
Parameterized and Approximation Results for
Scheduling with a Low Rank Processing Time
Matrix∗

Lin Chen1, Dániel Marx†2, Deshi Ye‡3, and Guochuan Zhang§4

1 Department of Computer Science, University of Houston, Houston, TX, USA
chenlin198662@gmail.com

2 MTA SZTAKI, Hungarian Academy of Science, Budapest, Hungary
dmarx@cs.bme.hu

3 Zhejiang University, College of Computer Science, Hangzhou, China
yedeshi@zju.edu.cn

4 Zhejiang University, College of Computer Science, Hangzhou, China
zgc@zju.edu.cn

Abstract
We study approximation and parameterized algorithms for R||Cmax, focusing on the problem
when the rank of the matrix formed by job processing times is small. Bhaskara et al. [2] initiated
the study of approximation algorithms with respect to the rank, showing that R||Cmax admits
a QPTAS (Quasi-polynomial time approximation scheme) when the rank is 2, and becomes
APX-hard when the rank is 4.

We continue this line of research. We prove that R||Cmax is APX-hard even if the rank is
3, resolving an open problem in [2]. We then show that R||Cmax is FPT parameterized by the
rank and the largest job processing time pmax. This generalizes the parameterized results on
P ||Cmax [17] and R||Cmax with few different types of machines [15]. We also provide nearly tight
lower bounds under Exponential Time Hypothesis which suggests that the running time of the
FPT algorithm is unlikely to be improved significantly.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics

Keywords and phrases APX-hardness, Parameterized algorithm, Scheduling, Exponential Time
Hypothesis

Digital Object Identifier 10.4230/LIPIcs.STACS.2017.22

1 Introduction

We consider the classical problem of scheduling independent jobs on parallel machines. In
this problem, every job j is required to be processed non-preemptively on one of the machines,
and has a processing time pij ∈ N if it is processed on machine i. The goal is to assign
jobs to machines such that the makespan (maximum job completion time) is minimized.

∗ A full version of the paper is available at https://www.researchgate.net/publication/313852592_
Parameterized_and_approximation_results_for_scheduling_with_a_low_rank_processing_time_
matrix.

† Research supported in part by ERC Grant Agreement no. 280152
‡ Research supported in part by NSFC 11271325 and NSFC 11671355.
§ Research supported in part by NSFC 11271325 and NSFC 11671355.

© Lin Chen, Dániel Marx, Deshi Ye, and Guochuan Zhang;
licensed under Creative Commons License CC-BY

34th Symposium on Theoretical Aspects of Computer Science (STACS 2017).
Editors: Heribert Vollmer and Brigitte Vallée; Article No. 22; pp. 22:1–22:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2017.22
https://www.researchgate.net/publication/313852592_Parameterized_and_approximation_results_for_scheduling_with_a_low_rank_processing_time_matrix
https://www.researchgate.net/publication/313852592_Parameterized_and_approximation_results_for_scheduling_with_a_low_rank_processing_time_matrix
https://www.researchgate.net/publication/313852592_Parameterized_and_approximation_results_for_scheduling_with_a_low_rank_processing_time_matrix
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Results for Scheduling with a Low Rank Processing Time Matrix

This problem is usually referred to as unrelated machine scheduling (with the objective of
makespan minimization), and denoted as R||Cmax. Specifically, if pij = pj/si, the problem
is called uniformly related machine scheduling, and denoted as Q||Cmax. Furthermore, if
pij = pj , the problem is called identical machine scheduling and denoted as P ||Cmax.

As we will provide details later, the unrelated machine scheduling problem R||Cmax
is considerably harder than its special cases Q||Cmax and P ||Cmax. From the perspective
of approximation algorithms, Q||Cmax admits a PTAS (Polynomial Time Approximation
Scheme) [11], while a (1.5− ε)-approximation algorithm with ε > 0 being any small constant
for R||Cmax implies P = NP [16]. From the perspective of FPT (Fixed Parameter Tractable)
algorithms, P ||Cmax and Q||Cmax are FPT parameterized by pmax (the largest job processing
time) [15, 17], while R||Cmax remains NP-hard even if pmax is 3 [16]. Consequently, various
intermediate models are studied in literature, aiming to bridge the way from P ||Cmax or
Q||Cmax to R||Cmax. Recently, Bhaskara et al. studied the scheduling problem from a
new perspective. In their seminal paper [2], they consider the rank of the matrix formed
by the processing times of jobs, i.e., the rank of P = (pij)m×n where m,n are the number
of machines and jobs, respectively. From this point of view, Q||Cmax is the scheduling
problem with a matrix of rank 1, while R||Cmax is the scheduling problem with a matrix
of an arbitrary rank, specifically, the rank may be as large as m. It thus becomes a very
natural question that whether we can find better algorithms for R||Cmax if the rank is small.

For simplicity, from now on we call the problem of minimum makespan scheduling with
the matrix of processing times that has the rank of d as rank-d scheduling. It is shown
by Bhaskara et al. [2] that rank-2 scheduling admits a QPTAS (Quasi-polynomial Time
Approximation Scheme), while rank-4 scheduling becomes APX-hard, leaving open the
approximability of rank-3 scheduling.

We continue this line of research in this paper by studying approximation and parameter-
ized algorithms for R||Cmax with respect to the rank of the matrix. Our first result is the
following theorem, which answers the open problem in [2].

I Theorem 1. Assuming P 6= NP , for any fixed ρ < 2−14 there does not exist a (1 + ρ)-
approximation algorithm for R||Cmax, even if the rank of the matrix formed by job processing
times is 3.

In contrast to the APX-hardness of the rank-3 scheduling, we show that R||Cmax is FPT
parameterized by pmax and d.

I Theorem 2. There is an FPT algorithm for R||Cmax that runs in 22O(d log pmax) + nO(1)

time.

Notice that R||Cmax remains NP-hard even if pmax = 3 [16] or d = 1 [8], therefore
parameterizing by only pmax or d does not suffice.

We complement this algorithmic result by the following lower bound.

I Theorem 3. There is no 22o(d log pmax) time algorithm for R||Cmax, unless ETH (Exponential
Time Hypothesis) fails.

The approximability of rank d scheduling is not smooth with respect to the rank d, as is
already observed by Bhaskara et al. [2], yet it is FPT parameterized by pmax and d, with a
running time doubly exponential in d. Furthermore, such a running time is unlikely to be
improved significantly, as is suggested by the lower bound.

We also discuss the possibility of replacing the parameter pmax by p̄, which is the number of
distinct processing times in matrix P . It is shown by Goemans and Rothvoss [9] that P ||Cmax

L. Chen, D. Marx, D. Ye, and G. Zhang 22:3

is in XP parameterized by p̄, i.e., there exists a polynomial time algorithm for P ||Cmax if p̄
is a constant. Indeed, they establish a structural theorem on integer programming, through
which we can further show that R||Cmax is in XP parameterized by p̄ and d. It remains as
an important open problem whether P ||Cmax is FPT parameterized by p̄.

I Theorem 4. R||Cmax can be solved in (log pmax)2O(ζ) + 22O(ζ2)(log pmax)O(1) time, where
ζ = 2O(d log p̄).

Related work. Scheduling is a fundamental problem in combinatorial optimization and has
received considerable attention in history. In the following we provide a very brief overview
with the focus on approximation and parameterized algorithmic results.

In 1988, Hochbaum and Shmoys [11] presented a PTAS for P ||Cmax as well as Q||Cmax.
Their algorithm has a running time of (n/ε)O(1/ε2). Subsequent improvements on the running
time of the PTAS can be found in [1, 13]. So far, the best PTAS for Q||Cmax is due to Jansen,
Klein and Verschae [14] and has a running time of 2O(1/ε logO(1) 1/ε) + O(n). It is further
shown by Chen, Jansen and Zhang [5] that such a running time is essentially the best possible
unless ETH fails, even for P ||Cmax. For the unrelated machine scheduling problem R||Cmax,
Lenstra, Shmoys and Tardos [16] showed that it does not admit any approximation algorithm
with a rato strictly smaller than 1.5 unless P = NP . They also provided a 2-approximation
algorithm, which was slightly improved to a (2− 1/m)-approximation algorithm by Shchepin
et al. [20].

A lot of intermediate models between R||Cmax and Q||Cmax or P ||Cmax are studied in
literature. In this paper, we are most concerned with the rank of the matrix formed by job
processing times on machines, i.e., the rank of P = (pij)m×n. Bhaskara et al. [2] initiated
the study on approximation algorithms for R||Cmax with respect to the parameter rank.
They showed that rank-2 scheduling admits a QPTAS, while rank-4 scheduling is already
APX-hard. Very recently Chen et al. [6] further improves their result by showing that rank-4
scheduling does not admit any approximation algorithm with a ratio that is strictly smaller
than 1.5, unless P = NP .

This new model of scheduling with a small matrix rank is closely related to the problem
of scheduling unrelated machines of few different types, which is another intermediate model
that receives much study in literature [4, 7, 19, 15]. In the problem of scheduling unrelated
machines of few different types, there are K different types of machines. If two machines i
and i′ are of the same type, then for every job j it follows that pij = pi′j . Simply speaking,
machines could be divided into K disjoint groups such that machines belonging to the same
group are identical. It is shown by Bonifaci and Wiese [4] that if K is a constant, then
there exists a PTAS. A PTAS of improved running time was recently presented by Gehrke
et al. [19]. It is very easy to see that the problem of scheduling unrelated machines of K
different types is actually a special case of the scheduling problem with a matrix of rank K.

Compared with the study on approximation algorithms for the scheduling problem,
the study on parameterized algorithms is relatively new. Mnich and Wiese [17] were the
first to study FPT algorithms for the scheduling problem. They showed that P ||Cmax is
FPT parameterized by pmax, the largest job processing times. Meanwhile R||Cmax is FPT
parameterized by the number of machines m and the number of distinct job processing times
p̄. As all job processing times are integers, p̄ is upper bounded by pmax. Hence, their results
also imply that R||Cmax is FPT parameterized by m and pmax. Very recently, Knop and
Koutecký [15] considered the problem of scheduling unrelated machines of few different types,
and showed that R||Cmax is FPT parameterized by pmax and K, where K is the number

STACS 2017

22:4 Results for Scheduling with a Low Rank Processing Time Matrix

of different types of machines. FPT algorithms for the scheduling problem with different
models have also received much study in literature, see, e.g., [3, 22].

It is, however, not clear whether R||Cmax is FPT parameterized by K and p̄. A recent
paper by Goemans and Rothvoss [9] showed that P ||Cmax could be solved in (log pmax)2O(p̄)

time. Therefore P ||Cmax is in XP parameterized by p̄, i.e., if there is only a constant number
of distinct job processing times, then P ||Cmax could be solved in polynomial time. Indeed,
the general structural theorem established in their paper further implies that R||Cmax is in
XP parameterized by K and p̄.

2 Preliminaries

Let P = (pij)m×n with pij ∈ N being the processing time of job j on machine i. Let d
be the rank of P . By linear algebra, the matrix P can be expressed as P = MJ , where
M is an m × d matrix and J is a d × n matrix. We can interpret each row vector ui of
M as the d-dimensional speed vector of machine i, and each column vector vTj of J as the
d-dimensional size vector of job j. The processing time of job j on machine i is then the
product of the two corresponding vectors, i.e., pij = ui · vTj . Bhaskara et al. [2] formally
define the scheduling problem with low rank processing time matrix by explicitly giving the
speed vector of every machine and the size vector of every job. In our paper, we do not
necessarily require that the speed and size vectors are given. If these vectors are not given,
we take an arbitrary decomposition of the matrix P into P = MJ . Therefore, throughout
this paper, we do not necessarily require an entry in a speed vector or a size vector to be an
integer or a non-negative number.

Some lower bounds on the running time of algorithms in this paper are based on the
following Exponential Time Hypothesis (ETH), which was introduced by Impagliazzo, Paturi,
and Zane [12]:

Exponential Time Hypothesis (ETH): There is a positive real δ such that 3SAT with n
variables and m clauses cannot be solved in time 2δn(n+m)O(1).

Using the Sparsification Lemma by Impagliazzo et al. [12], ETH implies that there is no
algorithm for 3SAT with n variables and m clauses that runs in time 2δm(n+m)O(1) for
some δ > 0 as well.

3 APX-hardness for rank-3 scheduling

The whole section is devoted to the proof of Theorem 1. For ease of presentation, when we
prove the APX-hardness for rank-3 scheduling, we may construct jobs of fractional processing
times. However, by scaling we can easily make all the fractional values into integers.

We start with the one-in-three 3SAT problem, which is a variation of the 3SAT problem.
An input of the one-in-three 3SAT problem is a boolean formula that is a conjuction of clauses,
where each clause is a disjunction of exactly three 3 literals. The formula is satisfied if and
only if there exists a truth assignment of variables such that in every clause there is exactly
one true literal, i.e., every clause is satisfied by exactly one variable. It is proved in [18] that
it is NP-complete to determine whether an arbitrary given instance of the one-in-three 3SAT
problem is satisfiable.

We reduce from a variation of the one-in-three 3SAT problem. Given an instance of the
one-in-three 3SAT problem, say, Isat, we can apply Tovey’s method [21] to transform it into
I ′sat such that:

L. Chen, D. Marx, D. Ye, and G. Zhang 22:5

each clause of Isat contains two or three literals;
each variable appears three times in clauses. Among its three occurrences there are either
two positive literals and one negative literal, or one positive literal and two negative
literals;
there exists a truth assignment for I ′sat where every clause is satisfied by exactly one
literal if and only if there is a truth assignment for Isat where every clause is satisfied by
exactly one literal.

The transformation is straightforward. For any variable z, if it only appears once in
the clauses, then we add a dummy clause as (z ∨ ¬z). Otherwise suppose it appears d ≥ 2
times in the clauses, then we replace its d occurrences with d new variables as z1, z2, · · · , zd,
and meanwhile add d clauses as (z1 ∨ ¬z2), (z2 ∨ ¬z3), · · · , (zd ∨ ¬z1) to enforce that these
new variables should take the same truth assignment. It is not difficult to verify that the
constructed instance satisfies the above requirements.

Throughout the following part of this section we assume that I ′sat contains n variables
and m clauses. Let ε be an arbitrary small positive number. Let τ = 23, r = 211τ = 214,
N = n/ε2. We will construct an instance Isch of the rank-3 scheduling problem such that:

if there is a truth assignment for I ′sat where every clause is satisfied by exactly one variable,
then Isch admits a feasible schedule whose makespan is r + cε for some constant c;
if Isch admits a feasible schedule whose makespan is strictly less than r + 1, then there
exists a truth assignment for I ′sat where every clause is satisfied by exactly one variable.

We claim that, given the above construction, Theorem 1 follows. To see why, suppose
on the contrary that there exists a (1 + ρ)-approximation algorithm for some constant
ρ < 2−14. We set ε = 1−rρ

cρ = 1−214ρ
cρ , and apply this algorithm to the constructed instance

Isch. There are two possibilities. If I ′sat is satisfiable, then the approximation algorithm
returns a feasible solution whose makespan is at most (r+ cε)(1 + ρ) = r+ rρ+ cρ · ε < r+ 1.
If I ′sat is not satisfiable, then Isch does not admit a feasible schedule whose makespan is
strictly less than r + 1, i.e., any feasible schedule has a makespan at least r + 1, whereas the
(1 + ρ)-approximation algorithm returns a solution whose makespan is at least r + 1. Thus,
we can use the (1 + ρ)-approximation algorithm to determine the satisfiability of I ′sat, and
consequently the satisfiability of Isat in polynomial time, which contradicts the NP-hardness
of the one-in-three 3SAT problem.

Construction of the scheduling instance. To construct the scheduling instance, we con-
struct the size vector of every job and speed vector of every machine. Each vector is a triple
of three positive numbers. The processing time of a job on a machine is then the inner
product of the two corresponding vectors. As we describe in Section 2, the constructed
instance is a feasible instance of rank-3 scheduling.

Recall that r = 214, τ = 23, N = n/ε2. Indeed, if we do not care much about the value
of ρ and only want to show APX-hardness, it suffices to think r as some value significantly
larger than τ . For a job j we denote by s(j) its size vector.

We construct two main kinds of jobs, element jobs and tuple jobs. In the following we
first construct element jobs, which are further divided into variable jobs, truth-assignment
jobs, clause jobs and dummy jobs.

Variable jobs. For every variable zi, we construct 8 variable jobs, vγi,k for k = 1, 2, 3, 4
and γ = T, F . Their size vectors are:

s(vTi,1) = (εN4i+1, 0, r/8− 10τ − 2), s(vTi,2) = (εN4i+2, 0, r/8− 20τ − 2),

STACS 2017

22:6 Results for Scheduling with a Low Rank Processing Time Matrix

s(vTi,3) = (εN4i+3, 0, r/8− 18τ − 2), s(vTi,4) = (εN4i+4, 0, r/8− 12τ − 2).

s(vFi,k) = s(vTi,k)− (0, 0, 2), k = 1, 2, 3, 4

Truth-assignment jobs. For every variable zi, we construct eight truth-assignment jobs,
aγi , b

γ
i , c

γ
i d

γ
i with γ = T, F . Their size vectors are:

s(aTi) = (0, εN i, r/64 + 2τ + 1), s(bTi) = (0, εN i, r/64 + 4τ + 1),

s(cTi) = (0, εN i, r/64 + 8τ + 1), s(dTi) = (0, εN i, r/64 + 16τ + 1).

s(τFi) = s(τTi) + (0, 0, 1), τ = a, b, c, d

Clause jobs. For every clause ej , if it contains two literals, then we construct two clause
jobs, uTj and uFj . Otherwise it contains three literals, and we construct three clause jobs,
one uTj and two uFj . Their size vectors are:

s(uTj) = (0, εNN+j , r/4 + 2), s(uFj) = (0, εNN+j , r/4 + 4).

Dummy jobs. We construct 2n−m true dummy jobs φT and m− n false dummy jobs
φF . Their size vectors are:

s(φF) = (0, 0, r/16 + 4), s(φT) = (0, 0, r/16 + 2).

We finish the description of the element jobs and now define tuple jobs. Indeed, there is
a one-to-one correspondence between tuple jobs and machines. For ease of description, we
first construct machines, and then construct tuple jobs.

We construct 8n machines, which are further divided into truth-assignment machines,
clause machines and dummy machines. For a machine i we denote by g(i) its speed vector.

Truth-assignment machines. For every variable zi, we construct 4n truth-assignment
machines, denoted as (vi,1, ai, ci), (vi,2, bi, di), (vi,3, ai, di), (vi,4, bi, ci). The symbol of a
machine actually indicates the jobs that we will put on it. The speed vectors are:

g(vi,1, ai, ci) = (N−4i−1, N−i, 1), g(vi,2, bi, di) = (N−4i−2, N−i, 1),

g(vi,3, ai, di) = (N−4i−3, N−i, 1), g(vi,4, bi, ci) = (N−4i−4, N−i, 1).

Clause machines. For every clause ej : if the positive (or negative) literal zi (or ¬zi)
appears in it for the first time (i.e., it does not appear in ek for k < j), then we construct a
clause machine (vi,1, uj) (or (vi,3, uj)); if it appears for the second time, then we construct
a clause machine (vi,2, uj) (or (vi,4, uj)). The speed vectors are:

g(vi,k, uj) = (N−4i−k, N−N−j , 1).

Dummy machines. Recall that for every variable, in all the clauses there are either one
positive literal and two negative literals, or two positive literals and one negative literal.
If zi appears once and ¬zi appears twice, then we construct a dummy machine (vi,2, φ),
otherwise we construct a dummy machine (vi,4, φ). The speed vectors are:

g(vi,2, φ) = (N−4i−2, 0, 1), g(vi,4, φ) = (N−4i−4, 0, 1).

According to our construction, it is not difficult to verify that if zi appears once and ¬zi
appears twice, then we construct machines (vi,k, ujk) for k = 1, 3, 4, 1 ≤ jk ≤ m, and
machine (vi,2, φ). Otherwise we construct machines (vi,k, ujk) for k = 1, 2, 3, 1 ≤ jk ≤ m,
and machine (vi,4, φ). This completes the construction of machines.

L. Chen, D. Marx, D. Ye, and G. Zhang 22:7

Tuple jobs. Finally, we construct tuple jobs. There is one tuple job corresponding to each
machine. For simplicity, tuple jobs corresponding to truth-assignment, clause, dummy
machines are called tuple-truth-assignment, tuple-clause, tuple-dummy jobs, respectively.
We also use the symbol of a machine to denote its corresponding tuple job. The size
vectors of tuple jobs are:

s(vi,1, ai, ci) = (εN4i+1, εN i, 27r/32), s(vi,2, bi, di) = (εN4i+2, εN i, 27r/32),

s(vi,3, ai, di) = (εN4i+3, εN i, 27r/32), s(vi,4, bi, ci) = (εN4i+4, εN i, 27r/32).

s(vi,1, uj) = (0, εNN+j , 5r/8 + 10τ), s(vi,2, uj) = (0, εNN+j , 5r/8 + 20τ),

s(vi,3, uj) = (0, εNN+j , 5r/8 + 18τ), s(vi,4, uj) = (0, εNN+j , 5r/8 + 12τ).

s(vi,2, φ) = (0, N2N , 13r/16 + 20τ), s(vi,4, φ) = (0, N2N , 13r/16 + 12τ).

Note that the size vectors of tuple-dummy jobs and tuple-clause jobs are actually inde-
pendent of the index i.

This completes the construction of the whole scheduling instance. Recall that the
processing time of a job on a machine is the inner product of the two corresponding vectors.
Given our construction of machines and jobs, we have the following simple observation.

I Observation 5. Let x be an arbitrary job whose size vector is s(x) = (s1(x), s2(x), s3(x)).
Then the processing time of x is at least s3(x) on every machine. Furthermore, its processing
time is s3(x) +O(ε) if one of the following holds:

x is an element job and is scheduled on a machine whose symbol contains x;
x is a tuple job and is scheduled on its corresponding machine.

We remark that, it is possible for a job x to have a processing time s3(x) + O(ε) on a
machine even if the two conditions of the above observation do not hold, that is, the two
conditions are not necessary.

The overall structure of our construction is similar to that of the paper [5] by Chen, Jansen
and Zhang. We construct variable jobs corresponding to variables, clause jobs corresponding
to clauses, truth-assignment jobs corresponding to the truth assignment of the SAT instance.
Such kinds of jobs also appear in the reduction of [5] when they reduce 3SAT to the scheduling
problem P ||Cmax. However, the reduction of Chen et al. [5] is for P ||Cmax which belongs to
the rank 1 scheduling problem and does not work for higher ranks. To show APX-hardness,
we need to construct completely different job processing times.

We first prove the following lemma.

I Lemma 6. If there exists a truth assignment for I ′sat where every clause is satisfied by
exactly one variable, then Isch admits a feasible schedule whose makespan is r +O(ε).

We give a brief overview of the proof and the reader may refer to the full version of
this paper for details. It can be found at https://www.researchgate.net/publication/
313852592_Parameterized_and_approximation_results_for_scheduling_with_a_low_
rank_processing_time_matrix. We schedule jobs according to the first two columns of
Table 1. Notice that the first two columns specify which job is on which machine, except
that for an element job, say, ai, it does not specify whether it is aTi or aFi . There are two
possibilities regarding to the superscripts of element jobs on every machine, as is indicated
by the third and fourth columns of Table 1. Either way ensures that the total processing
times of jobs on each machine is r + O(ε). The technical part of the proof shows how to
choose a proper way for every machine (based on the truth assignment of I ′sat) so that all
the jobs get scheduled.

STACS 2017

https://www.researchgate.net/publication/313852592_Parameterized_and_approximation_results_for_scheduling_with_a_low_rank_processing_time_matrix
https://www.researchgate.net/publication/313852592_Parameterized_and_approximation_results_for_scheduling_with_a_low_rank_processing_time_matrix
https://www.researchgate.net/publication/313852592_Parameterized_and_approximation_results_for_scheduling_with_a_low_rank_processing_time_matrix

22:8 Results for Scheduling with a Low Rank Processing Time Matrix

Table 1 Overview of the schedule.

machines jobs Feasible ways of scheduling
(vi,1, ai, ci) vi,1, ai, ci, (vi,1, ai, ci) vT

i,1, aT
i , cT

i vF
i,1, aF

i , cF
i

(vi,2, bi, di) vi,2, bi, di, (vi,2, bi, di) vT
i,2, bT

i , dT
i vF

i,2, bF
i , dF

i

(vi,3, ai, di) vi,3, ai, di, (vi,3, ai, di) vT
i,3, aT

i , dT
i vF

i,3, aF
i , dF

i

(vi,4, bi, ci) vi,4, bi, ci, (vi,4, bi, ci) vT
i,4, bT

i , cT
i vF

i,4, bF
i , cF

i

(vi,k, uj) vi,k, uj , (vi,k, uj) vT
i,k, uT

j vF
i,k, uF

j

(vi,k, φ) vi,k, φ, (vi,k, φ) vT
i,k, φT vF

i,k, φF

I Lemma 7. If there is a solution for Isch whose makespan is strictly less than r + 1, then
there exists a truth assignment for I ′sat where every clause is satisfied by exactly one literal.

According to Observation 5, the total processing time of all jobs in any feasible solution is
at least the summation of the third coordinates of all jobs, which is at least 8nr with simple
calculations. Let Sol∗ be the solution whose makespan is strictly less than r + 1. We have
the following structural lemma.

I Lemma 8. In Sol∗, the followings are true:
on a truth-assignment machine, there is exactly one tuple-truth-assignment job, two
truth-assignment jobs and one variable job;
on a clause machine, there is exactly one tuple-clause job, one clause job and one variable
job;
on a dummy machine, there is exactly one tuple-dummy job, one dummy job and one
variable job.

Proof Idea. The first and second coordinates of the speed and size vectors restrict the
scheduling of jobs, e.g., by checking the second coordinate we can conclude that the processing
time of a tuple-dummy job is Ω(N) on any clause machine or truth-assignment machine,
hence it has to be on a dummy machine. The third coordinate of a size vector gives a lower
bound on the job processing time and allows us to derive some overall structure, e.g., each
tuple job has a processing time at least 5r/8, hence there can not be two tuple jobs on
one machine. Given that the number of tuple jobs equals the number of machines, there is
exactly one tuple job on one machine. Lemma 8 follows by combining the above basic idea
with a careful analysis of job processing times. The reader may refer to the full version of
this paper for all the details. J

A machine is called matched, if all the jobs on this machine coincide with the symbol of
this machine, i.e., jobs are scheduled according to the second column of Table 1. Specifically,
we say a machine is matched with respect to variable, or clause, or truth-assignment, or tuple
jobs, if the variable, or clause, or truth-assignment, or tuple jobs on this machine coincide
with the symbol of this machine.

I Lemma 9. We may assume that every machine is matched with respect to variable jobs.

Proof. Consider the eight jobs vγn,k where γ = T, F , k = 1, 2, 3, 4. For any machine denoted
as (vj,k, ∗) or (vj,k, ∗, ∗), the first coordinate of its speed vector is N−4j−k, thus the processing
time of vn,k on this machine becomes Ω(εN) if j < n. Furthermore, vn,4 can only be on
machines whose symbols are (vn,4, ∗) or (vn,4, ∗, ∗), since if it is put on a machine whose
symbol is (vn,k, ∗) or (vn,k, ∗, ∗) where k ∈ {1, 2, 3}, then its processing time also becomes
Ω(εN). Notice that there are two jobs with the symbol vn,4 (one true job vTn,4 and one

L. Chen, D. Marx, D. Ye, and G. Zhang 22:9

false job vFn,4), and two machines with the symbol (vn,4, ∗) or (vn,4, ∗, ∗) (either machines
(vn,4, bn, cn) and (vn,4, φ), or machines (vn,4, bn, cn) and (vi,4, ujn) for some jn). According
to Lemma 8, there is one variable job on every machine. Thus the two machines with the
symbol (vn,4, ∗) or (vn,4, ∗, ∗) are matched with respect to variable jobs.

Next we consider the two variable jobs vn,3. Using the same arguments as above, we can
show that they can only be scheduled on a machine whose symbol is (vn,k, ∗) or (vn,k, ∗, ∗)
where k ∈ {3, 4}. Furthermore, we have already shown that the variable job on a machine
with the symbol (vn,4, ∗) or (vn,4, ∗, ∗) is vn,4, and by Lemma 8 there can only be one variable
job on every machine. Hence, the two jobs vn,3 can only be on the two machines whose
symbols are (vn,3, ∗) or (vn,3, ∗, ∗), and consequently these two machines are matched with
respect to variable jobs.

Iteratively applying the above arguments we can prove that every machine is matched
with respect to variable jobs. J

We can further prove that every machine is matched with respect to clause jobs, tuple
jobs and truth-assignment jobs, and therefore the following Lemma 10 is proved. The basic
idea is similar to the proof of Lemma 9, but a more careful estimation of job processing
times is required. A case by case analysis is needed several times to eliminate certain ways
of scheduling. The reader may refer to the full version of this paper for details.

I Lemma 10. We may assume that every machine is matched in Sol∗.

Finally, we consider the superscripts of jobs on every machine. A machine is called truth
benevolent, if except the tuple job, all the jobs on it are either all true or all false, i.e., jobs
are scheduled according to the third or fourth column of Table 1. The following lemma
follows by a case by case analysis showing that other ways of scheduling will lead to a total
processing time larger than r + 1 on some machine.

I Lemma 11. Every machine is truth benevolent.

Proof of Lemma 7. According to Lemma 11, for every 1 ≤ i ≤ n, on truth-assignment
machines jobs are either scheduled as (vTi,1, aTi , cTi), (vTi,2, bTi , dTi), (vFi,3, aFi , dFi), (vFi,4, aFi , cFi)
or (vFi,1, aFi , cFi), (vFi,2, bFi , dFi), (vTi,3, aTi , dTi), (vTi,4, aTi , cTi). If the former case happens, we let
the variable zi be false, otherwise we let zi be true. We prove that, by assigning the truth
value in this way, every clause of I ′sat is satisfied by exactly one literal.

Consider any clause, say, ej . It contains two or three variables and we let them be vi1,k1 ,
vi2,k2 and vi3,k3 where k1, k2, k3 ∈ {1, 2, 3, 4} (if it contains two variables then vi3,k3 does not
exist). Since there is one uTj and one or two uFj , we assume that uTj is scheduled with vTi1,k1

.
We prove that ej is satisfied by variable zi1 . Notice that according to Lemma 10 and

Lemma 11, uTj and vTi1,k1
are scheduled together on machine (vi1,k1 , uj). There are two

possibilities. Suppose k1 ∈ {1, 2}. According to the construction of the scheduling instance,
machine (vi1,k1 , uj) is constucted if the positive literal zi appears in clause ej for the first or
second time. According to our truth assignment in the paragraph above, variable zi is true,
for otherwise vTi1,k1

is scheduled with aTi , cTi or bTi , dTi , thus ej is satisfied by variable zi1 .
Otherwise k1 ∈ {3, 4}. According to the construction of the scheduling instance, machine
(vi1,k1 , uj) is constructed if the negative literal ¬zi appears in clause ej for the first or second
time. Again according to our truth assignment in the paragraph above, the variable zi is
false, thus ej is satisfied by variable zi1 .

We prove that ej is not satisfied by variable zi2 or zi3 . Consider zi2 . Notice that according
to Lemma 10 and Lemma 11, uFj and vFi2,k2

are scheduled together on machine (vi2,k2 , uj).
There are two possibilities. Suppose k2 ∈ {1, 2}. According to the construction of the

STACS 2017

22:10 Results for Scheduling with a Low Rank Processing Time Matrix

scheduling instance, machine (vi2,k2 , uj) is constructed if the positive literal zi2 appears in
ej for the first or second time. Meanwhile, variable zi2 is false because otherwise vFi2,k2

is
scheduled with aFi , cFi or bFi , dFi according to our truth assignment of variables. Thus ej is
not satisfied by variable zi2 . Similarly, we can prove that if k2 ∈ {3, 4}, ej is not satisfied by
variable zi2 , either. The proof is the same for variable zi3 , if it exists. J

4 Parameterized algorithms and lower bounds

4.1 Parameterizing by by pmax and d

We show R||Cmax is FPT parameterized by pmax and the rank d. It is indeed a combination
of a simple observation together with the following result by Knop and Koutecký [15].

I Theorem 12 ([15]). R||Cmax is FPT parameterized by pmax and K, where K is the
number of different kinds of machines.

I Remark. In [15], machine kind is such defined that if two machines are of the same kind,
then the processing time of every job is the same on them. Using our terminology, K is the
number of distinct speed vectors. It is implicitly shown in [15] that the FPT algorithm runs
in 2O(Θ2K log pmax) + nO(1) time, where Θ is the number of distinct size vectors.

We observe that, if both the numbers of distinct speed vectors and size vectors are
bounded by some function of pmax and d, then Theorem 2 follows directly from Theorem 12.
In the following we show an even stronger result.

I Lemma 13. Let p̄ be the number of distinct processing times in the matrix P = (pij)m×n,
and d be the rank of this matrix. There are at most p̄d + 1 distinct speed vectors, and p̄d + 1
distinct size vectors.

Proof. We show that the number of distinct speed vectors is bounded by p̄d + 1. Due to
symmetry the number of distinct size vectors is also bounded by the same value.

Consider all the size vectors. Since the matrix P has rank d, we are able to find d distinct
size vectors that are linearly independent. Let them be v1, v2, · · · , vd. Suppose there are
n′ ≥ p̄d + 1 distinct speed vectors and we consider each ui · vT1 (recall that ui is the speed
vector of machine i). As jobs have at most p̄ distinct processing times, the product ui · vT1
can take at most p̄ distinct values. According to the pigeonhole principle there exist at least
dn′/p̄e ≥ p̄d−1 + 1 distinct speed vectors leading to the same product. Similarly, among
these speed vectors we can further select at least p̄d−2 + 1 ones such that their product with
v2 are the same. Carry on the argument, eventually we can find at least 2 distinct speed
vectors, say, u1 and u2, such that their product with v1, v2, · · · , vd are always the same, i.e.,
(u1 − u2) · vTi = 0 for 1 ≤ i ≤ d. However, v1, v2, · · · , vd are linearly independent, hence
u1 − u2 = 0, which contradicts the fact that u1 and u2 are different. J

Next we prove Theorem 3, which suggests that the FPT algorithm in Theorem 2 is
essentially the best possible under ETH. We reduce from 3-dimensional matching.

3-Dimensional Matching (3DM)
Input: 3 disjoint sets of elements W = {w1, w2, · · · , wn}, X = {x1, x2, · · · , xn}, Y =
{y1, y2, · · · , yn} such that |W | = |X| = |Y | = n. A set T ⊆W ×X × Y .
Output: Decide whether there exists a perfect matching of size n, i.e., a subset T ′ ⊆ T such
that |T | = n, and for any two distinct triples (w, x, y), (w′, x′, y′) it follows that w 6= w′,
x 6= x′, y 6= y′.

L. Chen, D. Marx, D. Ye, and G. Zhang 22:11

The traditional NP-hardness proof (see, e.g., [8]) for the 3-dimensional matching problem
reduces a 3SAT instance of n variables to a 3DM instance with O(n) elements, hence the
following corollary follows.

I Corollary 14. Assuming ETH, there is no 2o(n) time algorithm for 3DM .

Given an arbitrary instance of 3DM , we construct in the following a scheduling instance
with |T | machines and 3|T | jobs such that the scheduling instance admits a feasible schedule of
makespan at most 11109Γ if and only if the 3DM instance admits a perfect matching, where
Γ =

∑τ
i=1 i · (τ − i) with integer τ being the smallest integer such that τ ! ≥ n (consequently,

τ = O(logn/ log logn)). Furthermore, the scheduling instance we construct satisfies that
d = O(τ), pmax = τO(1). Now it is easy to verify that d log pmax = O(logn). We claim that
Theorem 3 follows from the reduction above. To see why, suppose on the contrary that
Theorem 3 is false. Then there exists an algorithm of running time 22o(d log pmax) for R||Cmax.
We apply this algorithm to the constructed scheduling instance. As d log pmax = O(logn), in
2o(n) time the algorithm determines whether the constructed scheduling instance admits a
feasible schedule of makespan at most 11109Γ, and consequently whether the given 3DM
instance admits a perfect matching. This, however, is a contradiction to Corollary 14.

Construction of the scheduling instance. Note that τ ! ≥ n, hence we can map each integer
1 ≤ i ≤ n to a unique permutation of integers {1, 2, · · · , τ}. Let σ be such a mapping. For
ease of notation, we denote by σi the permutation that i is mapped to by σ. Consequently
σi(k) denotes the integer on the k-th position of the permutation σi.

We construct |T | machines, each corresponding to one triple (wi, xj , yk) ∈ T . The machine
corresponding to (wi, xj , yk) has the speed vector (1, φ(wi), φ(xj), φ(yk)) where

φ(wi) = (σi(1), σi(2), · · · , σi(τ)), φ(xj) = (σj(1), σj(2), · · · , σj(τ)),
φ(yk) = (σk(1), σk(2), · · · , σk(τ)).

For every element z ∈W ∪X ∪ Y , let η(z) denote the number of occurrences of z in the
set of triples T . We construct η(z) jobs for every element z. Among the η(z) jobs, there is
one true job of size vector (gT (z) · Γ, ψw(z), ψx(z), ψy(z)). Each of the remaining η(z)− 1
jobs is called a false job, having a size vector of (gF (z) · Γ, ψw(z), ψx(z), ψy(z)), where

ψw(wi) = (τ − σi(1), τ − σi(2), · · · , τ − σi(τ)), ψw(xj) = ψw(yk) = (0, 0, · · · , 0)︸ ︷︷ ︸
τ

,

ψx(xj) = (τ − σj(1), τ − σj(2), · · · , τ − σj(τ)), ψx(wi) = ψx(yk) = (0, 0, · · · , 0)︸ ︷︷ ︸
τ

,

ψy(yk) = (τ − σk(1), τ − σk(2), · · · , τ − σk(τ)), ψy(wi) = ψy(xj) = (0, 0, · · · , 0)︸ ︷︷ ︸
τ

,

gT (wi) = 102 + 4, gT (xj) = 103 + 1, gT (yk) = 104 + 1,
gF (wi) = 102 + 2, gF (xj) = 103 + 2, gF (yk) = 104 + 2.

We show that the constructed scheduling instance admits a feasible solution of makespan
at most 11109Γ if and only if the 3DM instance admits a perfect matching.

Suppose the given 3DM instance admits a perfect matching T ′. For every (wi, xj , yk) ∈ T ′,
we put the three true jobs corresponding to wi, xj , yk onto the machine corresponding to
this triple. It is easy to verify that the total processing time of the three jobs sum to exactly
11109Γ. For every (wi′ , xj′ , yk′) ∈ T \ T ′, we put three false jobs corresponding to wi′ , xj′ ,
yk′ onto the machine corresponding to this triple. It is also easy to verify that the total

STACS 2017

22:12 Results for Scheduling with a Low Rank Processing Time Matrix

processing times sum up to 11109Γ. Note that there is one true job corresponding to each
element, while every element appears once in T ′, all the jobs are scheduled and we derive a
feasible schedule of makespan 11109Γ.

Suppose the scheduling instance admits a feasible schedule of makespan bounded by
11109Γ, we prove in the following that the 3DM instance admits a perfect matching.

Consider the processing time of a job corresponding to z on a machine corresponding
to (wi, xj , yk). The processing time is gT (z) · Γ + λ(z, (wi, xj , yk)), if it is a true job, or
gF (z) · Γ + λ(z, (wi, xj , yk)) otherwise. We observe that the processing time consists of two
parts. The machine-independent value, which is gT (z) · Γ or gF (z) · Γ that only relies on
the job, and the machine-dependent value, which is λ(z, (wi, xj , yk)). The following lemma
provides a lower bound on λ(z, (wi, xj , yk)).

I Lemma 15. For any element z and triple (wi, xj , yk), the following is true.

λ(z, (wi, xj , yk)) = (1, φ(wi), φ(xj), φ(yk)) · (0, ψw(z), ψx(z), ψy(z))T ≥ Γ.

Furthermore, the equality holds if and only if z = wi or z = xj or z = yk.

Lemma 15 follows immediately from the following Rearrangment Inequality [10].

I Theorem 16 (Rearrangment Inequality). Let a1 < a2 < · · · < an, b1 < b2 < · · · < bn be
two lists of real numbers, then

anb1 + an−1b2 + · · ·+ a1bn ≤ aπ(1)b1 + aπ(2)b2 + · · ·+ aπ(n)bn ≤ a1b1 + a2b2 + · · ·+ anbn

holds for any permutation π. Furthermore, the lower bound is attained if and only if
π(i) = n+ 1− i, and the upper bound is attained if and only if π(i) = i.

I Lemma 17. A job corresponding to an element z is scheduled on a machine corresponding
to a triple that contains z.

Proof. We sum up the processing time of all jobs. There are n true jobs and |T | − n

false jobs corresponding to elements of W . The machine-independent value of these jobs
sum up to 104nΓ + 102(|T | − n)Γ = 102|T | · Γ + 2nΓ. Similarly, it is easy to verify that
the machine-independent value of jobs corresponding to elements of X and Y sum up to
1001nΓ+1002(|T |−n)Γ = 1002|T | ·Γ−nΓ and 10001nΓ+10002(|T |−n)Γ = 10002|T | ·Γ−nΓ,
respectively. Hence the machine-independent value of all jobs sum up to 11106|T | · Γ. As the
makespan is 11109Γ, the total processing time of all jobs is at most 11109|T | · Γ, implying
that the summation of machine-dependent value of all jobs is at most 3|T | · Γ. According
to Lemma 15, the machine-dependent value of each job is at least Γ, regardless of which
machine it is scheduled on. Given that there are 3|T | jobs, the machine-dependent value of
every job is exactly Γ. Again due to Lemma 15, a job corresponding to z must be scheduled
on machine corresponding to a triple that contains z. J

For simplicity, we call a job corresponding to an element of W (X or Y) as a w-job (x-job
or y-job). We have the following lemma.

I Lemma 18. There are three jobs on each machine, one w-job, one x-job and one y-job.

Proof. Notice that the machine-dependent value of each job in the schedule is exactly Γ,
hence the machine-independent value of jobs on each machine sum up to at most 11106Γ.
Notice that the machine-independent value of a y-job at least 104Γ, there is at most one
y-job on each machine. Furthermore, there are exactly |T | machines and y-jobs, hence, there
is exactly one y-job on each machine. Similarly, we can show that there is one x-job and one
w-job on each machine. J

L. Chen, D. Marx, D. Ye, and G. Zhang 22:13

Combining the above two lemmas, we have the following.

I Lemma 19. On the machine corresponding to (wi, xj , yk), the three jobs correspond to wi,
xj, yk, respectively.

Finally, we check whether jobs are true or false on each machine. Indeed, as the machine-
independent value of the three jobs on each machine sum up to 11106Γ, they are either all
true jobs or all false jobs, hence, there are n machines on which all jobs are true jobs, and
the triples corresponding to these machine form a perfect matching.

4.2 Parameterizing by p̄ and d

We remark that, although it is not written explicitly, the general structural theorem in [9]
actually implies an XP algorithm for R||Cmax parameterized by p̄ and K, where K is the
number of different kinds of machines. Combining this result with Lemma 13, Theorem 4
follows directly. For the completeness of this paper, we give all the proofs in the full version
of this paper.

References
1 Noga Alon, Yossi Azar, Gerhard J. Woeginger, and Tal Yadid. Approximation schemes for

scheduling on parallel machines. Journal of Scheduling, 1(1):55–66, 1998.
2 Aditya Bhaskara, Ravishankar Krishnaswamy, Kunal Talwar, and Udi Wieder. Minimum

makespan scheduling with low rank processing times. In Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 937–947. Society for Indus-
trial and Applied Mathematics, 2013.

3 Hans L. Bodlaender and Michael R. Fellows. W[2]-hardness of precedence constrained
k-processor scheduling. Operations Research Letters, 18(2):93–97, 1995.

4 Vincenzo Bonifaci and Andreas Wiese. Scheduling unrelated machines of few different types.
arXiv preprint arXiv:1205.0974, 2012.

5 Lin Chen, Klaus Jansen, and Guochuan Zhang. On optimality of exact and approximation
algorithms for scheduling problems. Technical report, Christian-Albrechts-Universität Kiel,
2013. Report No. 1303. URL: http://www.uni-kiel.de/journals/receive/jportal_
jparticle_00000034.

6 Lin Chen, Deshi Ye, and Guochuan Zhang. An improved lower bound for rank four schedul-
ing. Operations Research Letters, 42(5):348–350, 2014.

7 Lin Chen, Deshi Ye, and Guochuan Zhang. Online scheduling of mixed CPU-GPU jobs.
International Journal of Foundations of Computer Science, 25(06):745–761, 2014.

8 Michael R. Gary and David S. Johnson. Computers and intractability: A guide to the
theory of NP-completeness, 1979.

9 Michel X. Goemans and Thomas Rothvoß. Polynomiality for bin packing with a constant
number of item types. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 830–839. Society for Industrial and Applied Mathematics,
2014.

10 Godfrey Harold Hardy, George Polya, and John Edensor Littlewood. Inequalities. Cam-
bridge University Press, 1952.

11 Dorit S. Hochbaum and David B. Shmoys. A polynomial approximation scheme for schedul-
ing on uniform processors: Using the dual approximation approach. SIAM journal on
computing, 17(3):539–551, 1988.

12 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? In Foundations of Computer Science, 1998. Proceedings. 39th
Annual Symposium on, pages 653–662. IEEE, 1998.

STACS 2017

http://www.uni-kiel.de/journals/receive/jportal_jparticle_00000034
http://www.uni-kiel.de/journals/receive/jportal_jparticle_00000034

22:14 Results for Scheduling with a Low Rank Processing Time Matrix

13 Klaus Jansen. An EPTAS for scheduling jobs on uniform processors: using an milp relaxa-
tion with a constant number of integral variables. SIAM Journal on Discrete Mathematics,
24(2):457–485, 2010.

14 Klaus Jansen, Kim-Manuel Klein, and José Verschae. Closing the gap for makespan schedul-
ing via sparsification techniques. arXiv preprint arXiv:1604.07153, 2016.

15 Dušan Knop and Martin Kouteckỳ. Scheduling meets n-fold integer programming. arXiv
preprint arXiv:1603.02611, 2016.

16 Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for
scheduling unrelated parallel machines. Mathematical programming, 46(1-3):259–271, 1990.

17 Matthias Mnich and Andreas Wiese. Scheduling and fixed-parameter tractability. Math-
ematical Programming, 154(1-2):533–562, 2015.

18 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth
annual ACM symposium on Theory of computing, pages 216–226. ACM, 1978.

19 Jakob Schikowski. A PTAS for scheduling unrelated machines of few different types. In
SOFSEM 2016: Theory and Practice of Computer Science: 42nd International Conference
on Current Trends in Theory and Practice of Computer Science, Harrachov, Czech Republic,
January 23-28, 2016, Proceedings, volume 9587, page 290. Springer, 2016.

20 Evgeny V. Shchepin and Nodari Vakhania. An optimal rounding gives a better approx-
imation for scheduling unrelated machines. Operations Research Letters, 33(2):127–133,
2005.

21 Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Math-
ematics, 8(1):85–89, 1984.

22 René van Bevern, Robert Bredereck, Laurent Bulteau, Christian Komusiewicz, Nimrod
Talmon, and Gerhard J. Woeginger. Precedence-constrained scheduling problems paramet-
erized by partial order width. arXiv preprint arXiv:1605.00901, 2016.

	Introduction
	Preliminaries
	APX-hardness for rank-3 scheduling
	Parameterized algorithms and lower bounds
	Parameterizing by by p-max and d
	Parameterizing by barp and d

