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1. INTRODUCTION

A common type of facility location or clustering problem is the k-center problem,
which is defined as follows: Given a set P of n points in a metric space and a
positive integer k, find a set of k supply points such that the maximum distance
between a point in P and its nearest supply point is minimized. For the cases of the
(Rd, L2) and (Rd, L∞)-metric the problem is usually referred to as the Euclidean
and rectilinear k-center respectively. Drezner [1995] describes many variations of
the facility location problem and their numerous applications. k-center problems
as well as other clustering problems can be formulated as geometric optimization
problems and, as such, they have been studied extensively in the field of computa-
tional geometry; see, for example, the survey by Agarwal and Sharir [1998] and the
references therein.

For solving a k-center problem, one usually looks at its corresponding decision
problem: In the Euclidean k-center problem, one wants to decide whether P can
be covered by the union of k balls of given radius, and if so, return such a cov-
ering; in the rectilinear case, a covering with k axis-aligned cubes of given size is
sought. Once an algorithm for the decision problem is available, a solution for the
k-center problem can be found using search techniques, e.g., binary search, para-
metric search, on a finite set of candidate values for the optimal size of the balls or
cubes [Agarwal and Sharir 1998; Chan 1999a].

Efficient polynomial-time algorithms have been found for the planar k-center
problem when k is a small constant [Chan 1999a; 1999b; Eppstein 1997; Nussbaum
1997; Segal 1999; Sharir and Welzl 1996]. Also, the Euclidean 1-center and recti-
linear 1- and 2-center problems can be solved in polynomial time when d is part
of the input [Megiddo 1990]. However, only O(nO(kd))-time algorithms are known
when both k and d are part of the input, in particular, for k ≥ 2 and d > 2 for
the Euclidean case [Agarwal and Sharir 1998], and k ≥ 3 and d ≥ 6 for the recti-
linear case [Assa and Katz 1999]. The fastest previously known algorithm for the
rectilinear 3-center problem, due to Assa and Katz [1999], runs in O(nbd/3c log n)
time.

As for lower bounds, both the Euclidean and rectilinear (decision) problems are
NP-hard, for d = 2 when k is part of the input [Fowler et al. 1981; Megiddo and
Supowit 1984], while, the Euclidean 2-center and rectilinear 3-center are NP-hard
when d is part of the input [Megiddo 1990]. Moreover, a lower bound of Ω(n log n)
in the algebraic computation tree model has been shown for both the rectilinear
4-center problem in the plane [Sharir and Welzl 1996] and the rectilinear 3-center
problem in 3-dimensional space [Hoffmann 2001; 2002].

The above NP-hardness results do not exclude the possibility of algorithms in
which the exponent of n in the running time is independent of the parameter k or d
or both. In terms of parameterized complexity theory (see bellow), the question is
ACM Journal Name, Vol. VV, No. NN, MM 20YY.
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Table I. Complexity classification of k-center problems for unbounded dimension.

k L2 L∞
1 P (weakly polynomial) P

2 NP-hard [Megiddo 1990], W[1]-hard P [Megiddo 1990]
3 NP-hard [Megiddo 1990], W[1]-hard NP-hard [Megiddo 1990], FPT

≥ 4 NP-hard [Megiddo 1990], W[1]-hard NP-hard [Megiddo 1990], W[1]-hard

whether the problem is fixed-parameter tractable with respect to any of these two
parameters. When k is considered as the parameter, Marx [2005] showed that this
is most probably not the case for the rectilinear k-center problem, for any d ≥ 2,
by proving the respective decision problem to be W[1]-hard. We note here that
Demaine et al. [2005] showed that the related (unweighted) (k, r)-center problem
in planar graphs and map graphs, where one wants to find k vertices (centers) of
the input graph such that every vertex of the graph is within distance at most r
from some center, is fixed-parameter tractable when parameterized by k and r.

Parameterized Complexity. We review some basic definitions of parameterized
complexity theory; for an introduction to the field, the reader is referred to the
textbooks by Downey and Fellows [1999], and Flum and Grohe [2006]. Formally,
a parameterized problem Π is a subset of Σ∗ × N, where Σ is a fixed alphabet.
An instance of Π is a pair (x, k), where the second component k is called the pa-
rameter. A parameterized problem Π is fixed-parameter tractable if there is an
algorithm that decides whether or not (x, k) ∈ Π in f(k) · |(x, k)|c time, where f
is a computable function depending only on k, and c is a constant independent of
k; such an algorithm is (informally) said to run in fpt-time. The class of all fixed-
parameter tractable problems is denoted by FPT. An infinite hierarchy of classes,
the W-hierarchy, has been introduced for establishing fixed-parameter intractabil-
ity. Its first level, W[1], can be thought of as the parameterized analog of NP: a
parameterized problem that is hard for W[1] is not in FPT unless FPT = W[1],
which is considered highly unlikely under standard complexity theoretic assump-
tions. Hardness is sought via fpt-reductions: an fpt-reduction is an fpt-time Turing
reduction from a problem Π, parameterized with k, to a problem Π′, parameterized
with k′, such that k′ ≤ g(k) for some computable function g.

Our Results. In this paper, we give a fine classification of the complexity of
the k-center problem parameterized by the dimension d in the L2 and L∞ met-
ric; see Table I. We show that the rectilinear 3-center problem can be solved in
O(6ddn log(dn)) time, which is a considerable improvement over the O(nbd/3c log n)-
time algorithm by Assa and Katz [1999]. Thus, the rectilinear 3-center problem is
fixed-parameter tractable with respect to d. Our algorithm is based on two ingredi-
ents. First, we solve the corresponding decision problem in O(6ddn+dn log n) time
by a quite simple reduction to 2-satisfiability (2SAT). Second, we use the technique
by Frederickson and Johnson [1984] to efficiently search among the candidate val-
ues for the optimal side length of the cubes. In view of the O(n log n) lower bound
for d = 3 [Hoffmann 2001; 2002], our algorithm is asymptotically optimal for any
d ≥ 3.

On the negative side, we prove that both the Euclidean and rectilinear k-center
(decision) problems are W[1]-hard with respect to d, for k ≥ 2 and k ≥ 4 respec-
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tively. For the Euclidean case, our reduction also implies that the problem cannot
be solved in O(no(d)) time unless the Exponential Time Hypothesis fails.

2. THE RECTILINEAR 3-CENTER PROBLEM

In this section we show that the rectilinear 3-center problem is fixed-parameter
tractable with respect to the dimension of the input point set.

Theorem 2.1. a) Given n points in d dimensions, we can decide whether they
can be covered by three axis-aligned cubes of given side length m in O(6d · dn+
dn log n) time.

b) The smallest side length m for which the given points can be covered can be
determined in O(6d · dn log(dn)) time.

Proof. (a) We can assume w.l.o.g. that m = 1. Let P = {p1, . . . , pn} be the
input point set. We denote the three cubes by A, B, and C. Each cube is the
Cartesian product of d unit intervals.

The function xj denotes the projection onto the j-coordinate axis. Therefore,
xj(p) is the j-th coordinate of a point p and xj(A) is a unit interval for any cube
A. Projecting the n points and the cubes on the j-th coordinate axis, we get n real
numbers xj(pu) and 3 unit intervals xj(A), xj(B), and xj(C) (whose positions are
to be determined). We sort the coordinates of the points in each of the coordinate
directions in O(dn log n) time.

We have a covering if we can assign every point pu to one of the cubes (A, B, or
C) such that, in each coordinate, this point is covered by the interval corresponding
to the assigned cube.

In the following, we will consider the dimensions separately. We will look at the
projection on each coordinate j and try to see by which interval a point can be
covered in this coordinate. Let the minimum and maximum coordinate values be
lj and rj .

If the diameter rj − lj is at most one, we can, for example, align the three left
interval endpoints with the leftmost point lj . Then, in this coordinate, all points
are covered by all intervals. This means that we can eliminate this coordinate from
consideration. From now on, we will assume that all these irrelevant coordinates
have been eliminated, and thus, the diameter in coordinate j is bigger than one.
Then we can assume, w.l.o.g., that no interval sticks out to the left of lj or to the
right of rj . On the other hand, these points must be covered by some interval.
Thus we can make the following assumption:

In dimension j, one of the intervals xj(A), xj(B), xj(C) has its left endpoint
aligned with the leftmost point lj . Another interval has its right endpoint aligned
with the rightmost point rj . The third interval (the “middle” interval) lies between
these two positions. Intuitively we can see the middle interval “floating” between
lj and rj because its position is not yet determined. The boundary cases, where
the middle interval coincides with the left or right interval, are permitted.

We can thus classify the solutions into 6d patterns, according to the intervals
(xj(A), xj(B), or xj(C)) that are the left, middle, and right intervals in each
coordinate direction. Formally, a pattern is represented as a sequence

(L1,M1, R1), . . . , (Ld,Md, Rd),
ACM Journal Name, Vol. VV, No. NN, MM 20YY.
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where each triplet (Lj ,Mj , Rj) is a permutation of the three symbols A,B,C.
Let us restrict our attention to one fixed pattern. We now describe how to model

this restricted covering problem as a logical satisfiability problem in conjunctive
normal form, and decide whether such restricted covering exists in O(dn) time.

We have 3n Boolean variables yAu, yBu, yCu. The variable yXu represents the
fact that point pu is covered by box X, for X = A,B,C.

We have the n covering clauses

(yAu ∨ yBu ∨ yCu), (1)

for every u ∈ {1, . . . , n}, expressing the fact that every point is covered (by at least
one box).

Let us now look at some dimension j, where xj(Lj), xj(Mj), xj(Rj) are the left,
middle, and right interval in dimension j according to the chosen pattern. (Lj , Mj ,
Rj is a permutation of A, B, C.)

The positions of the intervals xj(Lj) and xj(Rj) are fixed, and we only have to
decide the position of the middle interval xj(Mj), that floats between lj and rj .

When xj(pu) > lj + 1, the point pu cannot be covered by the box Lj and we can
put the following set of clauses with one literal:

(¬yLju), (2)

for all u with xj(pu) > lj + 1. A similar argument applies to the box Rj , and we
can put the following set of clauses:

(¬yRju) (3)

for all u with xj(pu) < rj − 1. We can cover two points pu and pv with the box Mj

only if the distance between xj(pu) and xj(pv) is at most one. Thus we add the
following set of clauses:

(¬yMju ∨ ¬yMjv), (4)

for all u, v ∈ {1, . . . , n} with xj(pu)− xj(pv) > 1.
The above model is a somewhat abbreviated story of the situation. For example,

we have no variable to express explicitly the fact that box X covers point u in
dimension j (in the projection). Nevertheless, the model captures the problem
correctly:

Lemma 2.2. There is a covering conforming to the chosen pattern if and only if
the clauses (1–4) are satisfiable.

Proof. Suppose we have a covering conforming to the chosen pattern. Set yXu
to true if and only if point pu is covered by box X. Then it is easy to check that
all clauses are satisfied.

Conversely, assume that we have a Boolean assignment that satisfies all clauses.
In each dimension j, the intervals xj(Lj) and xj(Rj) are already fixed, and we
place the interval xj(Mj) as follows: we align its left endpoint with the leftmost
point xj(pu) (in dimension j) for which yMju is true. This defines the position of
the boxes A, B, C.

For a point pu the clauses (1) imply that at least one of yAu, yBu, yCu is true.
We have to show that, if yXu is true, then these chosen unit intervals for box X
cover point pu in every dimension.

ACM Journal Name, Vol. VV, No. NN, MM 20YY.
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Lj

Mj

Rj

literals for points in this
range do not appear negated

lj rj

Fig. 1. The points in the indicated region do not appear in a clause of the form (2–4).

If X = Lj or X = Rj in dimension j, the clauses (2) or (3) ensure that point pu
is covered in dimension j. Thus, suppose finally that X = Mj . The interval for Mj

was chosen such that xj(pu) does not lie to the left of xj(Mj). If xj(pu) lies to the
right of xj(Mj) it means that some point pv, whose distance xj(pu)− xj(pv) from
pu is bigger than 1, has also yMjv true. This contradicts the clause (4).

All clauses except the clauses (1) contain at most two literals. We will now show
that the clauses (1) can be eliminated, turning the problem into a 2-satisfiability
problem, which can be solved in linear time.

Any of the clauses (2) or (3) effectively sets a variable to false, and it can be
immediately used to eliminate a literal from one of the clauses (1). If we perform
this elimination for all literals, we end up with n modified covering clauses, each of
which contains a proper subset of {yAu, yBu, yCu}. (If we obtain an empty clause,
we know that the problem is not satisfiable.) We refer to the resulting clauses,
which contain at most two literals each, as the reduced covering clauses, and we
denote them by (1′).

Lemma 2.3. There is a covering conforming to the chosen pattern if and only if
the clauses (1′) and (2–4) are satisfiable.

Proof. The new set of clauses is weaker than the old one: It is derived by
drawing logical conclusions (actually, some form of resolution), and omitting the
clauses with three literals. Therefore, when the clauses (1–4) are satisfiable, the
new set of clauses is satisfiable too.

Thus we only have to show that the clauses (1–4) are satisfiable whenever the
reduced system of clauses is satisfiable.

A reduced clause (1′) implies that the corresponding original clause is also sat-
isfied. Consider now a clause (1) for a point pu which remains intact during the
reduction process. None of yAu, yBu, and yCu, ever appears in a clause (2) or (3).
In other words, in each dimension j, point pu lies within distance 1 both of the
leftmost point lj and of the rightmost point rj ; see Fig. 1. This means that point
pu is covered by all three intervals, no matter where the interval xj(Mj) is. (Here
we are using the fact that the three cubes have equal size.)

On the logical level, none of yAu, yBu, and yCu appears in the clauses (4), and
thus they do not appear in negated form at all. We can thus satisfy the clause
(yAu ∨ yBu ∨ yCu) simply by setting all three variables to true.

Thus we have reduced the covering problem for a fixed pattern to an equivalent
2-SAT instance. There are O(n) clauses of type (1′), O(dn) clauses of types (2)
ACM Journal Name, Vol. VV, No. NN, MM 20YY.
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and (3), but O(dn2) clauses of type (4).
The clauses of the last type can be replaced by O(dn) clauses by introducing

auxiliary variables, as follows: Let us look at a fixed dimension j. The O(n2)
clauses of the form (4) involve the n variables yMju, which we abbreviate by wu,
and we assume for simplicity of notation that the points are ordered by the j-th
coordinate: xj(p1) ≤ xj(p2) ≤ · · · ≤ xj(pn).

The O(n2) clauses of the form (4) can be equivalently written as implications:

wu⇒¬wv, (5)

whenever xj(pv)− xj(pu) > 1.
We introduce auxiliary variables zu that are intended to represent the fact that

the interval for Mj starts left of xj(pu) or at xj(pu). Then we have the implications

wu⇒ zu, (6)

for u = 1, . . . , n, and

zu⇒ zu+1, (7)

for u = 1, . . . , n− 1.
Finally, for a given point pv with xj(pv) > lj + 1, let ū(v) denote the largest

index u such that xj(pu) < xj(pv)− 1, (i. e., pū(v) is the right-most point with this
property). Then we add the O(n) clauses

zū(v)⇒¬wv, (8)

for all v = 1, . . . , n with xj(pv) > lj + 1. We have omitted the reference to j for
the variables w and z, but it should be kept in mind that this procedure has to be
carried out for each dimension j separately.

Lemma 2.4. For given values of the variables w1, . . . , wn, the clauses (5) are
satisfied if and only if there is a truth assignment for the variables z1, . . . , zn, that
satisfies (6–8).

Proof. If we have a truth assignment w1, . . . , wn satisfying the clauses (5), we
set zu := w1 ∨ w2 ∨ · · · ∨ wu. Then (6) and (7) are satisfied by construction.
To prove (8), assume for contradiction that wv and zū(v) are true, for some v.
By the definition of zū(v), there is some true wu with u ≤ ū(v). Since we have
xj(pu) ≤ xj(pū(v)) < xj(pv)− 1 and wu, wv are true, then wu, wv violate (5).

Conversely, assume that (6–8) is fulfilled, and let us prove (5) for each pair u, v
with xj(pu) < xj(pv) − 1. The clauses (8) include the clause zū(v) ⇒ ¬wv, and
from the definition of ū(v) we have u ≤ ū(v) < v. Thus, the chain of implications
wu⇒ zu⇒ zu+1⇒ · · · ⇒ zū(v)⇒¬wv proves (5).

We have reduced the number of clauses to O(dn), and each clause has at most
two literals. The clauses can be generated in O(dn) time if the input coordinates
are sorted in each dimension, and the satisfiability of these clauses can be tested in
O(dn) time as well. This procedure has to be repeated for each of the 6d patterns.
This concludes the proof of part (a) of Theorem 2.1.

(b) The minimum side length m for which the given points are covered is one
of the O(dn2) pairwise distances |xj(pu)− xj(pv)|. We initially sort in O(dn log n)
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8 · Sergio Cabello et al.

time the input coordinates in each dimension. For each dimension j, assuming for
simplicity of notation that the points are indexed such that xj(p1) ≤ xj(p2) ≤ · · · ≤
xj(pn), we define an n× n matrix ∆j = {δjuv} with entries δjuv = xj(pu)− xj(pv).
Each matrix ∆j is a sorted matrix: each column has nondecreasing values and
each row has non-increasing values. The matrices ∆1, . . . ,∆d are not constructed
explicitly, but only some of their entries will be evaluated. Let ∆ denote the multiset
of dn2 entries in ∆1, . . . ,∆d. Clearly, the sought value m is one of the values in ∆.

Frederickson and Johnson [1984] showed how to select for any 1 ≤ k ≤ dn2 the
k-th largest entry in the collection of sorted matrices ∆1, . . . ,∆d evaluating O(dn)
entries. In our scenario, any desired entry δjuv can be obtained in O(1) time, after
the initial sorting of the coordinates. Thus, we can find the k-th largest value of ∆
in O(dn) time.

We can now perform a binary search for m on the entries of ∆. Since ∆ has
dn2 values, the binary search requires O(log(dn)) calls to the selection procedure
and applications of the decision algorithm from part (a). Therefore, each of the
O(log(dn)) steps of the binary search requires O(6d · dn) time, after the initial
sorting of the coordinates.

3. THE RECTILINEAR 4-CENTER PROBLEM

In this section we show that the rectilinear 4-center decision problem, parameterized
with the dimension d, is W[1]-hard. The problem asks whether n given points can
be covered by 4 axis-aligned cubes of a given side length. Without loss of generality,
we will only consider unit cubes throughout.

Our reduction builds point sets from basic building blocks with the join operation:
Let P1 and P2 be two sets of points in d1 and d2 dimensions, respectively. The join
of P1 and P2 is a set P of |P1|+ |P2| points in d1 +d2 dimensions that are obtained
by padding the points in P1 with d2 zero coordinates at the end and by padding
the points in P2 with d1 zero coordinates at the beginning. The join of multiple
point sets is defined similarly.

We say that a cube is a 0-covering cube if it contains the origin. A set C of
cubes is a 0-covering set if every cube in C contains the origin. In order to make
the gadget construction in the hardness proof easier, we consider a variant of the
problem where the 4 cubes have to form a 0-covering set. In general, it is not true
that if P1 can be covered by 4 cubes and P2 can be covered by 4 cubes, then their
join can be also covered by 4 cubes. However, this is true if P1 and P2 can be
covered by 0-covering cubes:

Proposition 3.1. The join P of point sets P1, . . . , P` can be covered by a 0-
covering set of k unit cubes if and only if each set Pj can be covered by a 0-covering
set of k unit cubes.

Proof. Let di be the dimension of the point set Pi and let d =
∑`
i=1 di. For

each i = 1, . . . , `, let Ci = {ci,1, . . . , ci,k} be a set of di-dimensional 0-covering unit
cubes that cover Pi. We claim that the set C = {c1, . . . , ck} of d-dimensional 0-
covering unit cubes cj = c1,j × c2,j ×· · ·× c`,j covers P . Let x be a point in Pi that
is covered by ci,j and let x′ be the corresponding point in the join P . It is easy
to see that cj covers x′: this follows from the facts that ci,j covers x and ci′,j is a
0-covering cube for i′ 6= i.
ACM Journal Name, Vol. VV, No. NN, MM 20YY.
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The other direction is obvious.

To simplify the gadget construction further, we consider a generalization of the
problem, where each point has a prescribed list of cubes and a point has to be
covered with one of the cubes on its list. For a set P of n points in d dimensions
and a subset L(p) ⊆ {1, 2, 3, 4} for every point p ∈ P , the constrained rectilinear 4-
center decision problem asks for a 4-tuple (c1, c2, c3, c4) of d-dimensional 0-covering
unit cubes such that every point p ∈ P is contained in cr for some r ∈ L(p). If
a quadruple (c1, c2, c3, c4) of 0-covering unit cubes covers every point in the sense
defined above, then we say that (c1, c2, c3, c4) is a proper cover of P . The join oper-
ation extends to point sets with constraint lists L(p), and Proposition 3.1 remains
true for this constrained version of the problem. (In contrast to Proposition 3.1,
we restrict the following statement to coverings by 4 cubes; the proof carries over
almost verbatim.)

Proposition 3.2. Let P1, . . . , P` be point sets with constraint lists, and let P
be their join. Then there is a proper cover for P if and only if each set Pj has a
proper cover.

We will prove hardness for the constrained rectilinear 4-center decision prob-
lem parameterized with d, which, as shown below, is not harder than the original
version.

Lemma 3.3. There is an fpt-reduction from the the constrained rectilinear 4-
center problem to the rectilinear 4-center problem, with respect to the dimension
d.

Proof. Let P be a set of points in d dimensions with constraint lists L(p) for
each p ∈ P . Let us augment each point with 4 new coordinates; denote these extra
coordinates of a point p with xi(p) for i = 1, 2, 3, 4. For every point p ∈ P , we
define

xi(p) =

{
0 if i 6∈ L(p),
1 if i ∈ L(p)

for i = 1, 2, 3, 4. (We will have no need to refer to the d original coordinates;
therefore we number the additional coordinates starting from 1.) Let us add 4 new
points p1, p2, p3, p4 such that

xi(pj) =

{
2 if i = j,
0 if i 6= j

for 1 ≤ i, j ≤ 4 and every other coordinate is 0. Denote by P ′ this set of |P | + 4
points in d+ 4 dimensions.

We claim that P ′ can be covered with 4 unit cubes if and only if the constrained
rectilinear 4-center decision problem on P has a solution.

Let (c1, c2, c3, c4) be a proper cover for P . Augment cr to the 4 extra coordinates
by defining the projection of cr to the i-th extra coordinate to be

xi(cr) =

{
[1, 2] if i = r,
[0, 1] if i 6= r.

ACM Journal Name, Vol. VV, No. NN, MM 20YY.
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It is clear that the resulting unit cubes c′1, c′2, c′3, c′4 cover the |P | points in P ′ that
were created from P . Furthermore, c′r covers pr: this follows from the definitions
of xi(pr), xi(cr) above and from the fact that cr is 0-covering.

Conversely, let us assume that there are 4 unit cubes that cover the points in P ′.
Observe that two extra points pr and ps must be covered by different cubes since
|xr(pr)− xr(ps)| = 2 > 1 if r 6= s, 1 ≤ r, s ≤ 4. Let us denote the cube that covers
pr by c′r. Since xr(pr) = 2, we have xr(c′r) = [a, a+ 1] with a ≥ 1. Let p be a point
in P and let p′ be the corresponding point in P ′. If c′r covers p′, then r ∈ L(p):
otherwise xr(p) = 0 would not be contained in xr(c′r). Let cr be the d-dimensional
cube obtained from c′r by projecting out the 4 extra dimensions. Clearly, c1, c2, c3,
c4 cover every point in P ; more precisely, for every p ∈ P , there is a r ∈ L(p) such
that cr covers p. Furthermore, cr is 0-covering: c′r covers pr and pr is nonzero only
in the 4 extra coordinates.

We now come to the main lemma of this section: proving that the constrained
rectilinear 4-center problem is W[1]-hard. Let us give a short intuitive overview of
the proof. The reduction is from the k-clique problem. The first ingredient of the
reduction is the construction of the selection gadgets. The vertex selection gadget
ensures that among a set of n points there is at least one which is covered only
by cube c4 in a solution. The n possible choices of this point will correspond to
the n possible way of choosing a vertex of the clique. In the reduction, we build k
vertex selection gadgets, for selecting k vertices that are supposed to form a clique.
Analogously, the edge selection gadget constrains a set of m points in such a way
that at least one of the points is covered only by cube c1; the choice of this point
corresponds to selecting an edge of the clique. There are

(
k
2

)
edge selection gadgets,

for selecting the edges of the clique. The second ingredient is the construction of the
incidence testing gadgets. The role of these gadgets is to ensure that the selected
vertices are compatible with the selected edges: the endpoints of the selected edges
are exactly the selected vertices. More precisely, the incident testing gadget on a set
A of n points and a set B of m points constrains these points in such a way that if
the i-th point of A is covered by cube c4 and the j-th point of B is covered by cube
c1, then vertex i is an endpoint of the j-th edge (for some given numbering of the
vertices and edges of the graph.) The third ingredient of the proof is finding a way
of joining the gadgets such that “points with the same meaning” in the different
gadgets are covered by the same cubes. We will use here the join operation defined
above and the fact that the cubes are 0-covering (recall that the definition of the
constrained problem requires that the cubes in the solution are 0-covering).

Lemma 3.4. The constrained rectilinear 4-center decision problem is W[1]-hard
with respect to the dimension d.

Proof. The proof is by an fpt-reduction from the parameterized k-clique prob-
lem, which is W[1]-complete with respect to k [Flum and Grohe 2006]. Let [n] =
{1, . . . , n}. We look for a clique of size k in a graph G([n], E), with |E| = m; for
convenience we identify E with the set [m]. Each edge t has an endpoint low(t)
with smaller value and an endpoint up(t) with larger value; we will call them the
lower endpoint and the upper endpoint. We also define a value ε := 1/(10n+ 10m).

A k-clique in G will be represented as a mapping from the vertices of a complete
ACM Journal Name, Vol. VV, No. NN, MM 20YY.
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graph of order k (i. e., from the integers p = 1, . . . , k) to the vertices of G, and from
the edges of the complete graph (i. e., from the pairs (p, q) with 1 ≤ p < q ≤ k)
to E. In the reduction we construct a point set P that consists of several gadgets:
each gadget is a point set having certain properties and P is obtained by combining
the gadgets with the join operation. We have k gadgets that select the k vertices
of the clique,

(
k
2

)
gadgets that select the edges of the clique, and 2

(
k
2

)
incidence

testing gadgets that ensure the consistency of these selections.

3.1 Vertex selection gadget

The vertices of the clique will be represented by k three-dimensional vertex selection
gadgets. Each gadget consists of the following 4n+ 6 points:

—xi = ((i+ 1)ε, (i− 1)ε− 1, 0) and L(xi) = {1, 2, 4} for 1 ≤ i ≤ n.
—z1

i = (iε, (i− 1)ε− 1, 0) and L(z1
i ) = {1, 2} for 1 ≤ i ≤ n.

—z2
i = (0, iε, (i− 1)ε− 1) and L(z2

i ) = {2, 3} for 1 ≤ i ≤ n.
—z3

i = ((i− 1)ε− 1, 0, iε) and L(z3
i ) = {1, 3} for 1 ≤ i ≤ n.

—u1 = (nε− 1, 0, 0) and v1 = (ε, 0, 0) with L(u1) = L(v1) = {1}.
—u2 = (0, nε− 1, 0) and v2 = (0, ε, 0) with L(u2) = L(v2) = {2}.
—u3 = (0, 0, nε− 1) and v3 = (0, 0, ε) with L(u3) = L(v3) = {3}.
Each gadget has n possible “states”: there is some point xi that is covered only by
cube c4; the choice of this point corresponds to the vertex that is selected by this
gadget. To achieve this effect, the points z1

i , z2
i , z3

1 set up a “cycle of implications”
in the following sense. If c1 covers many of the z1

i vertices, then it can cover only
a few of z3

i vertices, which means that c3 has to cover many of these vertices. But
this implies that c3 covers only a few of the z2

i vertices, which in turn implies that
c2 covers many of the z2

i vertices, but only few of the z1
i . Thus all three cubes have

to be perfectly aligned if c1 and c2 cover all the z1
i vertices. Finally, looking at the

xi’s (which are almost the same as the z1
i vertices), it turns out that even if c1 and

c2 completely cover the z1
i vertices, there is one xi that is covered by neither c1 nor

c2. The role of the u1, v1, etc. vertices is only to give some simple bounds on the
possible locations of the cubes.

Lemma 3.5. The vertex gadget has the following properties:

i) For every 1 ≤ s ≤ n, there is a proper cover (c1, c2, c3, c4) of P such that xs ∈ c4,
and xi ∈ c1 or xi ∈ c2 for every i 6= s.

ii) In every proper cover (c1, c2, c3, c4), there is a 1 ≤ s ≤ n such that xs is only
covered by c4, among the cubes c1, c2, c4 to which xs is constrained.

Proof. (ii) We begin with the proof of the second statement, which shows the
gadget “at work”. Assume that we have a proper cover (c1, c2, c3, c4). We can
assume that the coordinates of the cubes are integer multiples of ε. For d = 1, 2, 3,
let [pdε − 1, pdε] be the projection of cd to the d-th coordinate. Since cj covers
both uj and vj , we have 1 ≤ pd ≤ n. If p2 > p1, then z1

p2 is covered by neither
c1 nor c2: cube c1 does not cover z1

p2 in the first coordinate and cube c2 does not
cover z1

p2 in the second coordinate. Thus p1 ≥ p2. Similar arguments show that
ACM Journal Name, Vol. VV, No. NN, MM 20YY.
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p1 ≥ p2 ≥ p3 ≥ p1, thus there is equality throughout; let s := p1 = p2 = p3. Now
point xs is covered by neither c1 nor c2.

(i) For a given s, we define the 4 cubes as follows:

c1 = [sε− 1, sε]× [−1, 0]× [0, 1] c2 = [0, 1]× [sε− 1, sε]× [−1, 0]
c3 = [−1, 0]× [0, 1]× [sε− 1, sε] c4 = [0, 1]× [−1, 0]× [0, 1]

It can be verified that these 4 cubes cover every point. For example, z1
i is covered

by c1 for i ≤ s and by c2 for i > s. Every xi is covered by c4, but point xi is also
covered by c1 for i < s and by c2 for i > s. Thus we have a proper cover where
xi ∈ c1 or xi ∈ c2 for every i 6= s. Furthermore, for d = 1, 2, 3, cube cd covers both
ud and vd.

3.2 Edge selection gadget

The edge selection gadget is very similar to the vertex selection gadget, but it has
m states and the cubes 1 and 4 are exchanged in the lists. That is, the gadget
consists of the following 4m+ 6 points:

—yj = ((j + 1)ε, (j − 1)ε− 1, 0) and L(yj) = {1, 2, 4} for 1 ≤ j ≤ m.
—z1

j = (jε, (j − 1)ε− 1, 0) and L(z1
j ) = {2, 4} for 1 ≤ j ≤ m.

—z2
j = (0, jε, (j − 1)ε− 1) and L(z2

j ) = {2, 3} for 1 ≤ j ≤ m.
—z3

j = ((j − 1)ε− 1, 0, jε) and L(z3
j ) = {3, 4} for 1 ≤ j ≤ m.

—u1 = (mε− 1, 0, 0) and v1 = (ε, 0, 0) with L(u1) = L(v1) = {4}.
—u2 = (0,mε− 1, 0) and v2 = (0, ε, 0) with L(u2) = L(v2) = {2}.
—u3 = (0, 0,mε− 1) and v3 = (0, 0, ε) with L(u3) = L(v3) = {3}.
The gadget selects one edge: there is one vertex yi that is covered only by cube c1.

Lemma 3.6. The edge gadget has the following properties:

i) For every 1 ≤ t ≤ m, there is a proper cover (c1, c2, c3, c4) of P such that yt ∈ c1,
and yj ∈ c2 or yj ∈ c4 for every j 6= t.

ii) In every proper cover (c1, c2, c3, c4), there is a 1 ≤ t ≤ m such that yt is only
covered by c1, among the cubes c1, c2, c4 to which yt is constrained.

3.3 Incidence testing gadget

The role of the incidence testing gadget is to ensure that the edge connecting two
vertices of the clique is incident to these vertices: More precisely, the edge j that
is chosen in the edge selection gadget for the edge between the p-th and the q-th
vertex of the clique (1 ≤ p, q ≤ k) must be incident to the vertices i and i′ that
are chosen in the p-th and the q-th vertex selection gadget. There are two types of
incident testing gadgets: the first one tests whether the lower endpoint of a selected
edge is the same as a selected vertex, while the second tests the upper endpoint.
The lower incidence testing gadget consists of the following 5n + m + 6 points in
six dimensions:

—xi = (iε, iε− 1, 0, 0, 0, 0) for 1 ≤ i ≤ n with L(xi) = {1, 2, 4},
—yj = (0, 0, 0, low(j)ε, low(j)ε− 1, 0) for 1 ≤ j ≤ m with L(yj) = {1, 2, 4},
—z1

i = (0, (i+ 1)ε, iε− 1, 0, 0, 0) for 1 ≤ i ≤ n with L(z1
i ) = {3, 4},
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—z2
i = (0, 0, (i+ 1)ε, iε− 1, 0, 0) for 1 ≤ i ≤ n with L(z2

i ) = {1, 3},
—z3

i = (0, 0, 0, 0, (i+ 1)ε, iε− 1) for 1 ≤ i ≤ n with L(z3
i ) = {1, 3},

—z4
i = (iε− 1, 0, 0, 0, 0, (i+ 1)ε) for 1 ≤ i ≤ n with L(z4

i ) = {3, 4},
—u1 = (0, 0, 0, nε− 1, nε− 1, 0) and v1 = (0, 0, 0, ε, ε, 0) with L(u1) = L(v1) = {1}.
—u3 = (0, 0, nε− 1, 0, 0, nε− 1) and v3 = (0, 0, ε, 0, 0, ε) with L(u3) = L(v3) = {3}.
—u4 = (nε− 1, nε− 1, 0, 0, 0, 0) and v4 = (ε, ε, 0, 0, 0, 0) with L(u4) = L(v4) = {4}.
The points xi and yj will be associated to corresponding points in vertex and edge
selection gadgets, as described later in Section 3.4.

Similarly to the vertex/edge selection gadgets, the points form a cycle of impli-
cations, but this time in a somewhat more complicated way. The points z1

i , z2
i and

coordinates 2 and 3 ensure that if c4 cover an xi with small i, then c1 can cover
only an yj with small low(j). The points z3

i , z4
i and coordinates 5 and 6 ensure

that if c4 cover an xi with large i, then c1 can cover only a yj with large low(j),
making the connection tight.

Lemma 3.7. The lower incidence testing gadget has the following properties:

i) For every 1 ≤ t ≤ m and s = low(t), there is a proper cover (c1, c2, c3, c4) of P
such that xi ∈ c1 ∩ c2 for every 1 ≤ i ≤ n, yj ∈ c2 ∩ c4 for every 1 ≤ j ≤ m,
xs ∈ c4, and yt ∈ c1.

ii) In every proper cover (c1, c2, c3, c4), if xs ∈ c4 for some 1 ≤ s ≤ n and yt ∈ c1
for some 1 ≤ t ≤ m, then s = low(t).

Proof. (ii) Again we start with the second property. Assume that (c1, c2, c3, c4)
is a proper cover. Without loss of generality, it can be assumed that the coordinates
of the cubes are integer multiples of ε; let cr =

∏6
d=1[ardε−1, ardε] for r = 1, 2, 3, 4.

We are interested in a14, a15, a33, a36, a41, a42, so the cubes have the structure

c1 = [∗]× [∗]× [∗]× [a14ε− 1, a14ε]× [a15ε− 1, a15ε]× [∗]
c3 = [∗]× [∗]× [a33ε− 1, a33ε]× [∗]× [∗]× [a36ε− 1, a36ε]
c4 = [a41ε− 1, a41ε]× [a42ε− 1, a42ε]× [∗]× [∗]× [∗]× [∗],

where [∗] denotes an arbitrary interval. From the fact that cr covers ur and vr for
r = 1, 3, 4, it follows that 1 ≤ a14, a15, a33, a36, a41, a42 ≤ n. Observe that a15 ≥ a36:
otherwise z3

a15
would be covered by neither c1 (because of the fifth coordinate) nor

c3 (because of the sixth coordinate). Also, a42 ≥ a33, because otherwise z1
a42

would
be covered by neither c3 (because of the third coordinate) nor by c4 (because of the
second coordinate). Similar arguments show that a36 ≥ a41 (because of z4

a36
) and

a33 ≥ a14 (because of z2
a33

). Assume now that xs ∈ c4 and yt ∈ c1 for some s and t.
We have that a14 ≥ low(t) ≥ a15 (because of the fourth and fifth coordinates) and
a41 ≥ s ≥ a42 (because of the first two coordinates). Thus we have the following
chain of inequalities

low(t) ≥ a15 ≥ a36 ≥ a41 ≥ s ≥ a42 ≥ a33 ≥ a14 ≥ low(t),

which implies that low(t) = s, as required.
ACM Journal Name, Vol. VV, No. NN, MM 20YY.
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(i) For some 1 ≤ t ≤ m, let s = low(t) be the lower endpoint of t. Consider the
following cubes:

c1 = [0, 1] × [−1, 0] × [0, 1] × [sε− 1, sε]× [sε− 1, sε]× [−1, 0]
c2 = [0, 1] × [−1, 0] × [0, 1] × [0, 1] × [−1, 0] × [0, 1]
c3 = [−1, 0] × [0, 1] × [sε− 1, sε]× [−1, 0] × [0, 1] × [sε− 1, sε]
c4 = [sε− 1, sε]× [sε− 1, sε]× [−1, 0] × [0, 1] × [−1, 0] × [0, 1]

It is clear that both cubes c1, c2 cover every xi; both cubes c2, c4 cover every yj ;
cube c4 covers xs; and cube c1 covers yt. For i < s, z3

i is covered by c1; z4
i and

z2
i are covered by c3; and z1

i is covered by c4. For i ≥ s, z3
i is covered by c3; z4

i is
covered by c4; z2

i is covered by c1; and z1
i is covered by c3. Finally, for r = 1, 3, 4,

points ur and vr are covered by cr.

By replacing “lower” with “upper” everywhere, we get the upper incidence testing
gadget in a symmetrical way:

Lemma 3.8. The upper incidence testing gadget has the following properties:

i) For every 1 ≤ t ≤ m and s = up(t), there is a proper cover (c1, c2, c3, c4) of P
such that xi ∈ c1 ∩ c2 for every 1 ≤ i ≤ n, yj ∈ c2 ∩ c4 for every 1 ≤ j ≤ m,
xs ∈ c4, and yt ∈ c1.

ii) In every proper cover (c1, c2, c3, c4), if xs ∈ c4 for some 1 ≤ s ≤ n and yt ∈ c1
for some 1 ≤ t ≤ m, then s = up(t).

3.4 The construction

Given a graph G with n vertices and m edges and an integer k, we construct a
point set P by taking the join of the following point sets:

—k copies of the vertex selection gadget (denote these sets by V Sp for 1 ≤ p ≤ k),
—
(
k
2

)
copies of the edge selection gadget (denote these sets by ESp,q for 1 ≤ p <

q ≤ k),
—
(
k
2

)
copies of the lower incidence testing gadget (denote these sets by TLp,q for

1 ≤ p < q ≤ k), and
—
(
k
2

)
copies of the upper incidence testing gadget (denote these sets by TUp,q for

1 ≤ p < q ≤ k).

Thus P contains k(4n + 6) +
(
k
2

)
(4m + 6 + 2m + 10n + 12) points in 3k + 3

(
k
2

)
+

6
(
k
2

)
+ 6
(
k
2

)
dimensions. By Proposition 3.2, Lemmas 3.5–3.8 hold for each gadget

in the combined set P , but so far, the gadgets are completely independent of each
other. (Every coordinate is nonzero only in one gadget.) We connect the gadgets
by requiring that certain pairs of points are covered by the same cube.

For 1 ≤ i ≤ n and 1 ≤ p ≤ k, let set Vpi contain the following k points:

—point xi of V Sp,
—point xi in TUq,p for 1 ≤ q < p, and
—point xi in TLp,q for p < q ≤ k.

For 1 ≤ j ≤ m and 1 ≤ p < q ≤ k, let set Epqj contain the following 3 points:

—point yj of ESp,q,
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—point yj in TUp,q, and
—point yj in TLp,q.

If vertex i is chosen as the p-th vertex of the clique, this will be represented by
the fact that cube c4 covers Vpi. Similarly, if the edge between the p-th and q-th
vertices of the clique is edge j, then this is represented by the fact that c1 covers
Epqj . In order to ensure that the correspondence works in both directions, we make
the following additional requirement on the way the cubes cover the points:

Definition 3.9. Given a proper cover (c1, c2, c3, c4), we say that a point set J
is simultaneously covered if there is an r ∈ ⋂x∈J L(x) such that cr covers every
x ∈ J . A proper cover of P is consistent if for every 1 ≤ i ≤ n and 1 ≤ p ≤ k, the
set Vpi is simultaneously covered, and for every 1 ≤ j ≤ m and 1 ≤ p < q ≤ k, the
set Epqj is simultaneously covered.

As we shall see, by combining points that must be simultaneously covered to new
points we can enforce the requirement that the cover is consistent. Before this, we
prove the correspondence between consistent covers and the cliques of G.

Lemma 3.10. The point set P has a consistent proper cover (c1, c2, c3, c4) if and
only if G has a clique of size k.

Proof. Assume that (c1, c2, c3, c4) is consistent. Since it is a proper cover of
V Sp, for every 1 ≤ p ≤ k there is a value vp such that point xvp of V Sp is covered
only by c4 (Lemma 3.5). Furthermore, for every 1 ≤ p < q ≤ k, there is a value
epq such that point yepq

of ESpq is covered only by c1. We claim that v1, . . . , vk
is a clique of G with epq being the edge connecting vp and vq. Let us show that
vp is the lower endpoint of epq. The definition of consistency implies that point
xvp of TLp,q is also covered by c4 (since this point and point xvp of V Sp are in
the simultaneously covered set Vp,vq and the latter point is covered only by c4).
Similarly, point yepq

of TLp,q is covered by c1. Lemma 3.7 implies that vp is the
lower endpoint of epq. Similarly, TUp,q ensures that vq is the upper endpoint of epq.

Assume now that v1 < v2 < · · · < vk is a clique in G; let epq be the edge
connecting vp and vq. By Lemma 3.5, for every 1 ≤ p ≤ k, point set V Sp has a
proper cover where xvp ∈ c4, and xi ∈ c1 or xi ∈ c2 for every i 6= vp. By Lemma 3.6,
for every 1 ≤ p < q ≤ k, ESp,q has a proper cover where yepq

∈ c1, and yj ∈ c2 or
yj ∈ c4 for every j 6= epq. By Lemmas 3.7 and 3.8, for every 1 ≤ p < q ≤ k, TLpq
(resp. TUpq) has a proper cover where both c1 and c2 cover all xi’s, both c2 and
c4 cover all yj ’s, c4 covers xvp

(resp., xvq
), and c1 covers yepq

. By Proposition 3.2,
these covers for the gadgets can be joined together to obtain a proper cover of the
whole point set P . Let us verify that this cover is consistent. The set Vp,vp is
covered by c4 and if i 6= vp, then Vpi is covered by either c1 or c2. The set Ep,q,epq

is covered by c1 and if j 6= epq, then Ep,q,j is covered by c2 or c4.

Finally, we modify P to obtain a point set P ′ such that P has a consistent proper
cover if and only if P ′ has a proper cover. Each set Vpi and Epqj that is required to
be simultaneously covered in a consistent cover is replaced by a single point that is
the coordinatewise sum of the points in the set. Observe that in each coordinate
at most one point in the set is nonzero, since they belong to different gadgets.
Moreover, all sets Vpi and Epqj are disjoint, and all points in the same set Vpi and
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Epqj have equal constraint lists, and so there is no conflict in defining the constraint
list of the new point.

This decreases the number of points by nk · (k − 1) + m
(
k
2

) · 2 =
(
k
2

)
(2n + 2m),

hence |P ′| = k(4n+ 6) +
(
k
2

)
(4m+ 8n+ 18).

Assume that P has a consistent proper cover. Suppose that some cr covers a
particular Vpi. Then cr covers the point that replaces Vpi: the point is covered in
every coordinate, since every point in Vpi is covered by cr. Assume now that P ′

has a proper cover; let cr be a cube covering the point replacing Vpi. Since cr is
0-covering, if we set a coordinate of the point to 0, then the point remains in cr.
This means that cr covers every point of Vpi, hence Vpi is simultaneously covered.
The same argument applies to Epqj .

We have shown that P ′ has a proper cover if and only if G has a clique of size k,
proving the correctness of the reduction. The reduction can be done in polynomial
time, hence the constrained rectilinear 4-center decision problem parameterized
with the dimension d is W[1]-hard. This completes the proof of Lemma 3.4.

Lemma 3.3 and Lemma 3.4 imply the following:

Theorem 3.11. The rectilinear 4-center decision problem is W[1]-hard with re-
spect to the dimension d.

4. THE EUCLIDEAN 2-CENTER PROBLEM

In this section we give an fpt-reduction from the parameterized k-independent set
problem in general graphs, which is known to be W[1]-complete with respect to
k [Flum and Grohe 2006], to the Euclidean 2-center decision problem, parameterized
with the dimension d. Let [n] = {1, . . . , n}. We look for an independent set of size k
in a graph G([n], E). We assume k ≥ 4, and we assume that n ≥ 4 and n is even, by
adding an additional vertex to G if necessary and connecting it to all other vertices.
Using G, we will construct a point set P in R2k+1 with the property that P can be
covered by 2 unit balls if and only if G has a independent set of size k.

We first give a high-level overview of our reduction at the logical level. We start
with a scaffolding point set P 0 of nk + 2 points. For an appropriate radius ρ, the
set P 0 has the property that there are nk ways to cover it with two balls of radius
ρ, in one-to-one correspondence with all k-tuples (u1, . . . , uk) with 1 ≤ ui ≤ n.
These coverings allow us to represent the potential independent sets of vertices in
the graph. More precisely, they represent ordered selections of k (not necessarily
distinct) vertices of the graph.

Geometrically, the scaffolding set will consist of a set Pi (i = 1, . . . , k) of n
equally spaced points on a circle in each of k orthogonal 2-dimensional planes, plus
a “top” and a “bottom” anchor point on the remaining orthogonal axis. The ball
containing the top point can cover n/2 consecutive points of each Pi, but not more.
So there are n choices for these points. Since the sets P1, . . . , Pk lie in orthogonal
planes, the n/2 covered points can be chosen independently in each plane, giving
nk choices altogether, see Lemma 4.4 below. The complementary half of the point
set, together with the bottom point, can be covered by the other ball.

The structure of the input graph is represented using additional constraint points:
for each pair of distinct indices i 6= j (1 ≤ i, j ≤ k) and for each pair of (possibly
equal) vertices u, v ∈ [n], we define a constraint point quvij which is covered by all
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solutions (u1, . . . , uk) with the exception of those with ui = u and uj = v. In
particular, we add to P 0

(
k
2

)
n constraint points QV = { quuij | 1 ≤ u ≤ n, 1 ≤

i < j ≤ k } to ensure that all components ui in a solution must be distinct. Also,
for each edge uv ∈ E we add all k(k − 1) points quvij with i 6= j. In this way, we
ensure that the remaining coverings (u1, . . . , uk) represent independent sets of size
k. In total the edges are represented by the k(k − 1)|E| points QE = { quvij | uv ∈
E, 1 ≤ i, j ≤ k, i 6= j }. The resulting set P = P 0 ∪ QV ∪ QE will have in total
nk + 2 +

(
k
2

)
(n + 2|E|) points. A covering of P exists if and only if the graph has

an independent set of size k. (Each independent set of size k is represented by k!
coverings.)

We will first describe the geometry of the point sets exactly, as if exact square
roots and expressions of the form sin π

n were available. We will later show that the
essential features of our construction are preserved when the data are perturbed
within some tolerance. This allows us to work with fixed-precision roundings of the
exact construction, making the reduction suitable for the Turing machine model.

Notation. For our construction it is convenient to view R2k+1 as the product of
k orthogonal planes E1, . . . , Ek plus one extra axis. Each Ei has coordinate axes
Xi, Yi and the extra axis is denoted by Z. For giving coordinates, the axes are
considered in the order X1, Y1, . . . , Xk, Yk, Z. The coordinate on Xi, Yi, and Z of
a point p is denoted by xi(p), yi(p), and z(p), respectively.

4.1 The Scaffolding Point Set

On each plane Ei we define a set Pi consisting of n points regularly spaced on the
unit circle Ci centered at the origin o:

Pi = { piu ∈ Ei | xi(piu) = cos(2u− 3)πn , yi(piu) = sin(2u− 3)πn , u = 1, . . . , n }
We also use two anchor points pz, −pz on the Z-axis with z(pz) = 2. The scaffolding
point set P 0 is defined as P 0 = P1∪· · ·∪Pk∪{pz,−pz}. We have |P 0| = nk+2. This
point set is highly symmetric. In particular, since the planes Ei are orthogonal, we
can independently rotate each plane Ei by multiples of 2π/n.

Two points p and −p of Pi are called antipodal. For any u with 1 ≤ u ≤ n we
define the index of its almost antipodal partner as ū =

(
(u+ n

2 ) mod n
)

+ 1. The
pair aiu of almost antipodal points is defined as aiu = {piu, piū}, for i = 1, . . . , k and
u = 1, . . . , n. See Fig. 2 for an illustration. Pair aiu results from a counter-clockwise
rotation, on the plane Ei, of the pair ai1 about o by (u− 1) 2π

n .
The radius ρ of the two balls with which we would like to cover P 0 will be slightly

smaller than 5/4. Thus the two anchor points must be covered by two different balls.
The ball containing pz will be called the top ball, while the ball containing −pz is
called the bottom ball.

Two antipodal points of Pi and the top anchor form an isosceles triangle whose
circumradius is 5/4. Therefore, if ρ < 5/4, the top ball (or the bottom ball) cannot
contain two antipodal points. (With a radius of 5/4, the top ball could be centered
on the Z-axis at height 3/4 and cover all points P 0 except the bottom anchor.)
By choosing ρ < 5/4, we ensure that each ball can cover at most half of the points
from every Pi. We define the radius ρ as the smallest radius such that the top ball
can cover precisely n/2 consecutive points of each subset Pi, besides the anchor pz.
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2π
n

1

o

σ

Yi

Xi

pi1

pi2

pi,n
2 +2

pinpi,n
2 +3

pi,n
2 +1

Ci

Fig. 2. Point set Pi and the two pairs ai1 = { pi1, pi, n
2 +2 } and ai2 = { pi2, pi, n

2 +3 } for n = 12.

The precise value of ρ is given below.
Let A(u1, . . . , uk) be the set of 2k points

A(u1, . . . , uk) = a1u1 ∪ a2u2 ∪ · · · ∪ akuk
.

We denote by B(u1, . . . , uk) the smallest enclosing ball of A(u1, . . . , uk) ∪ {pz}.
Note that all the 2k + 1 points in this set are affinely independent.

Lemma 4.1. All balls B(u1, . . . , uk) have the same radius

ρ =
5
4
·
√

k

k + σ2/4
, with σ := −yi(pi1) = sin π

n .

The center c of B(u1, . . . , uk) has coordinates

xi(c) = +w sin (ui−1)2π
n , yi(c) = −w cos (ui−1)2π

n , for i = 1, . . . , k, and z(c) = h,

with

w =
5σ

2(4k + σ2)
, h =

3k + 2σ2

4k + σ2
. (9)

All points in A(u1, . . . , uk) ∪ {pz} lie on the boundary of B(u1, . . . , uk).

Proof. By symmetry, it is sufficient to show this for the ball B(1, . . . , 1), whose
center we claim to be c = (0,−w, 0,−w, . . . , 0,−w, h). We use the following well-
known characterization of the smallest enclosing ball:

Proposition 4.2. A ball B containing a finite set of points A is the smallest
enclosing ball for A if and only if its center lies in the convex hull of the points of
A that lie on the boundary of B.

The set A(1, . . . , 1) consists of the 2k points of the form

(0, . . . , 0,± cos πn ,−σ, 0, . . . , 0, 0),
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where the pair (± cos πn ,−σ) cycles through all k planes Ei. It is straightforward to
check that all these points and the point pz have the same distance ρ to c. Moreover,
the center c lies on the line segment between pz and the center of gravity of the 2k
points of A(1, . . . , 1), which is the point (0,−σ/k, 0,−σ/k, . . . , 0,−σ/k, 0). Thus,
it lies in the convex hull of A(1, . . . , 1) ∪ {pz}.
Note that by symmetry, any bottom ball will have its center c′ with z(c′) = −h.

Proposition 4.3. i) The height h = z(c) of the center lies in the range 3/4 <
h < 1.

ii) The radius ρ lies in the range 1 < ρ < 5/4, with ρ = 5/4−Θ
(
1/(n2k)

)
.

Proof. (i) This follows easily from σ2 < k and h = 1 − (k − σ2)/(4k + σ2) >
1− k/(4k) = 3/4.

(ii) The upper bound on ρ is obvious, and the lower bound follows from part (i),
since ρ is the distance between pz and the point c with z-coordinate h < 1. We
have ρ = 5

4 ·
(
1 + σ2

4k

)−1/2 = 5
4 ·
(
1 − 1

2 · σ
2

4k + O(σ
2

4k )2
)

= 5
4 − 5

32 · σ
2

k + O(σ
4

k2 ) =
5
4 − 5

32 · 1
k ·
(
π
n +O(πn )2

)2 +O( 1
n4k2 ) = 5

4 − 5π2

32 · 1
n2k +O( 1

n3k ).

The intersection of B(u1, . . . , uk) with Ei is a disk of radius

ρi =
√√√√ρ2 −

∑
1≤r≤k
r 6=i

(
x2
r(c) + y2

r(c)
)− z2(c) <

√
ρ2 − z2(c) <

√
25/16− 9/16 = 1

since ρ < 5/4 and z(c) = h > 3/4. Since the disk has radius smaller than 1, it cannot
contain any two antipodal points of Pi. And, since it contains the pair aiui

on its
boundary, it follows that B(u1, . . . , uk) also contains the n/2−2 consecutive points
of Pi between the points of the pair aiui . Since the planes E1, . . . , Ek are orthogonal,
each ui independently defines which of the n/2 consecutive points of set Pi is covered
by B(u1, . . . , uk). The complementary halves can then be covered by the bottom
ball. In total, we have nk possible partitions of P 0 into two groups covered by the
two balls, which correspond to the nk possible tuples (u1, . . . , uk) ∈ [n]k.

We conclude with the following characterization of the possible coverings of P 0

with two balls of radius ρ.

Lemma 4.4. Assume that two balls B,B′ of radius ρ cover P 0, and that pz ∈ B.
Then there is a tuple (u1, . . . , uk) ∈ [n]k such that B = B(u1, . . . , uk) and B′ =
−B(u1, . . . , uk).

Proof. As discussed before, B or B′ can contain at most n/2 consecutive points
of Pi, and therefore, B and B′ must cover complementary halves of each Pi. If B
covers the halves between the pairs a1u1 , . . . , akuk

, it follows from the uniqueness
of the minimum enclosing ball that B = B(u1, . . . , uk). Since B′ covers the com-
plementary halves of each Pi and −pz, it follows that B′ = −B(u1, . . . , uk).

From this characterization, the bijection between the possible coverings of P 0 and
[n]k is clear. Every covering consists of a symmetric pair of balls B = B(u1, . . . , uk)
and B′ = −B(u1, . . . , uk).
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4.2 Constraint Points

We continue now the construction of point set P , by showing how we encode the
structure of G. For each pair of distinct indices i 6= j (1 ≤ i, j ≤ k) and for each
pair of (possibly equal) vertices u, v ∈ [n], we define a constraint point quvij . All
constraint points lie on the hyperplane H = { p ∈ R2k+1 | z(p) = h }, which also
contains the center of the top ball. (Recall that h is the coordinate on the Z-axis
(“height”) of the center of the top ball, see (9).) This breaks the symmetry between
top and bottom balls that the construction had until now. Since the center of the
bottom ball lies on the hyperplane −H and ρ < 5/4 < 2h, none of the constraint
points can be covered by a bottom ball. Therefore, our discussion will only consider
top balls. The constraint point quvij will lie in all top balls B(u1, . . . , uk) except in
those with ui = u and uj = v.

We choose quvij in the four-dimensional affine subspace

Fij = { p ∈ R2k+1 | xr(p) = yr(p) = 0 for r 6= i, j, and z(p) = h } = o′ + Ei × Ej ,
where o′ = (0, . . . , 0, h). We look at the intersections of the balls B(u1, . . . , uk) with
Fij . Let

D = {B(u1, . . . , uk) ∩ Fij | (u1, . . . , uk) ∈ [n]k }.
The intersection of any ball B = B(u1, . . . , uk) with Fij is a 4-dimensional ball
D, whose center c is the orthogonal projection of the center of B on Fij . From
Lemma 4.1, we have

xi(c) = +w sin θi, yi(c) = −w cos θi, xj(c) = +w sin θj , yj(c) = −w cos θj , (10)

where θi = (ui − 1) 2π
n and θj = (uj − 1) 2π

n . The location of the center c thus
depends only on ui and uj . We denote this center by cuiuj

ij .
Looking at the distance between the centers of B, D, and o′, we get the following

properties:

a) every ball D ∈ D has radius ρ∗ =
√
ρ2 − (k − 2)w2;

b) a point q ∈ Fij lies in the ball B(u1, . . . , uk) if and only if ‖q − cuiuj

ij ‖ ≤ ρ∗;
c) the center of D lies on the three-dimensional sphere C = { p ∈ Fij | ‖p − o′‖ =
w
√

2 };
d) D contains the sphere C in its interior (as ρ∗ > 2

√
2w.)

Let Duv
ij denote the ball in Fij with center cuvij and radius ρ∗. For each u, v, we

want to find a point quvij ∈ Fij that lies outside the ball Duv
ij but in all other balls

of D.
Since the centers cuvij ∈ Fij form a completely symmetric set and all balls have the

same radius, we can find this point as follows. (See Fig. 3a for a two-dimensional
analog of this situation.) Start at cuvij and move along the ray L+ = { cuvij + λ(o′ −
cuvij ) | λ ≥ 0 } through o′. By properties (c) and (d), we are initially inside all balls
D ∈ D. At some point l1, we hit the boundary of some ball. We prove below that
this ball is Duv

ij . Thus, after passing l1, we are outside Duv
ij but still inside any ball

D 6= Duv
ij . We place quvij at the point l2 where L+ intersects the boundary of the

next ball.
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o′
L+

l1

C

α
cuv
ij

L+

ρ∗

l1quv
ij = l2

cu′v′
ij

C

Duv
ij

Du′v′
ij

ρ∗

w
√

2

(a) (b)

cuv
ijl o′

Fig. 3. (a) Finding the point l2 = quv
ij . (b) The situation of Lemma 4.5, in a two-dimensional

intersection with the plane through o′, cuv
ij , and cu′v′

ij .

Lemma 4.5. The ray L+, after having visited o′, hits the boundary of the ball
Duv
ij before the boundary of any other ball D ∈ D.

Proof. Let l1 be the point where L+ intersects the boundary of Duv
ij , and let

cu
′v′
ij be the center of any other ball Du′v′

ij ∈ D, Du′v′
ij 6= Duv

ij (see Fig. 3b). Using
the triangle inequality, we have

‖cu′v′ij − l1‖ < ‖cu′v′ij − o′‖+ ‖o′ − l1‖ = ‖cuvij − o′‖+ ‖o′ − l1‖ = ‖cuvij − l1‖ = ρ∗.

This implies that the boundary of Duv
ij is the first boundary intersected by L+.

A quantitative version of this lemma is given below in Lemma 4.7.

4.3 The Reduction

As mentioned in the beginning of this section, we add
(
k
2

)
(n + 2|E|) constraint

points QV and QE to the scaffolding set P 0 to represent the structure of the input
graph G([n], E).

Lemma 4.6. The set P = P 0 ∪QV ∪QE can be covered with two balls of radius
ρ if and only if G has an independent set of size k.

Proof. Any covering of P with two ballsB,B′ of radius ρmust consist of the two
balls B = B(u1, . . . , uk) and B′ = −B(u1, . . . , uk) for some tuple (u1, . . . , uk), by
Lemma 4.4. Since the constraint points exclude the tuples with two equal indices
ui = uj , or with indices ui and uj when (ui, uj) is an edge of G, the coverings
represent precisely the independent sets of G.

Rounding coordinates. To make the reduction suitable for a Turing machine, we
round all data to multiples of a small “unit” U . Scaling by U will then convert the
input to integral data. We will show that choosing U = Θ(1/(n6k2)) will preserve
all important characteristics of our point set. Since it is easy to evaluate sin uπ

n or√
to this precision of O(log(nk)) bits, the reduction can be carried out in polynomial
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time. Intuitively, it is quite clear that rounding to a grid of size polynomial in n
and k should be sufficient. In this section, we only sketch the main flow of ideas
that leads to our claimed bound of U . (The elementary but tedious calculations
that prove the following lemmas are deferred to the appendix.)

More precisely, we replace each nonzero input coordinate x by a multiple x̂ of U
in the range x − U < x̂ < x + U . This ensures that each input point is moved at
most

√
5 · U from its original position. (Recall that most coordinates of our input

points are 0.) We replace ρ by a multiple ρ̂ of U in the range ρ +
√

5 · U ≤ ρ̂ ≤
ρ +
√

5 · U + 2U . In this way we ensure that for each ball that covers some set of
ideal input points, there exists an enlarged ball with radius ρ̂ that covers the same
input points after rounding. We want to exclude the possibility that the enlarged
ball covers additional points (possibly after moving its center).

Lemma 4.7. Every input point that is not in a ball B(u1, . . . , uk) is at least
ε1 = 1

2n3k away from this ball.

(This bound is asymptotically tight for the constraint points: the distance between
l1 and l2 is Θ(w/n2) = Θ(1/(n3k)) (see Fig. 3a). The scaffolding points have a
much larger distance: they are at least 1/(nk) away from the ball.) Since we have
introduced some slack by enlarging the radius and moving the points, the center
of the ball may move away from the original center. The following lemma bounds
this movement.

Lemma 4.8. If we move the center of the ball B(u1, . . . , uk) by ε2, the distance
to some point from the scaffolding set on its boundary increases by at least ε3 =
Ω(min(ε2

2, ε2/(nk))).

(The first bound comes from moving the center perpendicular to the hyperplane
through the boundary points of the ball; the second one comes from any movement
in this hyperplane.)

We also maintain the global structure of the potential coverings by ensuring that
there must be a top ball and a bottom ball.

Lemma 4.9. If we chose U = const/(n2k), for a sufficiently small constant, then
no ball can cover both anchor points pz and −pz, and the top ball or the bottom ball
cannot cover two (perturbed) antipodal points.

Proof. To cover an anchor point and two (precise) antipodal points (or even
both anchor points), the radius must be at least 5/4. Thus, to cover the perturbed
points, it must grow from ρ = 5/4 − Θ

(
1/(n2k)

)
(by Proposition 4.3(ii)), to at

least 5/4−√5U . If U is small enough, this distance is larger than
√

5U + 2U , the
maximum possible radius increase.

From the above lemmas, we obtain the following

Theorem 4.10. If we chose U = const/(n6k2), for a sufficiently small constant,
all possible coverings by two balls of radius ρ̂ partition the rounded point set in the
same way as two balls B(u1, . . . , uk) and −B(u1, . . . , uk) for the original data.

Proof. Recall that each point moves by at most
√

5 · U , and the radius is
increased by at most

√
5·U+2U . Lemma 4.9 implies that a 2-covering has the same
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structure as for the ideal point set as far as the scaffolding points are concerned.
We can choose U small enough to ensure that the center ĉ of a ball with the
modified data can move only ε2 = 1/(5n3k) from its original position: Otherwise,
by Lemma 4.8, its distance from some boundary point of the scaffolding point set
would increase by more than ε3 = Ω(min(ε2

2, ε2/(nk))) = Ω(1/(n6k2)). If U is
chosen such that ε3 >

√
5 · U + (

√
5 · U + 2U), this would mean that the ball can

no longer contain this boundary point.
By Lemma 4.7 we know that each point that is not covered is at least ε1 =

1/(2n3k) away from the original ball. Now, choosing U in such a way that ε2 +
(
√

5 · U + 2U) < ε1 −
√

5 · U , the ball cannot swallow any additional points.

Using the rounded coordinates for the points of P , and since |P | = nk + 2 +(
k
2

)
(n + 2|E|) and d = 2k + 1, we see that this is an fpt-reduction. Thus, we have

the following:

Theorem 4.11. The Euclidean 2-center decision problem is W[1]-hard with re-
spect to the dimension d.

For a parameterized complexity upper bound, we mention that, trivially, the
(integral) Euclidean 2-center decision problem, parameterized with d, is in W[P];
see Downey and Fellows [1999].

Since d = 2k + 1 in the above fpt-reduction, an no(d)-time algorithm for the
Euclidean 2-center decision problem implies an no(k)-time algorithm for the param-
eterized k-independent set problem, which in turn implies that n-variable 3SAT
can be solved in time 2o(n) [Chen et al. 2004; Chen et al. 2005]. The conjecture
that there is no such algorithm is called the Exponential Time Hypothesis (ETH),
which was formulated and investigated in [Impagliazzo et al. 2001]. Thus we have
the following:

Corollary 4.12. The Euclidean k-center problem, for any k ≥ 2, cannot be
solved in no(d) time, unless ETH fails.

5. OPEN PROBLEMS

We have given a fine classification of the complexity of the k-center problem pa-
rameterized by the dimension. Our fpt-reduction from the parameterized k-clique
problem to the rectilinear 4-center problem in Θ(k2) dimensions implies that an
no(
√
d)-time algorithm for the latter does not exist, unless the Exponential Time

Hypothesis fails. However, it does not exclude the existence of algorithms taking
no(d) time. It would be interesting to find the appropriate order of magnitude
in the exponent for the rectilinear 4-center problem. More generally, it would be
interesting to study the order of magnitude for the k-center problem when param-
eterized by both k and d. Finally, one could also investigate k-center problems for
the (Rd, L1)-metric or for variations where the centers are not points but higher-
dimensional objects (e. g., lines) that should lie close to the input points.
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A. GEOMETRIC ESTIMATES

First, we collect some useful inequalities.
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Proposition A.1. (a) 2/n ≤ σ = sin π
n ≤ π/n, for n ≥ 4.

(b) 1− cosα ≥ α2/4, for |α| ≤ π/3 and for α = π/2.

(c) 1
kn < w < 2

kn , for k, n ≥ 4.

(d) ρ∗ > 3/4, for k, n ≥ 4.

Proof. (a) We have

α · 2
π ≤ sinα ≤ α

for 0 ≤ α ≤ π/4. The right inequality holds for all α ≥ 0, and the left inequality
is established by comparing the concave sine function with the linear function at
the endpoints of the range.

(b) The function 1− cosα−α2/4 is concave and nonnegative at the boundaries of
the range.

(c) We have

w =
5σ

2(4k + σ2)
>

5(2/n)
2(4k + (π/n)2)

=
10n

8kn2 + 2π2
>

1
kn
,

for k, n ≥ 4, and,

w =
5σ

2(4k + σ2)
<

5(π/n)
2(4k + (2/n)2)

=
5πn

8kn2 + 8
<

5π
8kn

<
2
kn
.

(d) We have

ρ∗ =
√
ρ2 − (k − 2)w2 >

√
1− kw2 >

√
1− k(2/(kn))2

=
√

1− 4/(kn2) ≥
√

15
4

>
3
4
,

for k, n ≥ 4.

Now we are ready to prove the lemmas of Section 4.3.

Proof of Lemma 4.7. There are three types of points outside B(u1, . . . , uk):
(a) the opposite anchor point; (b) scaffolding points on the circles Pi; (c) constraint
points. We consider each type separately.

(a) The opposite anchor point, −pz, is at least 4− 2ρ > 4− 2 · 5
4 = 3

4 away from
the ball.

(b) By symmetry, for the scaffolding points it is sufficient to look at the ball
B(1, . . . , 1). Consider some fixed plane Ei. Fig. 4 shows the projection ĉ of the ball
center c onto this plane, which forms the center of the disk B̂ = B(1, . . . , 1) ∩ Ei,
whose radius is denoted by ρ̂. The point pi1 is on the boundary of this disk. For
any point pij ∈ Pi, we have ‖pij − c‖2 = ‖pij − ĉ‖2 + ‖ĉ− c‖2. Thus, for any point
pij in Ei, we can calculate the distance from B(1, . . . , 1) by using the equation

‖pij − c‖2 − ρ2 = ‖pij − c‖2 − ‖pi1 − c‖2
= (‖pij − ĉ‖2 − ‖ĉ− c‖2)− (‖pi1 − ĉ‖2 − ‖ĉ− c‖2)

= ‖pij − ĉ‖2 − ‖pi1 − ĉ‖2
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1

o

Yi

Xi

pi1

pi2

pi, n
2 +2

pi, n
2 +1

Ci

ĉ
ρ̂

B̂

Fig. 4. The intersection of the ball B(1, . . . , 1) with the XiYi-plane. The drawing is only schematic.
The center ĉ lies much closer to the center o than shown.

Among the points pij in Ei \ B̂, a point that minimizes ‖pij − ĉ‖ is pi2. We use the
abbreviations

η := xi(pi1) = xi(pi2) = cos πn and σ := yi(pi2) = −yi(pi1) = sin π
n .

We can thus estimate the above difference as follows:

‖pij − c‖2 − ρ2 ≥ ‖pi2 − ĉ‖2 − ‖pi1 − ĉ‖2
=
(
η2 + (σ + w)2

)− (η2 + (−σ + w)2
)

= 4σw

≥ 4 · 2
n
· 1
kn

≥ 8
kn2

.

If ‖pij − c‖ > 7/4 ≥ ρ+ 1/2, there is nothing left to show. Let us therefore assume
that ρ < ‖pij − c‖ ≤ 7/4. Then,

‖pij − c‖ − ρ =
‖pij − c‖2 − ρ2

‖pij − c‖+ ρ
>
‖pij − c‖2 − ρ2

7/4 + 5/4
≥ 8
kn2
· 1

3
>

1
kn2

>
1

2kn3
.

(c) Finally, let us look at the constraint points, see Fig. 3b. We will first give
a lower bound on the distance from l1 to the intersection l of any disk Du′v′

ij ∈
(D \ {Duv

ij }) with the ray L+. Let α = ∠cu
′v′
ij o′cuvij ≥ 2π/n. To see this, observe

that, for two centers cuvij and cu
′v′
ij , the orthogonal projection of segment cuvij c

u′v′
ij

on the plane Ei is the base of an isosceles triangle with legs of length w and apex
angle (u−u′) 2π

n and has length 2w ·sin (u−u′)π
n . So, the Euclidean distance between
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the two centers is

w ·
√

(2 sin (u−u′)π
n )2 + (2 sin (v−v′)π

n )2.

This expression is minimized when u′ ≡ u ± 1 (mod n) and v = v′ or when v′ ≡
v ± 1 (mod n) and u = u′. Since all centers lie on a 3-sphere, the central angle
α is minimized precisely if the Euclidean distance is minimized. The angle that
corresponds to these minimizing cases is clearly 2π/n.

The length of the projection of the vector cu
′v′
ij l on L+ is

√
ρ2∗ − 2w2 sin2 α since

cu
′v′
ij l has length ρ∗ and the distance from cu

′v′
ij l to L+ is

√
2w sinα. Hence

‖o′ − l‖ =
√
ρ2∗ − 2w2 sin2 α−

√
2w cosα.

The distance ‖o′ − l1‖ is ρ∗ −
√

2w. We estimate the distance ‖l1 − l‖ as follows,
using Proposition A.1 where appropriate.

‖l1 − l‖ = ‖o′ − l‖ − ‖o′ − l1‖
=
√
ρ2∗ − 2w2 sin2 α−

√
2w cosα− (ρ∗ −

√
2w)

=
√

2w(1− cosα) +
ρ2
∗ − 2w2 sin2 α− ρ2

∗√
ρ2∗ − 2w2 sin2 α+ ρ∗

=
√

2w(1− cosα)− 2w2 sin2 α√
ρ2∗ − 2w2 sin2 α+ ρ∗

> w(1− cosα)− 2w2 sin2 α

ρ∗

= w
(

1− cosα− 2w
ρ∗
· sin2 α

)
= w

(
1− cosα− 2w

ρ∗
· (1− cos2 α)

)
= w

(
(1− cosα) · (1− 4w

ρ∗

)
+ (1− cosα)2 · 2w

ρ∗

)
> w · (1− cosα) · (1− 4w

ρ∗

)
> w · (1− cos 2π

n ) · (1− 32
3kn

)
≥ w · (1− cos 2π

n ) · 1
3 > w · 1

4 ( 2π
n )2 · 1

π2

=
w

n2

>
1
kn3

,

for k, n ≥ 4. Thus, for the constraint point quvij = l2 we also have that ‖l2 − l1‖ >
1/(kn3).

We can now estimate the distance from l2 to the ball B(u1, . . . , un) with ui = u
and uj = v. Let c be the center of the ball in R2k+1, and as before, let cuvij be its
projection on Ei × Ej . If ‖l2 − c‖ > 7/4 ≥ ρ + 1/2, there is nothing left to show.
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Let us therefore assume that ρ < ‖l2 − c‖ ≤ 7/4. Then,

‖l2 − c‖ − ρ = ‖l2 − c‖ − ‖l1 − c‖

=
‖l2 − c‖2 − ‖l1 − c‖2
‖l2 − c‖+ ‖l1 − c‖

>
‖l2 − c‖2 − ‖l1 − c‖2

7/4 + 5/4
= 1

3 ·
(
(‖l2 − cuvij ‖2 + ‖cuvij − c‖2)− (‖l1 − cuvij ‖2 + ‖cuvij − c‖2)

)
= 1

3 ·
(‖l2 − cuvij ‖2 − ‖l1 − cuvij ‖2)

= 1
3 ·
(‖l2 − cuvij ‖ − ‖l1 − cuvij ‖) · (‖l2 − cuvij ‖+ ‖l1 − cuvij ‖

)
≥ 1

3 · ‖l2 − l1‖ · 2ρ∗
> 1

3 · 1
kn3 · 2 · 3

4 = 1
2n3k

The following lemma is a more precise version of Lemma 4.8.

Lemma A.2. If we move the center of the ball B(u1, . . . , uk) by more than ε2,
for ε2 ≤ 1, the distance to some point on its boundary increases by at least

ε3 := min
(
ε2

2

6
,
ε2

15nk

)
= Ω(min(ε2

2, ε2/(nk))).

Proof. By symmetry, it suffices to study the case of the ball B(1, . . . , 1). Let
us assume that the center moves from c to c+ ∆c, with ‖∆c‖ > ε2. The motion of
the center can be decomposed into two orthogonal components: a component ∆1

parallel to the hyperplane H through the boundary points and the center of the
ball, and a second component ∆2 perpendicular to this hyperplane.

∆c = ∆1 + ∆2

with ‖∆c‖2 = ‖∆1‖2 + ‖∆2‖2.
The motion ∆2 increases the distance d from any point in the hyperplane H

to
√
d2 + ‖∆2‖2, and is therefore easy to analyze. Suppose ‖∆2‖2 ≥ 1

2ε
2
2. Since

B(1, . . . , 1) is the smallest enclosing ball, the distance from c to some boundary
point is at least

√
ρ2 + ‖∆2‖2. Thus, the distance increases by at least

√
ρ2 + ‖∆2‖2 − ρ ≥

√
ρ2 +

ε2
2

2
− ρ =

ρ2 + ε2
2/2− ρ2√

ρ2 + ε2
2/2 + ρ

≥ ε2
2/2
3

=
ε2

2

6
.

On the other hand, let us assume that ‖∆2‖2 < 1
2ε

2
2, and therefore ‖∆1‖ ≥ 1

2ε2.
We take the alternative viewpoint and fix the maximum distance increase ε3, and
we bound the amount by which the center c can move. The hyperplane H in which
c moves is given by the equation

∑k
i=1 yi − σ

2 · z = −σ. Consider the set of points
c+ ∆1 that lie in H and whose distance from each point of q ∈ A(1, . . . , 1) ∪ {pz}
is increased by at most ε3:

‖(c+ ∆1)− q‖ ≤ ρ+ ε3, for all q ∈ A(1, . . . , 1) ∪ {pz}
We relax this constraint to a linear inequality with the help of the Cauchy-Schwarz-
ACM Journal Name, Vol. VV, No. NN, MM 20YY.



Geometric clustering: fixed-parameter tractability · 29

Bunyakovski inequality:

‖(c+ ∆1)− q‖ · ‖c− q‖ ≥ 〈(c+ ∆1)− q, c− q〉
= 〈∆1, c− q〉+ 〈c− q, c− q〉
= 〈∆1, c− q〉+ ρ2

and therefore

〈∆1, c− q〉 ≤ ‖(c+ ∆1)− q‖ · ρ− ρ2 = ρ (‖(c+ ∆1)− q‖ − ρ) ≤ ρε3.

For bounding the length of the vectors ∆1 that satisfy 〈∆1, c− q〉 ≤ ρε3, we use
the following lemma, whose proof is given afterwards.

Lemma A.3. Let c be the center of the ball B(1, . . . , 1). If a vector

p = (x1, y1, . . . , xk, yk, z)

lies in the hyperplane
∑k
i=1 yi − σ

2 · z = 0 and satisfies the conditions

〈p, c− q〉 ≤ a for all q ∈ A(1, . . . , 1) ∪ {pz}, (11)

for some a ≥ 0, then ‖p‖ ≤ a · 6nk.

It follows that 1
2ε2 ≤ ‖∆1‖ ≤ 6nk · ρε3 ≤ nkε3 · 30

4 and thus, ε3 ≥ ε2/(15nk).

Proof of Lemma A.3. Let η = xi(pi1) = cos(π/n). The vectors c − q are the
2k vectors of the form

(±η, σ − w, 0,−w, 0,−w, . . . , 0,−w, h), (12)

where the pair (±η, σ − w) cycles through all k planes Ei, and the vector

(0,−w, 0,−w, . . . , 0,−w, h− 2).

The 2k + 1 constraints (11) define a 2k-dimensional simplex in the hyperplane
in which p is constrained to lie. The longest vector in this simplex must be a
vertex of the simplex. Each of the 2k + 1 vertices can be obtained by dropping
one constraint from (11) and setting the remaining constraints to equations. The
statement of the lemma is invariant under scaling of a: Scaling a will multiply all
right-hand sides of the inequalities (11) by the same constant, and will therefore
simply scale the polytope of solutions p of the system by the same factor. (The
additional hyperplane constraint is a homogeneous equation, and thus unaffected
by scaling.) But the same factor appears in the claimed bound on |p|. Therefore,
it is sufficient to calculate the vertices for any convenient value of a and prove that
‖p‖/a ≤ 6nk. This implies that the same relation will hold for all a ≥ 0.

If we omit any of the first 2k constraints that correspond to the vectors (12), this
leads to a symmetric set of 2k vertices p of the form

(±x1, y1, 0, y, . . . , 0, y, z), (0, y,±x1, y1, . . . , 0, y, z), . . . , (0, y, 0, y, . . . ,±x1, y1, z),
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whose coordinates and associated value of a can be calculated as

x1 = σ(4k + σ2)/η

y1 = − (4(k − 1) + σ2
)

y = 4
z = −2σ
a = σ(4− 2h+ wσ)

To bound ‖p‖, we individually bound each coordinate. Since there is no point in
optimizing the constant factors for the reduction, we will mostly be very generous
and use only crude bounds like |σ| ≤ 1 and |w| ≤ 1/2 and η ≥ 1/2.

|x1| =
∣∣σ(4k + σ2)/η

∣∣ ≤ (4k + 1)/ 1
2 = 8k + 2 ≤ 10k

|y1| =
∣∣4(k − 1) + σ2

∣∣ ≤ 4(k − 1) + 1 ≤ 4k
|z| = |2σ| ≤ 2

a = σ(4− 2h+ wσ) ≥ σ(4− 2 · 1) = 2σ ≥ 2
n

We get

‖p‖2 = x2
1 + y2

1 + (k − 1)y2 + z2 ≤ 100k2 + 16k2 + 16(k − 1) + 4 < 132k2 < (12k)2

and thus ‖p‖ ≤ 12k. The ratio ‖p‖/a is bounded by 6nk.
The last vertex p, for which all constraints corresponding to (12) are fulfilled, has

coordinates

p = (0, σk , 0,
σ
k , . . . , 0,

σ
k , 2).

(This vector is the vector from the centroid of A(1, . . . , 1) to pz.) Its associated
value of a is a = 2h+ σ2/k − σw ≥ 2 · 3

4 − 1 = 1/2.

‖p‖ =
√
k(σk )2 + 4 =

√
σ2/k + 4 ≤

√
5 < 3

Thus, for this vertex, the ratio ‖p‖/a is bounded by 6 < 6nk.
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