become dead
in a flipping move. An important consequence is that a
vertex v can participate in at most one flip, as it becomes
dead after the first flip and then no other token can move
to it with a flip.

For the analysis of the running time of Algorithm 1,
the interested reader is referred to Section 6.1 of [19].



3 Another Look at Moves of the Feldman-Ruhl game
In this section, we introduce notation describing the
moves of the Feldman-Ruhl game in more detail. This
will allow us to prove our 2O(k2) · nO(

√
k) algorithm

for SCSS on planar (and more generally H-minor-free)
graphs. Recall that the legal moves for SCSS are defined
in Section 2.1.

3.1 The Flipping Move For ease of notation, we call
the Flipping move as Flip( f ,b,u,v,F ′,B′), which is used
to denote that the forward token f located at v flips with
the backward token b located at v, and the sets of vertices
F ′ and B′ that denote the locations of the forward and
backward tokens, respectively, are picked up. Let P be
the shortest u→ v walk in G which goes through all the
vertices where the tokens from F ′ ∪B′ are located. Then
the cost of this move is the number of vertices on P which
do not have a token from the set F ′∪B′∪{ f ,b}.

We have two cases: either the set F ′∪B′ is empty, or
not.

• If F ′ ∪ B′ = /0, then we call this move an
EmptyFlip( f ,b,u,v) move.
• Otherwise F ′ ∪ B′ 6= /0, and we call this

move a NonEmptyFlip( f ,b,u,v,F ′,B′)
move. In particular, we use NonEmp-
tyFlip( f ,b,u,v,g1,g2, . . . ,g`,w1,w2, . . . ,w`) to
denote the NonEmptyFlip that picks up the tokens gi
at vertex wi for each 1≤ i≤ `.

3.2 Single Moves for F and B tokens We define vari-
ous types of possible moves of the type Single Move for
an F-token. The discussion for B tokens is similar, and
we do not repeat it again. For ease of notation, we call
the “Single Move for F-token” as Forward( f ,u,v) if the
forward token f located at u moves forward to the ver-
tex v along the edge (u,v) in this move. Similarly we call
the “Single Move for B-token” as Backward(b,u,v) if the
backward token b located at vertex u moves to vertex v
backward along the edge (v,u) in this move.

For the Forward( f ,u,v) move, the cost of this move
is 1 if there is a token from F ∪ B present on v, and 0
otherwise. We have three cases:

• If there was no token at v, then the cost of this
move is 1. We call this move a SingleFor-
wardAlone( f ,u,v) move since at the end of this
move the token originally located at f does not en-
counter any token.
• If there was no forward token at v, but there was

a backward token b, then again the cost of this
move is 0. We call this move a SingleForward-
Meet( f ,u,v,b) move since after this move the for-
ward token f meets the backward token b at the ver-

tex v. We follow the convention that every SingleFor-
wardMeet is followed by an EmptyFlip (of length 0)
at vertex v; as this does not move the tokens at all,
it does not influence the solution. This convention
simplifies some of the arguments later in the proof of
Theorem 5.1.

• If there was a forward token f ′ and a backward
token b at v, then the cost of this move is 0.
We call this move a SingleForwardAbsorbAnd-
Meet( f ,u,v, f ′,b) move since after this move the
forward token f absorbs the forward token f ′. How-
ever, in this case we do not require an EmptyFlip of
length 0 to occur.

• If there was a forward token f ′ (but no backward) at
v, then the cost of this move is 0. We call this move a
SingleForwardAbsorb( f ,u,v, f ′) move since after
this move the forward token f absorbs the forward
token f ′.

Similarly, we can also define the SingleBack-
wardAlone move, the SingleBackwardAbsorb move, and
the SingleBackwardMeet move.

4 A Bird’s-eye View of the Feldman-Ruhl game
In this section, we take a bird’s-eye view of the Feldman-
Ruhl game for SCSS. More formally, we introduce new
“supermoves” for their game. The Feldman-Ruhl game
takes place in a sequence of moves: each “supermove”
is nothing but a collection of contiguous moves from the
Feldman-Ruhl game. The advantage is that we are able to
show that there is a solution for the Feldman-Ruhl game
that can be partitioned into O(k) supermoves, where k is
the number of terminals in the SCSS instance. We now
define the supermoves. Let H be an optimum solution of
the Feldman-Ruhl game satisfying (*), and let the moves
in H be M1,M2, . . . ,Mp.

4.1 Forward, Backward and Flip Supermoves First,
we define the supermoves associated with forward tokens.
Let f be a forward token. Consider a contiguous sequence
of moves Hi1 ,Hi2 , . . . ,Hi j−1 ,Hi j (with i1 < i2 < .. . < i j)
such that

• His is the move SingleForwardAlone( f ,vs,vs+1) for
each 1≤ s≤ i j−1.

• Hi j is a single move involving f which takes f from
vi j to vi j+1

• The only moves between Hi1 and Hi j involving f are
Hi1 ,Hi2 , . . . ,Hi j−1 ,Hi j

Then we can delete the moves Hi1 ,Hi2 , . . . ,Hi j−1 . Depend-
ing on the type of the move Hi j , we replace it with a “su-
permove” M as follows:

• If there was no token at vi j+1 , then the cost of M
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is i j. We call M as the ForwardAlone( f ,vi1 ,vi j+1)
supermove, and set involved(M) = { f}.
• If there was a backward token b (but no forward

token) at the vertex vi j+1 , then the cost of M is
i j−1. We call this the ForwardMeet( f ,vi1 ,vi j+1 ,b)
supermove, and set involved(M)= { f ,b}. For ease
of notation, we say that an EmptyFlip (of length 0)
occurs at this point, freeing the tokens f ,b to move
along their subsequent paths.
• If there was both a forward token f ′ and a back-

ward token b at the vertex vi j+1 , then the cost of M
is i j − 1 and f absorbs the token f ′. We call this
the ForwardAbsorbAndMeet( f ,vi1 ,vi j+1 , f ′,b) su-
permove, and set involved(M) = { f , f ′,b}. How-
ever, in this case we do not require an EmptyFlip of
length 0 to occur.

• If there was a forward token f ′ (but no backward
token) at the vertex vi j+1 , then the cost of M is
i j − 1 and f absorbs the token f ′. We call this the
ForwardAbsorb( f ,vi1 ,vi j+1 , f ′) supermove, and set
involved(M) = { f , f ′}.

We also define corner(M) = {vi1 ,vi j+1} and
internal(M) = {vi2 ,vi3 , . . . ,vi j}.

Similarly, we can also define the BackwardAlone
supermoves, the BackwardAbsorb supermoves, the
BackwardAbsorbAndMeet and the BackwardMeet su-
permoves. By Alone supermoves, we refer to the union
of BackwardAlone supermoves and the ForwardAlone
supermoves. The Absorb supermoves, AbsorbAndMeet
and Meet supermoves are also defined similarly.

The NonEmptyFlip moves defined in Section 3.1 are
also included in the set of supermoves1.

If M = NonEmptyFlip( f ,b,u,v,g1,g2, . . . ,g`,
w1,w2, . . . ,w`), then we define

• involved(M) = { f ,b,g1,g2, . . . ,g`},
• corners(M) = {u,v}, and
• internal(M) = P \ {u,v,w1,w2, . . . ,w`}, where P

is a shortest u→ v walk in G passing through each
wi.

4.2 MultipleFlips Our final supermove is called Multi-
pleFlip. Let H be an optimum solution of the Feldman-
Ruhl game satisfying (*), and let the moves in H be
H1,H2, . . .H`.

DEFINITION 4.1. Let f and b be forward and backward
tokens, respectively. Consider a consecutive sequence of
moves Hi,Hi+1, . . . ,H j−1,H j such that

1The NonEmptyFlip is considered both as a move and as a super-
move.

• There exists i ≤ s ≤ j such that Hs is an EmptyFlip
involving f and b (potentially of length 0)

• For each i ≤ r ≤ j, the move Hr is of one of the
following types:

– EmptyFlip move involving f and b.
– SingleForwardAlone move involving f .
– SingleBackwardAlone move involving b.
– SingleForwardMeet or SingleBackwardMeet

move involving both f and b.2

Let v1,w1 be the initial locations of f ,b before Hi occurs
are v1,w1 respectively. Similarly, let the final locations
of f ,b after Hi occurs are v2,w2 respectively. Then we
define M= MultipleFlip( f ,b,v1,v2,w1,w2) as the super-
move which is given by the sequence of consecutive moves
Hi,Hi+1, . . . ,H j. We say that the Hi,Hi+1, . . . ,H j are the
components of M.

Note that an EmptyFlip is a special case of a Multi-
pleFlip with just one component which is an EmptyFlip,
and also v1 = w2 and v2 = w1. For the supermove M =
MultipleFlip ( f ,b,v1,v2,w1,w2), we define the following
sets:

• involved(M) = { f ,b}
• corners(M) = {v1,v2,w1,w2}
• internal(M) =

(⋃
H∈M corner(H) ∪

internal(H)
)
\ {v1,v2,w1,w2}, where H ∈ M

means that H is a component of the MultipleFlip M.

The following property of a MultipleFlip will be
helpful for our algorithm:

DEFINITION 4.2. Let M be given by MultipleFlip
( f ,b,v1,v2,w1,w2). Then corners(M) is given by
{v1,v2,w1,w2}. We say that M is a clean MultipleFlip
if either

• |corners(M)|= 2, or
• |corners(M)| ≥ 3 and internal(M) is connected

(in the undirected sense), and adjacent to every
vertex of corner(M)

Note that if M is an EmptyFlip, then |corners(M)|=
2 and it is clean by definition.

4.3 List of all supermoves The final set of supermoves
that we consider are the following:

Final Set of Supermoves

• Alone, Absorb, AbsorbAndMeet and Meet
• NonEmptyFlip
• MultipleFlip

2Recall from Section 4.1 that every SingleForwardMeet or Single-
Backward Meet move must be followed by an EmptyFlip of length 0.



5 Description Associated with a Partition of a
Solution to the Feldman-Ruhl Game

Consider a solution H for the Feldman-Ruhl game and a
partition P(H) of H into supermoves. Then the descrip-
tion ΓP(H) associated with P(H),is essentially a running
commentary of the game as it happens, i.e., we list all the
supermoves which form the partition P(H).

First there are k entries of the form Location( fi,bi,vi)
for 1 ≤ i ≤ k which tell that the initial location of the
tokens fi,bi is vertex vi of G. Note that the vertices
v1,v2, . . . ,vk are given in the input instance. Then there
is a sequence of entries where each entry has one of the
following types:

1. ForwardAlone( f ,w1,w2): The forward token f went
from vertex w1 to w2 in G and then did not meet any
other token at w2.

2. BackwardAlone(b,w1,w2): The backward token b
went from vertex w2 to w1 in G and then did not meet
any other token at w1.

3. ForwardAbsorb( f1,w1,w2, f2): The forward token
f1 went from vertex w1 to w2 in G and then absorbed
another forward token f2.

4. BackwardAbsorb(b1,w2,w1,b2): The backward to-
ken b1 went from vertex w2 to w1 in G and then ab-
sorbed another backward token b2.

5. ForwardMeet( f ,w1,w2,b): The forward token f
went from w1 to w2 in G, and then performed an
EmptyFlip (of length 0) with a backward token b at
w2.

6. BackwardMeet(b,w2,w1, f ): The backward token b
went from w2 to w1 in G, and then performed an
EmptyFlip (of length 0) with a forward token f at
w1.

7. ForwardAbsorbAndMeet( f1,w1,w2, f2,b): The for-
ward token f1 went from vertex w1 to w2 in G and
then absorbed another forward token f2 at w2, where
a backward token b was also present.

8. BackwardAbsorbAndMeet(b1,w2,w1,b2, f ): The
backward token b1 went from vertex w2 to w1 in G
and then absorbed another backward token b2 at w1,
where a forward token f was also present.

9. NonEmptyFlip( f ,b,v1,v2,e1,e2, . . . ,e`,
w1,w2, . . . ,w`): The tokens f and b were initially
located at vertices v1 and v2 respectively in G. They
then made a NonEmpty flip picking up the tokens ei
which was located at vertex wi in G along the way, in
that order.

10. MultipleFlip( f ,b,v1,v2,w1,w2): The tokens f ,b
were located initially at vertices v1,w1 in G respec-
tively. They then participated in a MultipleFlip and
finally were located at vertices v2,w2 respectively.

The next theorem is the main combinatorial result
that we use in the algorithm. It justifies introducing
the supermoves: it shows that there is a solution and a
partition of this solution into O(k) supermoves.

THEOREM 5.1. [?]3 There is an optimum solution H∗ of
the Feldman-Ruhl game and a partition P′(H∗) of this
solution into supermoves such that the total number of
entries (i.e., the number of supermoves) in the description
of P′(H∗), say X∗label, are O(k). Furthermore, every
MultipleFlip supermove is clean.

As the proof of Theorem 5.1 requires a deep analysis of
the game, we defer it to the full version of the paper due
to lack of space. We observe here the following simple
property of an optimum solution:

LEMMA 5.1. Let M,M′ be any two supermoves of
P′(H∗). Then internal(M)∩internal(M′) = /0.

Proof. By definition, each vertex in the set internal(M)
is visited by some token. Hence Property (*) implies that
if M and M′ are any two supermoves then internal(M)∩
internal(M′) 6= /0.

5.1 Unlabeled Descriptions In this section, we con-
sider unlabeled descriptions, i.e., descriptions where we
replace the vertices in the descriptions by variables (which
will always be denoted by greek letters). Recall that we
have 2k tokens. We now show that it is enough to consider
O(k) variables to represent the unlabeled descriptions.

COROLLARY 5.1. The number of vertices of G (with
multiplicities) listed over all entries of the description
X∗label is O(k).

Proof. By Theorem 5.1, we know that the description
has O(k) entries. We now refer to Section 5. For the
Alone, Absorb, Meet and MultipleFlip type of entries in
the description we use a O(1) number of vertices of G per
entry. For the NonEmptyFlip case we might add some
more vertices in the description (like the w1,w2, . . . ,w`)
but their total number is bounded by 2k, as each such
vertex is picked up in the NonEmptyFlip and hence can
occur in only one such entry. Therefore, the total number
of vertices of G (with multiplicities) listed over all entries
of the description X∗label is O(k).

Our goal is to guess the description X∗label. We will
do it as follows: first guess an unlabeled description, and
then guess a labeling of the vertices of G to the variables
of the unlabeled description. The next lemma bounds
the number of distinct unlabeled descriptions having O(k)
entries.

3The proofs of results with [?] have been deferred to the full version
due to lack of space.
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LEMMA 5.2. The number of distinct unlabeled descrip-
tions having O(k) entries is 2O(k logk)

Proof. For an unlabeled description, we call each of the
following as a bit of the description: the names of the
supermoves, the listed variables or the listed tokens.

Referring to Section 5, Each supermove (except
NonEmptyFlip) contains O(1) variable bits. In addition to
two variables corresponding to the endpoints of the flip,
each NonEmptyFlip also lists several internal variables,
each of which corresponds to a token that gets picked up
in the NonEmptyFlip. Hence the total number of internal
variable bits listed by the NonEmptyFlip is at most 2k.
Since the number of NonEmptyFlips is upper bounded by
the total number of supermoves, which is O(k), the num-
ber of non-internal variable bits listed by NonEmptyFlips
is also upper bounded by 2×O(k)=O(k). Hence the total
number of variable bits is O(k)+ 2k+O(k) = O(k). By
Corollary 5.1, it is enough to consider only O(k) variables
in our unlabeled descriptions. Hence, the total number of
guesses for the variable bits is kO(k).

We have O(1) = 10 choices for the type of the
supermove. Since we want to enumerate only unlabeled
descriptions with O(k) entries, the number of choices for
this is 10O(k). Each supermove (except NonEmptyFlip)
lists at most 3 tokens. Any non-internal token listed in a
NonEmptyFlip does not appear in any other supermove,
and hence their number is upper bounded by the total
number of tokens which is 2k. Also we consider only
unlabeled descriptions with O(k) entries. Hence the total
number of token bits is O(k). Since there are 2k tokens,
the number of choices for the token bits is (2k)O(k).

Therefore, the total number of distinct unlabeled de-
scriptions with O(k) entries is 10O(k)× (2k)O(k)× kO(k) =
2O(k logk).

Let the set of all unlabeled descriptions be X . It is
easy to see that we can enumerate all elements of X in
time |X | = 2O(k logk). We now show how to check if an
unlabeled description X ∈ X is valid or not:

DEFINITION 5.1. Consider an unlabeled description X ∈
X . We say that X is valid if the following holds:

• The first k entries of X are given by
Location( fi,bi,αi) for i ∈ [k] such that αi 6= α j
for each i 6= j.
• For every token f , the variables assigned to f in its

current supermove is the same variable that ended up
being assigned to f at the end of the last supermove
in X involving f (if it exists).
• Any token which is absorbed (in an Absorb or

AbsorbAndMeet supermove) or picked up (in a
NonEmptyFlip) supermove cannot be involved in any
subsequent move in X.

• At the end of all the supermoves in X, all the alive
tokens are assigned to the variable αk.

Given an unlabeled description X ∈ X , it is easy to
see that we can check whether X is valid in O(k) time by
simply keeping a list of alive tokens are their currently
assigned variables. Hence, in 2O(k logk) time, we can build
the set X ′ of valid unlabeled descriptions.

5.2 Directed Graphs Associated with Descriptions
With each valid unlabeled description X ∈ X ′, we can
associate a directed graph DX = (VE ,EX ). The vertex set
VX contain all the variables listed in X , plus at most one
additional variable for each MultipleFlip. By Theorem 5.1
and Corollary 5.1, we have that |VX |= O(k). The edge set
EX is defined in Table 2.

By the way we defined this directed graph, if the
description corresponds to a solution in a graph G, then
the graph of the description is a minor of G (and in
particular, it is planar if G is planar).

THEOREM 5.2. Let X∗label be as in Theorem 5.1 and let
X∗ be the corresponding unlabeled description. The
underlying undirected graph of the directed graph DX∗ is
a minor of the underlying undirected graph of G.

Proof. We construct an undirected graph G′ from the
underlying undirected graph of G the following way. For
every supermove, we do the following:

• In the first 8 cases above, there are two corner
vertices. Either the two corner vertices are adjacent
in G, or the internal vertices of the supermove give
a path between them. In the latter case, we contract
this path to make the two corner vertices adjacent.

• In the case of a NonEmptyFlip, by Proposition 2.1,
there is a simple v1→ w1→ . . .w`→ v2 path on the
internal vertices of the supermove. Then we contract
subpaths of this path to make v1w1 . . .w`v2 a path
(i.e., to make these vertices adjacent).

• In the case of a MultipleFlip with two corner vertices,
there is a path on the internal vertices between the
two corner vertices (note that the case v1 = v2 and
w1 = w2 need not be considered, since then the two
tokens do not move at all). As in the first case, we
contract this path to make the two corners adjacent.

• In the case of a MultipleFlip with at least three corner
vertices, Theorem 5.2 implies that this MultipleFlip
is clean, that is, the internal vertices induce a con-
nected graph that is adjacent to all corners. Then we
contract the internal vertices to a single vertex.

By Lemma 5.1, no two supermoves of P′(H∗) share any
internal vertex, thus these contractions are indepen-
dent. It is easy to see now that the underlying undirected



The edge set EX for the digraph DX corresponding to a valid unlabeled description X

1. ForwardAlone( f ,α,α ′): Add the edge (α,α ′).
2. BackwardAlone(b,α,α ′): Add the edge (α ′,α).
3. ForwardAbsorb( f1,α,α ′, f2): Add the edge (α,α ′).
4. BackwardAbsorb(b1,α,α ′,b2): Add the edge (α ′,α).
5. ForwardMeet( f ,α,α ′,b): Add the edge (α,α ′).
6. BackwardMeet(b,α,α ′, f ): Add the edge (α ′,α).
7. ForwardAbsorbAndMeet( f ,α,α ′, f ′,b): Add the edge (α,α ′).
8. BackwardAbsorbAndMeet(b,α,α ′,b′, f ): Add the edge (α ′,α).
9. NonEmptyFlip( f ,b,α,α ′,e1,e2, . . . ,e`,γ1,γ2, . . . ,γ`): Add the path α → γ1→ γ2→ . . .→ γ`→ α ′).

10. MultipleFlip( f ,b,α,α ′,γ,γ ′): Let L be the (multi)set {α,α ′,γ,γ ′}

• If |L|= 2 then we know that α = α ′ and γ = γ ′ cannot occur since in this case both tokens do not
move at all. So the only two cases are:

– If α = γ and α ′ = γ ′, then add the edge (α,α ′) and color it red.
– If α = γ ′ and α ′ = γ , then add the edge (α,α ′) and color it blue.

• If |L| ≥ 3 then introduce a new vertex δ , and add the edges E(δ ,1) = (δ ,α),E(δ ,2) =
(δ ,α ′),E(δ ,3) = (δ ,γ) and E(δ ,4) = (δ ,γ ′)

Table 2:

graph of DX∗ is a subgraph of G′. In particular, for every
MultipleFlip with at least three corner vertices, the newly
introduced vertex δ can be mapped to the vertex obtained
by contracting the internal vertices of the supermove.

Since |VX | = O(k), a result of Demaine and Haji-
aghayi [14] implies that the treewidth of the underlying
undirected graph of DX∗ is O(

√
k). Therefore, for ev-

ery valid unlabeled description X ∈ X ′, we check if the
treewidth of the underlying undirected graph of DX is
O(
√

k) by using the constant factor approximation algo-
rithm of Bodlaender et al. [5], which runs in 2O(

√
k) · k

time. Discard all those unlabeled descriptions X ∈ X ′ for
which this does not hold, and let X ′′ be the resulting set
of unlabeled descriptions. Note that we can construct X ′′

in |X ′|×2O(
√

k)× k = 2O(k logk) time.

6 Guessing a Labeling for an Unlabeled Description
using Dynamic Programming

For each valid unlabeled description X ∈ X ′′, the digraph
DX comes with k special variables, say α1,α2, . . . ,αk, that
must be mapped to the vertices v1,v2, . . . ,vk where the
terminals are placed in G. We try to map the remaining
vertices of DX to elements of U = V ∪V 4 so that the
unlabelled description coincides with X∗label. For this
purpose, we use the following theorem due to Klein and
Marx [28]:

THEOREM 6.1. Let D be a directed graph, U a set of
elements, and functions cv : V (D)×U → Z+∪{∞}, ce :
V (D)×V (D)×U ×U → Z+∪∞. In time |U |O(tw(D)) we

can find a mapping φ : V (D)→U that minimizes

Bφ = ∑
v∈V (D)

cv(v,φ(v))+ ∑
(u,v)∈E(D)

ce(u,v,φ(u),φ(v))

where tw(D) denotes the treewidth of the underlying
undirected graph of D.

Recall that each X ∈ X ′′ has treewidth O(
√

k). Note
that |U | = nO(1), and hence for any choice of functions
ce and cv we will be able to compute the minimum
mapping φ in time nO(

√
k). Our goal is to now apply

Theorem 6.1 for the graph DX for each X ∈ X ′′, and
define the functions ce and cv in a way such that the
objective value of Theorem 6.1 exactly captures the cost
of the labeled description Xlabel obtained by replacing
each variable α by the vertex φ(α) .

6.1 Defining the Functions ce and cv First we see
how to compute the minimum cost of a MultipleFlip,
since we need it in the cv function. Let v1,v2, . . . ,vk be
the vertices of G which have the k terminals of the SCSS
instance.

LEMMA 6.1. The minimum cost of MultipleFlip( fi,b j)
can be found in polynomial time.

Proof. Let the initial locations of fi,b j be ui,u j and the
final locations be vi,v j respectively. We first build a game
graph G̃ where the vertex set is V ×V . Then we add the
weights between the edges similar to Section 6.1 of the
Feldman-Ruhl paper [19]. Since all the flips in between
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are empty flips, their cost is just the shortest paths in G.
Then we find a shortest path in the game graph G̃ from
(ui,vi) to (u j,v j).

We define the cv and ce functions in Table 3 and
Table 4 respectively: If u ∈V , then we make sure that the
cost is infinity if a “marked” vertex in DX is not mapped
to the correct vertex having a terminal in G. For all other
vertices in D they get a cost of one to be assigned to other
vertices in G. If u ∈ V 4, then the cost of mapping α ∈
DX to u = (u1,u2,u3,u4) is the cost of the MultipleFlip
between (u1,u3) and (u2,u4).

Recall that we defined a special optimal solution H∗

in Theorem 5.1.

LEMMA 6.2. [?] If the cost of the solution H∗ for the
Feldman-Ruhl game is C, then there is an unlabeled
description X∗ ∈X ′′ and a mapping φ : V (DX∗)→U such
that Bφ =C

LEMMA 6.3. [?] If there is a valid unlabeled description
X ∈ X ′′ and a mapping φ : V (DX )→U such that Bφ =
R for some R < ∞, then there is a solution H for the
Feldman-Ruhl game of cost exactly R.

Lemma 6.3 and Lemma 6.2 give the correctness of
the following algorithm:

1. Enumerate the set X ′′

2. For each X ∈ X ′′, apply Theorem 6.1 to the graph
DX to get the minimum mapping say φX which gives
cost CX .

3. Output minX∈X ′′{CX}

We now analyze the running time. As seen before
in Section 5.2, we can compute the set X ′′ in 2O(k logk)

time. For each X ∈ X ′′, we can create the graph DX in
O(k2) time, since it has O(k) vertices. Finally, applying
Theorem 6.1 to DX takes nO(

√
k) time. Hence, the total

running time of the algorithm is 2O(k logk) ·nO(
√

k).
This concludes the proof of Theorem 1.1.

7 Hardness for SCSS in Planar Graphs
The goal of this section is to prove Theorem 1.2. We
reduce from the GRID TILING problem:

GRID TILING
Input : Integers k,n, and k2 non-empty sets Si, j ⊆
[n]× [n] where 1≤ i, j ≤ k
Question: For each 1≤ i, j≤ k does there exist a value
γi, j ∈ Si, j such that

• If γi, j = (x,y) and γi, j+1 = (x′,y′) then x = x′.
• If γi, j = (x,y) and γi+1, j = (x′,y′) then y = y′.

The reductions of Chen et al. [11] and Marx [31]
together imply that, assuming ETH, the problem of k× k
GRID TILING cannot be solved in time f (k) ·no(k) for any
computable function f .

To prove Theorem 1.2, we give a reduction which
transforms the problem of k× k GRID TILING into an
instance of SCSS with O(k2) terminals.

We design two types of gadgets: the connector gad-
get and the main gadget. The reduce from GRID TILING
represents each cell of the grid with a copy of the main
gadget, with a connector gadget between main gadgets
that are adjacent either horizontally or vertically (see Fig-
ure 2).

The proof of Theorem 1.2 is divided into the follow-
ing steps: In Sections 7.1 we first introduce the connector
gadget and Lemma 7.1 proves the existence of a particular
type of connector gadgets. In Sections 7.2 we introduce
the main gadget and Lemma 7.2 proves the existence of a
particular type of main gadgets. Using Lemmas 7.1 and
7.2 as a blackbox, we prove Theorem 1.2 in Section 7.4.
The proofs of Lemmas 7.1 and Lemma 7.2 are deferred to
the full version of the paper due to lack of space.

7.1 Existence of connector gadgets A connector gad-
get CGn is an embedded planar graph with O(n2) vertices
and weights on its edges. It has a total of 2n+ 2 distin-
guished vertices divided into the following 3 types:

• The vertices p,q are called internal-distinguished
vertices

• The vertices p1, p2, . . . , pn are called source-
distinguished vertices

• The vertices q1,q2, . . . ,qn are called sink-
distinguished vertices

Let P = {p1, p2, . . . , pn} and Q = {q1,q2, . . . ,qn}. The
vertices P∪Q appear in the order p1, . . . , pn, qn, . . . , q1
on the boundary of the gadget. In the connector gadget
CGn, every vertex in P is a source and has exactly one
outgoing edge. Also every vertex in Q is a sink and has
exactly one incoming edge.

DEFINITION 7.1. We say an edge set E ′ ⊆ E(CGn) sat-
isfies the connectedness property if each of the following
four conditions hold for the graph CGn[E ′]:

1. p can be reached from some vertex in P
2. q can be reached from some vertex in P
3. p can reach some vertex in Q
4. q can reach some vertex in Q

DEFINITION 7.2. We say an edge set E ′ satisfying the
connectedness property represents an integer i ∈ [n] if in
E ′ the only outgoing edge from P is the one incident to pi
and the only incoming edge into Q is the one incident to
qi.



The Function cv : V (DX )×U → Z+∪{∞}

• For u ∈V we define

cv(α,u) =

 1 if α = αi & u = vi for some i ∈ [k]
∞ if α = αi & u 6= vi for some i ∈ [k]
1 otherwise

• For u = (v1,v2,w1,w2) ∈V 4, let L be the multiset {v1,v2,w1,w2}.

– If |L| ≥ 3, then define cv(α,u) = (cost of MultipleFlip(v1,v2,w1,w2))− |X |, where X is the
multiset = {v1,v2,w1,w2}\{v1,w1}

– Otherwise if |L|= 2, then define cv(∗,u) = ∞ where ∗ denotes any variable in DX

Table 3:

The next lemma shows we can construct a particular
type of connector gadgets:

LEMMA 7.1. [?] Given an integer n one can construct in
polynomial time a connector gadget CGn and an integer
C∗n such that the following two properties hold 4:

1. For every i ∈ [n], there is an edge set Ei ⊆ E(CGn)
of weight C∗n such that Ei satisfies the connectedness
property and represents i. Note that, in particular, Ei
contains a pi ; qi path (via p or q).

2. If there is an edge set E ′ ⊆ E(CGn) such that E ′ has
weight at most C∗n and E ′ satisfies the connectedness
property, then E ′ has weight exactly C∗n and it repre-
sents some β ∈ [n].

7.2 Existence of main gadgets A main gadget MG
is an embedded planar graph with O(n3) vertices and
weights on its edges. It has 4n distinguished vertices given
by the following four sets:

• The set L = {`1, `2, . . . , `n} of left-distinguished ver-
tices.
• The set R = {r1,r2, . . . ,rn} of right-distinguished

vertices.
• The set T = {t1, t2, . . . , tn} of top-distinguished ver-

tices.
• The set B = {b1,b2, . . . ,bn} of bottom-distinguished

vertices.

The distinguished vertices appear in the order t1, . . . ,
tn, r1, . . . , rn, bn, . . . , b1, `n, . . . , `1 on the boundary of
the gadget. In the main gadget MG, every vertex in L∪T
is a source and has exactly one outgoing edge. Also each
vertex in R∪ B is a sink and has exactly one incoming
edge.

4We use the notation C∗n to emphasize that C∗ depends only on n

DEFINITION 7.3. We say an edge set E ′ ⊆ E(MG) satis-
fies the connectedness property if each of the following
four conditions hold for the graph MG[E ′]:

1. There is a directed path from some vertex in L to
R∪B

2. There is a directed path from some vertex in T to
R∪B

3. Some vertex in R can be reached from L∪T
4. Some vertex in B can be reached from L∪T

DEFINITION 7.4. An edge set E ′ ⊆ E(MG) satisfying the
connectedness property represents a pair (i, j) ∈ [n]× [n]
if each of the following four conditions holds:

• The only edge of E ′ leaving L is the one incident to
`i

• The only edge of E ′ entering R is the one incident to
ri

• The only edge of E ′ leaving T is the one incident to
t j

• The only edge of E ′ entering B is the one incident to
b j

The next lemma shows we can construct a particular
type of connector gadgets:

LEMMA 7.2. [?] Given a subset S ⊆ [n]× [n], one can
construct in polynomial time a main gadget MGS and an
integer M∗n such that the following three properties hold
5:

1. For every (x,y) ∈ S there is an edge set Ex,y ⊆
E(MGS) of weight M∗n such that Ex,y satisfies the
connectedness property and represents (x,y). More-
over, Ex,y contains a ty ; by path and a `x ; rx path.

5We use the notation M∗n to emphasize that M∗ depends only on n,
and not on the set S
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The Function ce : V (DX )×V (DX )×U×U → Z+∪∞

If (α,α ′) /∈ E(DX ) define ce(α,α ′,∗,∗) = ∞, where ∗ denote any element of U . In the remaining cases
below, we assume that (α,α ′) ∈ E(DX ).

• For v,w ∈V

– If (α,α ′) is a red edge in DX , then define ce(α,α ′,v,w) = [cost of the MultipleFlip (v,w,v,w)] ·
cv(α,v) ·cv(α ′,w)

– If (α,α ′) is a blue edge in DX , then define ce(α,α ′,v,w) = [cost of the MultipleFlip (v,w,w,v)] ·
cv(α,v) ·cv(α ′,w)

– If (α,α ′) is a edge in DX with no color, then define ce(α,α ′,v,w) = (dG(v,w)− 1) · cv(α,v) ·
cv(α ′,w), where dG(v,w) is the length of the shortest v→ w path in G.

• For y = (v1,v2,w1,w2) ∈V 4 and x ∈V , let L be the multiset {v1,v2,w1,w2}.

– If |L|= 2, then define ce(∗,∗,y,x) = ∞, where ∗ denotes any variable from DX .
– If |L| ≥ 3, then define

ce(α,α ′,y,x) =


0 if x = v1 and (α,α ′) = E(α,1)
0 if x = v2 and (α,α ′) = E(α,2)
0 if x = w1 and (α,α ′) = E(α,3)
0 if x = w2 and (α,α ′) = E(α,4)
∞ otherwise

• All others are set to ∞

Table 4:

2. If there is an edge set E ′ ⊆ E(MGS) such that E ′ has
weight at most M∗n and satisfies the connectedness
connectivity property, then E ′ has weight exactly M∗n
and represents some (α,β ) ∈ S.

7.3 Construction of the SCSS instance In order to
prove Theorem 1.2, we reduce from the GRID TILING
problem. The following assumption will be helpful in
handling some of the border cases of the gadget construc-
tion. We may assume that 1 < x,y < n holds for every
(x,y) ∈ Si, j: indeed, we can increase n by two and replace
every (x,y) by (x+ 1,y+ 1) without changing the prob-
lem.

Given an instance of GRID TILING, we construct an
instance of SCSS the following way (see Figure 2):

• We introduce a total of k2 main gadgets and 2k(k+1)
connector gadgets.
• For every non-empty set Si, j in the GRID TILING

instance, we construct a main gadget MGi, j using
Lemma 7.2 for the subset Si, j.
• Half of the connector gadgets have the same orien-

tation, and we call them HCG to denote horizontal
connector gadgets. The other half of the connec-
tor gadgets are rotated anti-clockwise by 90 degrees
with respect to the orientation of the horizontal con-

nector gadgets, and we call them VCG to denote ver-
tical connector gadgets. The internal-distinguished
vertices of the connector gadgets are shown in Fig-
ure 2.

• For each 1 ≤ i, j ≤ k, the main gadget MGi, j is
surrounded by the following four connector gadgets:

1. The horizontal connector gadgets HCGi, j
are on the top and HCGi+1, j are on the
bottom. Identify (or glue together) each
sink-distinguished vertex of HCGi, j with the
top-distinguished vertex of MCGi, j of the
same index. Similarly identify each source-
distinguished vertex of HCGi+1, j with the
bottom-distinguished vertex of MCGi, j of the
same index.

2. The vertical connector gadgets VCGi, j are on
the left and VCGi, j+1 are on the right. Identify
(or glue together) each sink-distinguished ver-
tex of VCGi, j with the left-distinguished vertex
of MCGi, j of the same index. Similarly identify
each source-distinguished vertex of VCGi, j+1
with the right-distinguished vertex of MCGi, j
of the same index.

• We introduce to special vertices x∗,y∗ and an edge
(x∗,y∗) of weight 0.
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HCG4,2HCG4,1 HCG4,3

Figure 2: The figure for reduction from GRID TILING to SCSS on planar graphs.

• For each 1 ≤ i ≤ k, consider the horizontal con-
nector gadget HCG1,i and collapse all its source-
distinguished vertices into y∗.
• For each 1 ≤ j ≤ k, consider the vertical con-

nector gadget VCG j,1 and collapse all its source-
distinguished vertices into y∗.
• For each 1 ≤ i ≤ k, consider the horizontal con-

nector gadget HCGk+1,i and collapse all its sink-
distinguished vertices into x∗.
• For each 1 ≤ j ≤ k, consider the vertical con-

nector gadget VCG j,k+1 and collapse all its sink-
distinguished vertices into x∗.
• For each i ∈ [k + 1], j ∈ [k], denote the internal-

distinguished vertices of HCGi, j by {ph
i, j,q

h
i, j}

• For each i ∈ [k], j ∈ [k + 1], denote the internal-

distinguished vertices of VCGi, j by {pv
i, j,q

v
i, j}

• The set of terminals T ∗ for the SCSS instance on
G∗ is {x∗,y∗} ∪ {ph

i, j,q
h
i, j | 1 ≤ i ≤ k + 1,1 ≤ j ≤

k}∪{pv
i, j,q

v
i, j | 1≤ i≤ k,1≤ j ≤ k+1}.

• We note that the total number of terminals is |T ∗| =
4k(k+1)+2 = O(k2)

• The edge set of G∗ is a disjoint union of edge
sets of all main gadgets, vertical connector gadgets,
horizontal gadgets, and the edge (x∗,y∗).

Define the following quantity 6:

(7.1) W ∗n = k2 ·M∗n +2k(k+1) ·C∗n .

6We use the notation W ∗n to emphasize that W ∗ depends only on n
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The next two lemmas together show that GRID
TILING has a solution if and only if the SCSS instance
(G∗,T ∗) has a solution of weight at most W ∗n .

LEMMA 7.3. [?] If the GRID TILING instance has a
solution, then the SCSS instance (G∗,T ∗) has a solution
of weight at most W ∗n .

LEMMA 7.4. [?] If the SCSS instance (G∗,T ∗) has a
solution say E ′′ of weight at most W ∗n , then the GRID
TILING instance has a solution.

7.4 Proof of Theorem 1.2 Recall that Marx [31]
showed the W[1]-hardness of GRID TILING parameter-
ized by k.

Proof. We note that the number of terminals in the SCSS
instance is 2k(k + 1)+ 2 = O(k2). By Lemmas 7.1 and
7.2, the connector and main gadgets are constructed in
polynomial time, hence their size can be bounded by a
polynomial in n. It follows that the constructed instance
has polynomial size. It is easy to see the underlying
undirected graph of G∗ constructed in Figure 2 is planar,
since the underlying graph of each connector gadget and
each main gadget is planar. Lemma 7.3 and Lemma 7.4
together imply the W[1]-hardness of SCSS parameterized
by the number of terminals, even when the underlying
graph is planar.

Chen et al. [11] showed for any function f an
f (k)no(k) algorithm for CLIQUE implies ETH fails.
Marx [31] gave a reduction that transforms the problem
of finding a k-clique into a k× k GRID-TILING instance.
Lemma 7.3 and Lemma 7.4 together give a reduction
which transforms the problem of k× k grid-tiling into an
instance of SCSS with O(k2) terminal pairs. Composing
the two reductions, we obtain that, under ETH, there is
no f (k)no(

√
k) time algorithm for SCSS (even when the

underlying undirected graph is planar) for any function
f . This shows that the 2O(k2) ·nO(

√
k) algorithm for SCSS

given in Theorem 1.1 is essentially optimal.

8 Hardness for SCSS in general graphs
The main goal of this section is to prove Theorem 1.3. We
note that the reduction of Guo et al. [22] gives a reduction
from MULTICOLORED CLIQUE which builds an equiva-
lent instance of STRONGLY CONNECTED STEINER SUB-
GRAPH with quadratic blowup in the number of termi-
nals. Hence using the reduction of Guo et al. [22] only
an no(

√
k) algorithm for SCSS can be ruled out under

ETH. We are able to improve upon this hardness by us-
ing the COLORED SUBGRAPH ISOMORPHISM problem
introduced by Marx [32]. Our reduction is also slightly
simpler than the one given by Guo et al.

COLORED SUBGRAPH ISOMORPHISM
Input : Undirected graphs G = (VG =
{g1,g2, . . . ,g`},EG) and H = (VH ,EH), and a
partition of VH into disjoint subsets H1,H2, . . . ,H`

Question: Is there an injection φ : VG→VH such that

1. For every i ∈ [`] we have φ(gi) ∈ Hi.
2. For every edge {gi,g j} ∈ EG we have
{φ(gi),φ(g j)} ∈ EH .

Marx [32] showed the following hardness result:

THEOREM 8.1. COLORED SUBGRAPH ISOMORPHISM
cannot be solved in time f (r)no(r/ logr) where f is an
arbitrary function, r is the number of edges in G and n
is the number of vertices in H, unless ETH fails.

By giving a reduction from COLORED SUBGRAPH
ISOMORPHISM to STRONGLY CONNECTED STEINER
SUBGRAPH where k = O(|EG|) we will get a no(k logk)

hardness for SCSS under the ETH, where k is the number
of terminals. Consider an instance (G,H) of COLORED
SUBGRAPH ISOMORPHISM. We now build an instance of
STRONGLY CONNECTED STEINER SUBGRAPH as fol-
lows:

• B = {bi | i ∈ [`]}
• C = {cv | v ∈VH}
• C′ = {c′v | v ∈VH}
• D = {duv′ ∪dvu′ | {u,v} ∈ EH}
• A = {auv′ ∪avu′ | {u,v} ∈ EH}
• F = { fi j | 1≤ i, j ≤ ` | gig j ∈ EG}
• V ∗ = B∪C∪C′∪D∪A∪F
• E1 = {(cv,bi) | v ∈ Hi,1≤ i≤ `}
• E2 = {(bi,c′v) | v ∈ Hi,1≤ i≤ `}
• E3 = {(c′v,cv) | v ∈VH}
• E4 = {(cv,dvu′) | {u,v} ∈ EH}
• E5 = {(avu′ ,c′u) | {u,v} ∈ EH}
• E6 = {(dvu′ ,avu′) | {u,v} ∈ EH}
• E7 = {( fi j,dvu′)∪ (avu′ , fi j) | {u,v} ∈ EH ;v ∈Hi;u ∈

H j;1≤ i, j ≤ `}
• E∗ = E1∪E2∪E3∪E4∪E5∪E6∪E7

An illustration of the construction for a small graph
in given in Figure 3. We imagine that the edges of E4 are
colored red to help us argue the proof. Let the terminals
be T = B∪F . In the instance of COLORED SUBGRAPH
ISOMORPHISM we can assume the graph G is connected,
otherwise we can solve the problem for each connected
component. Therefore k = |T |= `+2|EG|= O(|EG|).

THEOREM 8.2. [?] The instance (G,H) of COLORED
SUBGRAPH ISOMORPHISM answers YES if and only
if there is a solution for the STRONGLY CONNECTED
STEINER SUBGRAPH instance (V ∗,E∗,T ) of size 3`+
10|EG|.
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Figure 3: Part of the construction from Theorem 8.2 with three vertices: v,w of color i and u of color j and two edges
{v,u} and {u,w}.

9 Hardness for DSF in planar directed acyclic
graphs

The main goal of this section is to prove Theorem 1.4
which shows that the nO(k) algorithm of Feldman-Ruhl is
essentially optimal. We reduce from the GRID TILING
problem. Consider an instance of GRID TILING. We
now build an instance of edge-weighted DSF as shown
in Figure 4. We consider 2k pairs to be connected: (ai,bi)
and (ci,di) for each i ∈ [k]. We introduce k2 red gadgets
where each gadget is an n× n grid. Let weight of each
black edge be 2. See Figure 4 for an illustration.

DEFINITION 9.1. An ai ; bi canonical path is a path
from ai to bi which starts with a blue edge coming out
of ai, then follows a horizontal path of black edges and
finally ends with a blue edge going into bi. Similarly an
c j ; d j canonical path is a path from c j to d j which starts
with a blue edge coming out of c j, then follows a vertically
downward path of black edges and finally ends with a blue
edge going into d j.

There are n edge-disjoint ai ; bi canonical paths:
let us call them P1

i ,P
2
i , . . . ,P

n
i as viewed from top to

bottom. They are named using magenta color in Figure 4.
Similarly we call the canonical paths from c j to d j as
Q1

j ,Q
2
j , . . . ,Q

n
j when viewed from left to right. For each

i ∈ [k] and ` ∈ [n] we assign a weight of ∆(n+ 1− `),∆`
to the first, last blue edges of P`

i respectively. Similarly
for each j ∈ [k] and ` ∈ [n] we assign a weight of ∆(n+
1− `),∆` to the first, last blue edges of Q`

j respectively.

Thus the total weight of first and last blue edges on any
canonical path is exactly ∆(n+ 1). The idea is to choose
∆ large enough such that in any optimum solution the
paths between the terminals will be exactly the canonical
paths. We will see ∆ = 4n2 will suffice for our purposes.
Any canonical path uses two blue edges (which sum up to
∆(n+ 1)), (k+ 1) black edges not inside the gadgets and
(n−1) black edges inside each gadget. Since the number
of gadgets each canonical path visits is k and the weight
of each black edge is 2, we have the total weight of any
canonical path is ∆(n+1)+2(k+1)+2k(n−1).

Intuitively the k2 gadgets correspond to the k2 sets
in the GRID TILING instance. Let us denote the gadget
which is the intersection of the ai ; bi path and c j ; d j
path by Gi, j. If (x,y) = si, j ∈ Si, j then we color green the
vertex in the gadget Gi, j which is the unique intersection
of the canonical paths Px

i and Qy
j. Then we add a shortcut

as shown in Figure 5. The idea is if both the ai ; bi
path and c j ; d j path pass through the green vertex then
the ai ; bi path can save a weight of 1 by using the
green edge and a vertical edge to reach the green vertex,
instead of paying a weight of 2 to use the horizontal edge
reaching the green vertex. It is easy to see there is an easy
solution (without using green edges) for the DSF instance
of weight β = 2k

(
∆(n + 1) + 2(k + 1) + 2k(n − 1)

)
:

each terminal pair just uses a canonical path and these
canonical paths are pairwise edge-disjoint.
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Figure 4: The instance of DSF created from an instance of Grid Tiling.
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Figure 5: Let u,v be two consecutive vertices on the
canonical path say P`

i . Let v be on the canonical path
Q`′

j and let y be the vertex preceding it on this path. If
v is a green vertex then we subdivide the edge (y,v) by
introducing a new vertex x and adding two edges (y,x)
and (x,v) of weight 1. We also add an edge (u,x) of
weight 1. The idea is if both the edges (y,v) and (u,v)
were being used initially then now we can save a weight
of 1 by making the horizontal path choose (u,x) and then
we get (x,v) for free, as it is already being used by the
vertical canonical path.

We need a small technical modification: we add one
dummy row and column to the GRID TILING instance.
Essentially we now have a dummy index 1. So neither the
first row nor the first column of any Si, j has any elements
in the GRID TILING instance. That is, no green vertex
can be in the first row or first column of any gadget.
Combining this fact with the orientation of the edges we
get the only gadgets which can intersect any ai ; bi path
are Gi,1,Gi,2, . . . ,Gi,k. Similarly the only gadgets which
can intersect any c j ; d j path are G1, j,G2, j, . . . ,Gk, j.

We now prove two theorems which together give a
reduction from GRID TILING to DSF.

THEOREM 9.1. GRID TILING has a solution implies
OPT for DSF is at most β − k2.

Proof. For each 1 ≤ i, j ≤ k let si, j ∈ Si, j be the vertex
in the solution of the GRID TILING instance. There-
fore for every i ∈ k we know that each of the k ver-
tices si,1,si,2, . . . ,si,k have the same x-coordinate, say
αi. Similarly for every j ∈ [k] each of the k vertices
s1, j,s2, j, . . . ,sk, j has the same x-coordinate, say γ j. We
now use the canonical path Pαi

i for (ai,bi) and the canon-
ical path Q

γ j
j for (c j,d j). Each of the c j ; d j paths

will pay the full weight of a canonical path, which is
∆(n+ 1)+ 2(k + 1)+ 2k(n− 1). However each ai → bi



path will encounter a green vertex in each of the k gadgets
along its way, and hence will save one in each gadget (as
shown in Figure 5) for a total saving of k. Hence over all
the terminals we save a weight of k2, and this is a solution
for DSF instance of weight β − k2.

We now prove the other direction which is more
involved. First we show some preliminary lemmas:

LEMMA 9.1. [?] In any optimum solution for DSF there
is a c j ; d j canonical path for some j ∈ [k].

Note the shortcut described in Figure 5 again brings
the ai ; bi path back to the same horizontal canonical
path.

DEFINITION 9.2. We call an ai ; bi path as an almost
canonical path if it is basically a canonical path, but can
additionally take the small detour given by the green edge
in Figure 5. An almost canonical path must however end
on the same horizontal level on which it began.

LEMMA 9.2. [?] In any optimum solution for DSF there
is an ai ; bi almost canonical path for every i ∈ [k].

THEOREM 9.2. OPT for DSF is at most β − k2 implies
the GRID TILING instance has a solution.

Proof. Consider any optimum solution say X . By
Lemma 9.1 and Lemma 9.2 we know that X has a ai ; bi
almost canonical path and a c j ; d j canonical path for
every 1 ≤ i, j ≤ k. Moreover these set of 2k paths form a
solution for DSF. Since any optimum solution is minimal
X is the union of these 2k paths: one for each terminal
pair. For the moment let us forget the modifications we
did in Figure 5. So the ai ; bi path and c j ; d j path in X
intersect in a unique point (in the gadget Gi, j). The weight
of X is exactly β . However we know that there is a solu-
tion of weight at most β −k2. It is easy to see any ai ; bi
almost canonical path and a c j ; d j canonical path can
have at most one edge in common: the edge which comes
vertically downwards into the green vertex (see Figure 5).
There are k2 gadgets, and there is at most one edge per
gadget which is double counted inX . Hence for each gad-
get Gi, j there is exactly one edge which is used by both the
ai ; bi almost canonical path and the c j ; d j canonical
path inX . So the endpoint of each of these common edges
must be green vertices, and at each such point we save a
weight of one as described in Figure 5. Since each ai ; bi
path is an almost canonical path and each c j ; d j path is
a canonical path, the green vertices form a solution for the
GRID TILING instance.

Recall that Marx [31] showed the W[1]-hardness
of GRID TILING: in fact he gave a reduction which
transforms the problem of finding a k-clique into a k× k

GRID-TILING instance. We are now ready the prove
Theorem 1.4 which essentially says the nO(k) algorithm
of Feldman-Ruhl [19] for DSF is optimal.

Proof. Theorem 9.1 and Theorem 9.2 together imply
the W[1]-hardness. It is not hard to see the graph we
constructed in Figure 4 is a planar DAG.

Chen et al. [11] showed for any function f an
f (k)no(k) algorithm for CLIQUE implies ETH fails. Theo-
rem 1.4 gives a reduction which transforms the problem of
k× k grid-tiling into an instance of DSF with 2k terminal
pairs. Composing the reduction from [31] from CLIQUE
to GRID TILING to DSF, we obtain under ETH there is no
f (k)no(k) algorithm for DSF (even on planar DAGs) for
any function f . This shows the nO(k) algorithm for DSF
due to Feldman and Ruhl [19] is optimal.
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