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Abstract

In a constraint satisfaction problem (CSP) the goal is
to find an assignment of a given set of variables subject to
specified constraints. A global cardinality constraint is an
additional requirement that prescribes how many variables
must be assigned a certain value. We study the complexity
of the problemCCSP(Γ), the constraint satisfaction prob-
lem with global cardinality constraints that allows only re-
lations from the setΓ. The main result of this paper charac-
terizes setsΓ that give rise to problems solvable in polyno-
mial time, and states that the remaining such problems are
NP-complete.

1 Introduction

In a constraint satisfaction problem (CSP) we are given a
set of variables, and the goal is to find an assignment of the
variables subject to specified constraints, and a constraint
is usually expressed as a requirement that combinations of
values of a certain (usually small) set of variables belong
to a certain relation. CSPs have been intensively studied in
both theoretical and practical perspectives. On the theoret-
ical side the key research direction has been the complex-
ity of the CSP when either the way the constraints interact
(more precisely, the hypergraph formed by the variable sets
of the constraints) is restricted [12, 13, 14], or restrictions
are on the type of allowed relations [16, 8, 6, 7, 2]. In the
latter direction the main focus has been on the so called
Dichotomy conjecture[10] suggesting that every CSP re-
stricted in this way is either solvable in polynomial time or
is NP-complete.

This ‘pure’ constraint satisfaction problem is some-
times not enough to model practical problems, as some
constraint that have to be satisfied are not ‘local’ in
the sense that they cannot be viewed as applied to
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only a limited number of variables. Constraints of
this type are calledglobal. Global constraints are very
diverse, the current Clobal Constraint Catalog (see
http://www.emn.fr/x-info/sdemasse/gccat/)
lists 313 types of such constraints. In this paper we focus
onglobal cardinality constraints[3, 5, 19]. A global cardi-
nality constraintπ is specified for a set of valuesD and a
set of variablesV , and is given by a mappingπ : D → N

that assigns a natural number to each element ofD such
that

∑

a∈D π(a) = |V |. An assignment of variablesV
satisfiesπ if for eacha ∈ D the number of variables that
take valuea equalsπ(a). In a CSP with global cardinality
constraints, given a CSP instance and a global cardinality
constraintπ, the goal is to decide if there is a solution of
the CSP instance satisfyingπ. We consider the following
problem: Characterize sets of relationsΓ such that CSP
with global cardinality constraint that uses relations from
Γ, denoted byCCSP(Γ), is solvable in polynomial time.

The complexity ofCCSP(Γ) has been studied in [9] for
setsΓ of relations on a 2-element set. It was shown that
CCSP(Γ) is solvable in polynomial time if and only if every
relation inΓ is width-2-affine, i.e. it can be expressed as
the set of solutions of system of linear equations over a 2-
element field containing at most 2 variables. Otherwise it is
NP-complete. In this caseCCSP(Γ) is also known as the
k-ONES(Γ) problem, since a global cardinality constraint
can be expressed by specifying how many ones (the set of
values is thought to be{0, 1}) one wants to have among
the values of variables. The parametrized complexity ofk-
ONES(Γ) has also been studied [18], wherek is used as a
parameter.

In this paper we characterize sets of relationsΓ on an
arbitrary finite setD that give rise to aCCSP(Γ) prob-
lem solvable in polynomial time, and prove that in all other
cases the problem is NP-complete. For 2-element domains
[9], the polynomial-time solvable cases rely on the fact that
if the value of a variable is set, then this forces a unique
assignment on the component of the variable. Generalizing
this property, we can obtain tractable cases for larger do-
mains: for example, ifΓ contains only binary one-to-one
mappings, then the value of a variable clearly defines the
assignment of its component. However, there are further
polynomial-time cases. The problem does not become more



difficult if a value is replaced by a set of equivalent values,
thus in particular the problem is tractable ifΓ consists of a
binary relation that is a one-to-one mapping between equiv-
alence classes of the domain. The situation becomes sig-
nificantly more complicated if there are several such rela-
tions: to ensure tractability, the equivalence classes have to
be coordinated in a certain way. We do not see an easy way
of giving a combinatorial characterization of the tractable
cases. However, we can obtain a compact characterization
using logical definability.

Sets of relationsΓ that give rise to polynomial time solv-
able problem are given by the following 3 conditions: (1)
every relationR that can be derived fromΓ can be expressed
as a conjunction of binary relations; (2) every such binary
relationQ involved in the definition ofR is a thick map-
ping, i.e. Q ⊆ A × B for some setsA,B and there are
equivalence relationsα, β onA,B, respectively, and a map-
pingϕ : A/α → B/β such that(a, b) ∈ Q if and only if

bβ = ϕ(aα); (3) any pair of equivalence relationsα, β that
appear in the definition of binary projections of any such
derivable relationR is non-crossing, that is, for anyα-class
C and anyβ-classD eitherC ∩ D = ∅, or C ⊆ D, or
D ⊆ C.

The paper is structured as follows. After introducing in
Section 2 necessary definition and notation, in Section 3 we
study properties of thick mappings, state the main result,
and prove that recognizing if a setΓ gives rise to a polyno-
mial time problem can also be done in polynomial time. In
Section 4 we present an algorithm solvingCCSP(Γ). Then
a result similar to the key result of the algebraic approach
to the CSP is proved in Section 5.1: Adding toΓ a rela-
tion definable inΓ by a primitive positive formula does not
increase the complexity of the problem. We also prove in
Section 5.2 that adding theconstantrelations does not in-
crease the complexity ofCCSP(Γ). Section 6 proves the
hardness part of the theorem.

2 Preliminaries

Relations and constraint languages.The set of all tu-
ples of elements from a setD is denoted byDn. We de-
note tuples in boldface, e.g.,a, and their components by
a[1],a[2], . . .. For a subsetI = {i1, . . . , ik} ⊆ {1, . . . , n}
with i1 < . . . < ik and ann-tuplea, by prIa we denote
the projection of a onto I, the k-tuple (a[i1], . . . ,a[ik]).
An n-ary relation on setD is any subset ofDn. A set of
relations overD is called aconstraint languageoverD.
Sometimes we use instead of relationR the corresponding
predicateR(x1, . . . , xn). Using predicates we canexpress
or definerelations through other relations by means of logi-
cal formulas. TheprojectionprIR ofR is thek-ary relation
{prIa | a ∈ R}.

Pairs from equivalence relations play a special role, so

such pairs will be denoted by, e.g.,〈a, b〉. If α is an equiv-
alence relation on a setD thenD/α denotes the set ofα-
classes, andaα for a ∈ D denotes theα-class containingα.
Sometimes we need to emphasize that the unary projections
pr1R, pr2R of a binary relationR are setsA andB. We
denote this byR ⊆ A×B.

Constraint Satisfaction Problem with cardinality
constraints. Let D be a finite set andΓ a constraint lan-
guage overD. An instance of theConstraint Satisfaction
Problem (CSP for short)CSP(Γ) is a pairP = (V, C),
whereV is a finite set ofvariablesandC is a set ofcon-
straints. Every constraint is a pairC = 〈s, R〉 consisting of
annC-tuples of variables, called theconstraint scopeand
annC -ary relationR ∈ Γ, called theconstraint relation. A
solution ofP is a mappingϕ : V → D such that for every
constraintC = 〈s, R〉 the tupleϕ(s) belongs toR.

A global cardinality constraintfor a CSP instanceP is
a mappingπ : D → N with

∑

a∈D π(a) = |V |. A solution
ϕ of P satisfies the cardinality constraintπ if the number of
variables mapped to eacha ∈ D equalsπ(a). The variant
of CSP(Γ) allowing global cardinality constraints will be
denoted byCCSP(Γ); the question is, given an instanceP
and a cardinality constraintπ, whether there is a solution of
P satisfyingπ.

Example 1 If Γ is a constraint language on the 2-element
set{0, 1} then to specify a global cardinality constraint it
suffices to specify the exact number of ones we want to have
in a solution. This problem is also known as thek-ONES(Γ)
problem, [9].

Sometimes it is convenient to use arithmetic operations
on cardinality constraints. Letπ, π′ : D → N be cardinal-
ity constraints on a setD, andc ∈ N. Thenπ + π′ and
cπ denote cardinality constraints given by(π + π′)(a) =
π(a) + π′(a) and(cπ)(a) = c · π(a), respectively, for any
a ∈ D. Furthermore, we extend addition to setsΠ, Π′ of
cardinality vectors in a convolution sense:Π+Π′ is defined
as{π + π′ | π ∈ Π, π′ ∈ Π′}.

Primitive positive definitions and polymorphisms.We
now introduce the algebraic tools that will assist us through-
out the paper. LetΓ be a constraint language on a setD. A
relationR is primitive positive (pp-) definablein Γ if it can
be expressed using (a) relations fromΓ, (b) conjunction, (c)
existential quantifiers, and (d) the binary equality relations.
The set of all relations pp-definable inΓ will be denoted by
〈〈Γ〉〉.

Example 2 An important example of pp-definitions that
will be used throughout the paper is theproductof binary
relations. LetR,Q be binary relations. ThenR ◦ Q is the
binary relation given by

(R ◦Q)(x, y) = ∃zR(x, z) ∧Q(z, y).
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In this paper we will need a slightly weaker notion of
definability. We say thatR is pp-definablein Γ with-
out equalitiesif it can be expressed using only items (a)–
(c) from above. The set of all relations pp-definable in
Γ without equalities will be denoted by〈〈Γ〉〉′. Clearly,
〈〈Γ〉〉′ ⊆ 〈〈Γ〉〉. The two sets are different only on rela-
tions with redundancies. LetR be a (say,n-ary) relation.
A redundancyof R is a pairi, j of its coordinate positions
such that, for anya ∈ R, a[i] = a[j].

Lemma 3 For every constraint languageΓ, everyR ∈
〈〈Γ〉〉 without redundancies belongs to〈〈Γ〉〉′.

A polymorphismof a (say,n-ary) relationR onD is a
mappingf : Dk → D for somek such that for any tuples
a1, . . . ,ak ∈ R the tuple

f(a1, . . . ,ak)

= (f(a1[1], . . . ,ak[1]), . . . , f(a1[n], . . . ,ak[n]))

belongs toR. Operationf is a polymorphism of a constraint
languageΓ if it is a polymorphism of every relation fromΓ.
There is a tight connection, a Galois correspondence, be-
tween polymorphisms of a constraint language and relations
pp-definable in the language, see [11, 4]. This connection
has been extensively exploited to study the ordinary con-
straint satisfaction problems [16, 8]. Here we do not need
the full power of this Galois correspondence, we only need
the following result:

Lemma 4 If operationf is a polymorphism of a constraint
languageΓ, then it is also a polymorphism of any relation
from 〈〈Γ〉〉, and therefore of any relation from〈〈Γ〉〉′.

Consistency. Let us fix a constraint languageΓ on a
setD and letP = (V, C) be an instance ofCSP(Γ). A
partial solution of P on a set of variablesW ⊆ V is a
mappingψ : W → D that satisfies the constraint〈W ∩
s, prW∩s

R〉 for every〈s, R〉 ∈ C. HereW ∩ s denotes the
subtuple ofs consisting of those entries ofs that belong
to W . InstanceP is said to bek-consistentif for any k-
element setW ⊆ V and anyv ∈ V \W any partial solution
onW can be extended to a partial solution onW ∪ {v}. As
we only needk = 2, all further definitions are given under
this assumption.

Any instanceP = (V, C) can be transformed to
a 2-consistent instance by means of a standard 2-
CONSISTENCYalgorithm. This polynomial-time algorithm
works as follows. First, for each pairv, w ∈ V it cre-
ates a constraint〈(v, w), Rv,w〉 whereRv,w is the binary
relation consisting of all partial solutionsψ on {v, w}, i.e.
Rv,w includes pairs(ψ(v), ψ(w)). These new constraints
are added toC, let the resulting instance be denoted by
P ′ = (V, C′). Second, for each pairv, w ∈ V , every partial

solutionψ ∈ Rv,w, and everyu ∈ V \{v, w}, the algorithm
checks ifψ can be extended to a partial solution ofP ′ on
{v, w, u}. If not it updatesP ′ by removingψ from Rv,w.
This step is repeated until no more changes happen.

Lemma 5 LetP = (V, C) be an instance ofCSP(Γ).
(a) The problem obtained fromP by applying 2-
CONSISTENCYis 2-consistent;
(b) On every step of2-CONSISTENCY for any pairv, w ∈
V the relationRv,w belongs to〈〈Γ〉〉′.

3 The results

3.1 Decomposability, thick mapping, and
cardinality constraints

We introduce several properties of relations that are nec-
essary to describe the relations for which, as we will prove,
CCSP(Γ) is solvable in polynomial time.

An n-ary relationR is said to be2-decomposableif a ∈
R if and only if, for anyi, j ∈ {1, . . . , n}, pri,ja ∈ pri,jR.

A binary relationR ⊆ A×B is called athick mappingif
there are equivalence relationsα andβ onA andB, respec-
tively, and a one-to-one mappingϕ : A/α→ B/β (thus, in

particular,|A/α| = |B/β|) such that(a, b) ∈ R if and only

if bβ = ϕ(aα). In this case we shall also say thatR is a
thick mapping with respect toα, β, andϕ. Given a thick
mappingR the corresponding equivalence relations will be
denoted byα1

R andα2
R. Thick mappingR is said to betriv-

ial if α1
R andα2

R are the total equivalence relations(pr1R)2

and(pr2R)2, respectively.

Observation 6 Binary relationR ⊆ A×B is a thick map-
ping if and only if whenever(a, c), (a, d), (b, d) ∈ R, the
pair (b, c) also belongs toR.

We say that two setsC and D are non-crossingif
C ∩ D = ∅, orC ⊆ D, orD ⊆ C. A pair α, β of equiv-
alence relations isnon-crossingif every α-classC forms
a non-crossing pair with everyβ-classD. Note that this
is equivalent to saying thatα ∨ β = α ∪ β holds, where
α ∨ β denotes the smallest equivalence relation containing
bothα andβ. A pair of thick mappingsR ⊆ A1 × A2 and
R′ ⊆ B1 × B2 is callednon-crossingif αi

R andαj
R′ are

non-crossing for anyi, j ∈ {1, 2}.

Observation 7 If α, β are non-trivial non-crossing equiva-
lence relations, thenα ∨ β = α ∪ β is non-trivial.

Lemma 8 LetR1, R2 be a pair of thick mappings.

(1) R = R1 ∩ R2 is a thick mapping. IfR1, R2 are non-
crossing, thenR,R1 andR,R2 are also non-crossing.

(2) If R1, R2 is a non-crossing pair thenR′ = R1 ◦R2 is a
thick mapping.
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For a setΓ of thick mappings on a setD let [Γ] denote the
set of binary relations that can be obtained fromΓ by means
of intersections and products. A setΓ of thick mappings is
said to benon-crossingif Γ = [Γ], and the members ofΓ
are pairwise non-crossing.

A (say,n-ary) relationR is said to benon-crossing de-
composableif it is 2-decomposable and all the binary pro-
jectionsprijR belong to a certain non-crossing set of thick
mappings. Sometimes we need to stress that the binary pro-
jections belong to a non-crossing set∆. ThenR is called
∆-non-crossing decomposable. A key point in our algorith-
mic results is that the property∆-non-crossing decompos-
able is closed under pp-definitions (Lemma 14). Note that
this is not true for the property 2-decomposable.

Now we are able to state the main result of the paper:

Theorem 9 Let Γ be a constraint language. The problem
CCSP(Γ) is polynomial time if there is a non-crossing set
∆ of thick mappings such that every relation fromΓ is ∆-
non-crossing decomposable and NP-complete otherwise.

3.2 Meta-Problem

We also consider themeta-problemfor CCSP(Γ). Sup-
poseD is fixed. Given a finite constraint languageΓ onD,
decide ifCCSP(Γ) is solvable in polynomial time.

Theorem 10 LetD be a finite set. The meta-problem for
CCSP(Γ) is polynomial time solvable.

To prove Theorem 10 we need several auxiliary state-
ments. For a non-crossing set∆ of thick mappingsUn(∆)
denotes the set{priR | R ∈ ∆, i ∈ {1, 2}}; andEqv(∆) =
{α1

R, α
2
R | R ∈ ∆}. As is easily seen,Eqv(∆) ⊆ ∆, since

for anyR ∈ ∆ we haveα1
R = R◦R−1 andα2

R = R−1 ◦R.
For a subsetA ⊆ D by Sg∆(A) we denote the smallest

set fromUn(∆) that containsA if A ⊆ B for someB ∈
Un(∆); otherwiseSg∆(A) = D. Observe that ifB,C ∈
Un(∆) thenB ∩ C ∈ Un(∆). Indeed, letB = pr1R,
C = pr1R

′ whereR,R′ ∈ ∆. Thenα1
R, α

1
R′ ∈ ∆ and

B ∩ C = pr1(α
1
R ∩ α1

R′). Thus there is a unique minimal
set inUn(∆) containingA.

Let A ∈ Un(∆). The set of all equivalence rela-
tions from Eqv(∆) that are relations onA is denoted
by Eqv∆(A). For a subsetA ⊆ D and a setB ⊆
A2 by Eg∆,A(B) we denote the smallest relation from
Eqv∆(Sg∆(A)) such thatB ⊆ Eg∆,A(B). For anyα, β ∈
Eqv∆(A) the relationsα∧β andα∨β belong toEqv∆(A).
To show thatα ∨ β ∈ Eqv∆(A) we needα ∨ β = α ∪ β =
α ◦ β that follow from the fact that∆ is non-crossing. Thus
Eg∆,A(B) is properly defined.

Lemma 11 LetA = {a, b, c} and η1 = EgΓ,A({〈a, b〉}),
η2 = EgΓ,A({〈b, c〉}), η3 = EgΓ,A({〈c, a〉}). Then
η1, η2, η3 are all comparable.

Now let ∆ be a non-crossing set onD. We define a
ternary operationm that is a polymorphism of∆ and ama-
jority operation, that is,m satisfies equationsm(x, x, y) =
m(x, y, x) = m(y, x, x) = x. Let A = {a, b, c} ⊆ D,
and letη1, η2, η3 are given byη1 = Eg∆,A({〈a, b〉}), η2 =
Eg∆,A({〈b, c〉}), η3 = Eg∆,A({〈c, a〉}). Then

m(a, b, c) =







a, if η1 ⊆ η2, η3,
b, if η2 ⊂ η1 andη2 ⊆ η3,
a, if η3 ⊂ η1, η2.

Lemma 12 Operationm is a majority operation and is a
polymorphism of∆.

Corollary 13 Let ∆ be a non-crossing set of thick map-
pings andΓ is a set of∆-non-crossing decomposable re-
lations. ThenΓ has a majority polymorphism.

Proof: (of Theorem 10) By Theorem 9, given a con-
straint languageΓ, it suffices to check whether or notΓ
is ∆-non-crossing decomposable for a certain non-crossing
set of thick mappings∆.

Set ∆0 to be the set of all binary projections of
relations fromΓ. It follows from the definition of non-
crossing decomposable constraint languages, that ifΓ
is ∆′-non-crossing decomposable for some∆′ then it
is ∆-non-crossing decomposable for∆ = [∆0]. First,
compute∆ by setting initially∆ = ∆0, and then iteratively
finding intersections and products of relations from∆ and
adding the result to∆ if it is not already there. Since
D is fixed, the maximal number of members in∆, and
therefore the number of iterations of the process above
is bounded by the constant2|D|2. Second, check if∆
contains a relation that is not a thick mapping, and that all
pairs of thick mappings are non-crossing. Again, as the
number of relations in∆ is bounded by a constant, this
can be done in constant time. Third, construct the majority
operationm as described above. Finally, check ifm is a
polymorphism ofΓ. This last step can be done in a time
cubic in the total size of relations inΓ, since it suffices for
each relationR ∈ Γ to applym to every triple of tuples in
R. By Corollary 13, ifΓ is ∆-non-crossing decomposable
thenm is a polymorphism ofΓ. On the other hand, ifm
is a polymorphism ofΓ then by [1]Γ is 2-decomposable.
Furthermore, as is checked before, all binary projections of
relations fromΓ belong to the non-crossing set∆, implying
Γ is non-crossing decomposable. 2

4 Algorithm

In this section we fix a non-crossing set∆ of thick
mappings, and a∆-non-crossing decomposable setΓ. We
present a polynomial-time algorithm for solvingCCSP(Γ)
in this case.
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4.1 Prerequisites

Let Γ be a constraint language and letP = (V, C) be a
2-consistent instance ofCCSP(Γ). By bin(P) we denote
the instance(V, C′) such thatC′ is the set of all constraints
of the form〈(v, w), Rv,w〉 wherev, w ∈ V andRv,w is the
set of all partial solutions on{v, w}.

Lemma 14 Let∆ be a non-crossing set of thick mappings,
and letΓ be a set of∆-non-crossing decomposable rela-
tions.

(1) AnyR pp-definable inΓ is ∆-non-crossing decompos-
able.
(2) If P is a 2-consistent instance ofCCSP(Γ) thenbin(P)
has the same solutions asP .

Let P = (V, C) be an instance ofCCSP(Γ). Apply-
ing algorithm 2-CONSISTENCY we may assume thatP is
2-consistent, and, by Lemma 14, as all relations ofΓ are
2-decomposable, that every constraint relation ofP is 2-
decomposable, and therefore every constraint ofP can be
assumed to be binary, and every constraint relation belongs
to [∆] = ∆. Let constraints ofP be〈(v, w), Rvw〉 for each
pair of differentv, w ∈ V . LetSv, v ∈ V , denote the set of
a ∈ D such that there is a solutionϕ of P with ϕ(v) = a.
By [15] if a constraint language has a majority polymor-
phism, then every 2-consistent problem isglobally consis-
tent, that is every partial solution can be extended to a global
solution of the problem. In particular,P is globally consis-
tent, therefore,Sv = pr1Rvw for anyw ∈ V , w 6= v. Con-
straint〈(v, w), Rvw〉 is said to betrivial if Rvw = Sv ×Sw,
otherwise it is said to benon-trivial.

The graph of P , denotedG(P), is a graph with
vertex set V and edge setE = {vw | v, w ∈
V and〈(v, w), Rvw〉 is non-trivial}.

Observation 15 By the 2-consistency ofP , for any
u, v, w ∈ V , Ruv ⊆ Ruw ◦Rwv.

Lemma 16 LetR,R′ be a non-crossing pair of non-trivial
thick mappings such thatpr2R = pr1R

′. ThenR ◦ R′ is
also non-trivial.

Suppose thatG(P) is connected and fixv ∈ V . By
Observation 15 and Lemma 16, for anyw ∈ V the con-
straint 〈(v, w), Rvw〉 is non-trivial. Note that due to 2-
consistency, all theα1

Rvw
are over the same set. Setηv =

∨

w∈V −{v} α
1
Rvw

. If |V | = 1 we setηv to be the equality
relation.

Lemma 17 If G(P) is connected then the equivalence re-
lationsηv andα1

Rvw
(for anyw ∈ V −{v}) are non-trivial.

Lemma 18 SupposeG(P) is connected.

(1) For anyv, w ∈ V there is a one-to-one correspondence
ψvw betweenSv/ηv

andSw/ηw
such that for any solution

ϕ of P if ϕ(v) ∈ A ∈ Sv/ηv
, thenϕ(w) ∈ ψvw(A) ∈

Sw/ηw
.

(2) The mappingsψvw are consistent, i.e. for anyu, v, w ∈
V we haveψuw(x) = ψvw(ψuv(x)) for everyx.

4.2 Algorithm

We split the algorithm into two parts. Algorithm CARDI-
NALITY (Figure 1) just ensures 2-consistency and initializes
a recursive process. The main part of the work is done by
EXT-CARDINALITY (Figure 2).

Algorithm EXT-CARDINALITY solves the more general
problem of computing the set of all cardinality constraints
π that can be satisfied by a solution ofP . Thus it can be
used to solve directly CSP withextended global cardinal-
ity constraints,where the input contains a setΠ of allowed
cardinality constraints and the solution can satisfy any one
of them.

The algorithm considers three cases. Step 2 handles the
trivial case when the instance consists of a single variable
and there is only one possible value it can be assigned. Oth-
erwise, we decompose the instance either by partitioning
the variables or by partitioning the domain of the variables.
If G(P) is not connected, then the satisfying assignments
of P can be obtained from the satisfying assignments of the
connected components. Thus a cardinality constraintπ can
be satisfied if it arises as the sumπ1 + · · ·+ πk of cardinal-
ity constraints such that thei-th component has a solution
satisfyingπi. Instead of considering all such sums (which
would not be possible in polynomial time), we follow the
standard dynamic programming approach of going through
the components one by one, and determining all possible
cardinality constraints that can be satisfied by a solution for
the firsti components (Step 3).

If the graphG(P) is connected, then we fix a variable
v0 and go through each classA of the partitionηv0

(Step
4). If v0 is restricted toA, then this implies a restriction for
every other variablew. We recursively solve the problem
for the restricted instance arising for each classA; if con-
straintπ can be satisfied, then it can be satisfied for one of
the restricted instances.

The correctness of the algorithm follows from the dis-
cussion above. The only point that has to be verified is that
the instance remains 2-consistent after the recursion. This
is obvious if we recurse on the connected components (Step
3). In Step 4, 2-consistency follows from the fact that if
(a, b) ∈ Rvw can be extended byc ∈ Su, then in every
subproblem either these three values satisfy the instance re-
stricted to{v, w, u} or a, b, c do not appear in the domain
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of v, w, u, respectively.
To show that the algorithm runs in polynomial time, ob-

serve first that every step of the algorithm (except the re-
cursive calls) can be done in polynomial time. Here we use
thatD is fixed, thus the size of the setΠ is polynomially
bounded. Thus we only need to bound the size of the recur-
sion tree. If we recurse in Step 3, then we produce instances
whose graphs are connected, thus it cannot be followed by
recursing again in Step 3. In Step 4, the domain of every
variable is decreased: by Lemma 17,ηw is nontrivial for
any variablew. Thus in any branch of the recursion tree,
recursion in Step 4 can occur at most|D| times, hence the
depth of the recursion tree isO(|D|). As the number of
branches is polynomial in each step, the size of the recur-
sion tree is polynomial.

INPUT: An instanceP = (V, C) of CCSP(Γ), and
a cardinality constraintπ

OUTPUT: YES ifP has a solution satisfyingπ,
NO otherwise

Step 1. apply 2-CONSISTENCYto P
Step 2. setΠ :=EXT-CARDINALITY (P)
Step 3. if π ∈ Π output YES

else outputNO

Figure 1. Algorithm CARDINALITY .

5 Definable relations, constant relations, and
the complexity of CCSP

We present two reductions that will be crucial for the
proofs in Section 6. In Section 5.1, we show that adding
relations that are pp-definable (without equalities) does not
make the problem harder, while in Section 5.2, we show the
same for unary constant relations.

5.1 Definable relations and the complex-
ity of cardinality constraints

Theorem 19 LetΓ be a constraint language andR a rela-
tion pp-definable inΓ without equalities. ThenCCSP(Γ ∪
{R}) is reducible toCCSP(Γ).

Proof (sketch): We proceed by induction on the struc-
ture of pp-formulas. The base case of induction is given
by R ∈ Γ. There are two cases: whenR is defined by
conjunction of two relations, and whenR(x1, . . . , xn) =
∃xR′(x1, . . . , xn, x). In the first case it suffices to replace
in an instance ofCCSP(Γ) every constraint usingR with
two constraints using the conjuncts. So, we consider the
second case.

INPUT: A 2-consistent instanceP = (V, C)
of CCSP(Γ)

OUTPUT: The set of cardinality constraintsπ such
thatP has a solution that satisfiesπ

Step 1. construct the graphG(P) = (V,E)
Step 2. if |V | = 1 and the domain of this variable is

a singleton{a} then do
Step 2.1 setΠ := {π} whereπ(x) = 0

exceptπ(a) = 1
Step 3. else ifG(P) is disconnected and

G1 = (V1, E1), . . . , Gk = (Vk, Ek) are
its connected componentsdo

Step 3.1 setΠ := {π} whereπ(x) = 0
Step 3.2 for i = 1 to k do
Step 3.2.1 setΠ := Π + EXT-CARDINALITY (P|Vi

)
endfor

endif
Step 4. else do
Step 4.1 for eachv ∈ V find ηv

Step 4.2 fix v0 ∈ V and setΠ := ∅
Step 4.3 for eachηv0

-classA do
Step 4.3.1 setPA := (V, CA) where for every

v, w ∈ V the setCA includes
the constraint
〈(v, w), Rvw ∩ (ψv0v(A) × ψv0w(A))〉

Step 4.3.2 setΠ := Π ∪ EXT-CARDINALITY (PA)
endfor

enddo
Step 4. output Π

Figure 2. Algorithm EXT-CARDINALITY .

Let P = (V, C) be aCCSP(Γ ∪ {R}) instance. W.l.o.g.
let C1, . . . , Cq be the constraints involvingR. InstanceP ′

of CCSP(Γ) is constructed as follows.
Variables: Replace every variablev from V with a setWv

of variables of sizeq|D| and introduce a set of|D| variables
for each constraint involvingR. Formally,

W =
⋃

v∈V

Wv ∪ {w1, . . . , wq} ∪

q
⋃

i=1

{w1
i , . . . , w

|D|−1
i }.

Non-R constraints: For everyCi = 〈(v1, . . . , vℓ), Q〉
with i > q, introduce all possible constraints of the form
〈(u1, . . . , uℓ), Q〉, whereuj ∈Wvj

for j ∈ {1, . . . , ℓ}.
R constraints: For every Ci = 〈(v1, . . . , vℓ), R〉,
i ≤ q, introduce all possible constraints of the form
〈(u1, . . . , uℓ, wi), R

′〉, whereuj ∈ Wvj
, j ∈ {1, . . . , ℓ}.

It is not hard to see that ifP has a solution satisfying
cardinality constraintπ thenP ′ has a solution satisfying the
cardinality constraintπ′ = |Wv| · π + q. Thus it suffices to
show that ifP ′ has a solutionψ satisfyingπ′, thenP has a
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solution satisfyingπ.
Let a ∈ D andUa(ψ) = ψ−1(a) = {u ∈ W | ψ(u) =

a}. Observe first that ifϕ : V → D is a mapping such that
Uϕ(v)(ψ) ∩Wv 6= ∅ for everyv ∈ V (i.e.,ϕ(v) appears on
at least one variablev′ ∈ Wv in ψ), thenϕ satisfies all the
constraints ofP . Then we show that it is possible to con-
struct such aϕ that also satisfies the cardinality constraint
π. Since|Wv| = q|D|, even if setUa(ψ) contains allq|D|
variables of the formwi andwj

i , it has to intersect at least
π(a) setsWv. Using this observation we construct a bipar-
tite graph indicating which intersectionsUa(ψ) ∩ Wv are
nonempty, show that required solutions correspond to per-
fect matchings in this graph, and prove that such a perfect
matching exists using Hall’s Theorem.

5.2 Constant relations and the complexity
of cardinality constraints

Let D be a set, and leta ∈ D. The constant rela-
tion Ca is the unary relation that contains only one tuple,
(a). If a constraint languageΓ overD contains all the con-
stant relations, then they can be used in the correspond-
ing constraint satisfaction problem to force certain vari-
ables to take some fixed values. The goal of this section
is to show that for any constraint languageΓ the problem
CCSP(Γ ∪ {Ca | a ∈ D}) is polynomial time reducible to
CCSP(Γ). For the ordinary decision CSP such a reduction
exists whenΓ does not have unary polymorphisms that are
not permutations, see [8].

LetR be a (say,n-ary) relation on a setD, and letf be
a mapping fromD to 2D, the powerset ofD. Mappingf
is said to be amulti-valued morphismof R if for any tuple
(a1, . . . , an) ∈ R the setf(a1)× . . .× f(an) is a subset of
R. Mappingf is a multi-valued morphism of a constraint
languageΓ if it is a multi-valued morphism of every relation
in Γ. Mappings of this kind are also known ashyperopera-
tions, see e.g. [20].

Theorem 20 Let Γ be a finite constraint language over a
setD. ThenCCSP(Γ ∪ {Ca | a ∈ D}) ≤ CCSP(Γ).

Proof: Let D = {d1, . . . , dk} anda = d1. We show
thatCCSP(Γ ∪ {Ca}) ≤ CCSP(Γ). This clearly implies
the result. We make use of the following multi-valued mor-
phism gadgetMVM(Γ, n) (i.e. a CSP instance). Observe
that it is somewhat similar to theindicator problem[17].

• The set of variables isV (n) =
⋃k

i=1 Vdi
, whereVdi

containsnk+1−i elements. All setsVdi
are assumed to

be disjoint.

• The constraints are as follows: For everyR ∈ Γ and
every(a1, . . . , ar) ∈ R we include all possible con-
straints of the form〈(v1, . . . , vr), R〉 wherevi ∈ Vai

for i ∈ {1, . . . , k}.

Given an instanceP = (V, C) of CCSP(Γ ∪ {Ca}), we
construct instanceP ′ = (V ′, C′) of CCSP(Γ).

• LetW ⊆ V be the set of variables, on which the con-
stant relationCa is imposed, that is,C contains the con-
straint〈(v), Ca〉. Setn = |V |. The setV ′ of variables
of P ′ is the disjoint union of the setV (n) of variables
of MVM(Γ, n) andV \W .

• The setC′ of constraints ofP ′ consists of three parts:

(a) C′
1, the constraints ofMVM(Γ, n);

(b) C′
2, the constraints ofP that do not include vari-

ables fromW ;
(c) C′

3, for any constraint〈(v1, . . . , vm), R〉 ∈ C
whose scope contains variables constrained by
Ca (without loss of generality letv1, . . . , vℓ

be such variables),C′
3 contains all constraints

of the form 〈(w1, . . . , wk, vℓ+1, . . . , vm), R〉,
wherew1, . . . , wℓ ∈ Va.

We show thatP has a solution satisfying a cardinality
constraintπ if and only if P ′ has a solution satisfying car-
dinality constraintπ′ given by

π′(di) =

{

π(a) + (|Va| − |W |), if i = 1,
π(di) + |Vdi

|, otherwise.

Suppose thatP has a right solutionϕ. Then a required
solution forP ′ is given by

ψ(v) =

{

ϕ(v), if v ∈ V \W,
di, if v ∈ Vdi

.

It is clear thatψ is a solution toP ′ and it satisfiesπ′.
Suppose thatP ′ has a solutionψ that satisfiesπ′. Since

π′(a) > |V ′ \ Va| (usingd1 = a), there is av ∈ Va such
thatψ(v) = a. Thus the assignment

ϕ(v) =

{

ψ(v), if v ∈ V \W,
a if v ∈W

is a satisfying assignmentP , but it might not satisfyπ. Us-
ing the following claims one can show thatP ′ has a so-
lution ψ, whereϕ obtained this way satisfiesπ. Observe
that what we need is that inψ valuedi appears on exactly
π′(di) − |Vdi

| variables ofV \W .

CLAIM 1. Mappingf taking everydi ∈ D to the set
{ψ(v) | v ∈ Vdi

} is a multi-valued morphism ofΓ.

Proof of this claim is straightforward.

CLAIM 2. Let f be the mapping defined in Claim 1.
Thenf∗ defined byf∗(b) := f(b)∪ {b} for everyb ∈ D is
also a multi-valued morphism ofΓ.

We show that for everydi ∈ D, there is anmi ≥ 1 such
thatdi ∈ f j(di) for everyj ≥ mi. Taking the maximum
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m of these values, we getdi ∈ fm+1(di) and f(di) ⊆
fm+1(di) (asdi ∈ fm(di)) for everyi, proving the claim.

The proof is by induction oni. If di ∈ f(di), then
we are done as we can setmi = 1 (note that this is al-
ways the case fori = 1, since we observed above that
valued1 has to appear on a variable ofVd1

)). So let us
suppose thatdi 6∈ f(di). Let Di = {d1, . . . , di} and let
gi : Di → 2Di defined bygi(dj) := f(dj) ∩ Di. Ob-
serve thatgi(dj) is well-defined, i.e.,gi(dj) 6= ∅: the
set Vdj

containsnk+1−j ≥ nk+1−i variables, while the
number of variables where values not fromDi appear is
∑k

ℓ=i+1 π
′(dℓ) ≤ n+

∑k
ℓ=i+1 n

k+1−ℓ < nk+1−i.
Let T :=

⋃

ℓ≥1 g
ℓ
i (di). We claim thatdi ∈ T . Suppose

that di 6∈ T . By the definition ofT and the assumption
di 6∈ f(di), for everyb ∈ T ∪ {di}, the variables inVb can
have values only fromT and fromD\Di. The total number
of variables inVb, b ∈ T ∪ {di} is

∑

b∈T∪{di}
nk+1−b,

while the total cardinality constraint of the values fromT ∪
(D \Di) is

∑

b∈T∪(D\Di)

π′(b) < n+
∑

b∈T

nk+1−b +
k

∑

ℓ=i+1

nk+1−ℓ

<
∑

b∈T

nk+1−b + nk+1−i =
∑

b∈T∪{di}

nk+1−b,

a contradiction. Thusdi ∈ T , that is, there is a valuej < i
such thatdj ∈ f(di) anddi ∈ fs(dj) for somes ≥ 1. By
the induction hypothesis,dj ∈ fm(dj) for everym ≥ nj ,
thus we have thatdi ∈ fm(di) if m is at leastmi := 1 +
mj + s. This concludes the proof of Claim 2.

LetD+ (resp.,D−) be the set of those valuesdi ∈ D that
appear on more than (resp., less than)π′(i)−|Vdi

| variables
of V \ W . It is clear that if|D+| = |D−| = 0, thenϕ
obtained fromψ satisfiesπ. Futhermore, if|D+| = 0, then
|D−| = 0 as well. Thus suppose thatD+ 6= ∅ and let
S :=

⋃

b∈D+,s≥1 f
s(b).

CLAIM 3. S ∩D− 6= ∅.

We skip the proof this claim.
By Claim 3, there is a valued− ∈ S ∩D−, which means

that there is ad+ ∈ D+ and a sequence of distinct values
b0 = d+, b1, . . . , bℓ = d− such thatbi+1 ∈ f(bi) for every
0 ≤ i < ℓ. Let v ∈ V \W be an arbitrary variable with
valued+. We modifyψ the following way:

1. The value ofv is changed fromd+ to d−.

2. For every0 ≤ i < ℓ, one variable inVbi
with value

bi+1 is changed tobi.

Note that these changes do not modify the cardinalities of
the values: the second step increases only the cardinality
of b0 = d+ (by one) and decreases only the cardinality of

bℓ = d− (by one). We have to argue that the transformed
assignment still satisfies the constraints ofP ′. Since
d− ∈ f ℓ(d+), the multi-valued morphismf∗ of Claim 2
implies that changingd+ to d− on a single variable and not
changing anything else also gives a satisfying assignment.
The rest of the proof is fairly straightforward. 2

We will use the following simple lemma:

Lemma 21 Let α be an equivalence relation on a setD
anda ∈ D. Thenaα ∈ 〈〈α,Ca〉〉′.

6 Hardness

We prove that ifΓ does not satisfy the conditions of The-
orem 9 thenCCSP(Γ) is NP-complete.

For a (say,n-ary) relationR over a setD and a subset
D′ ⊆ D, by R|D′ we denote the relation{(a1, . . . , an) |
(a1, . . . , an) ∈ R anda1, . . . , an ∈ D′}. For a constraint
languageΓ overD we useΓ|D′ to denote the constraint lan-
guage{R|D′ | R ∈ Γ}. We can easily simulate the restric-
tion to a subset of the domain by setting to 0 the cardinality
constraint on the unwanted values:

Lemma 22 For any constraint languageΓ over a setD and
anyD′ ⊆ D, the problemCCSP(Γ|D′) is polynomial time
reducible toCCSP(Γ).

Suppose now that a constraint languageΓ does not sat-
isfy the conditions of Theorem 9. Then one of the following
cases takes place: (a)〈〈Γ〉〉′ contains a binary relation wich
is not a thick mapping; or (b)〈〈Γ〉〉′ contains two equiv-
alence relations that are not a non-crossing pair; or (c)Γ
contains a relation which is not 2-decomposable. We con-
sider these three cases in turn.

One of the NP-complete problems we will reduce to
CCSP(R) is the BIPARTITE INDEPENDENTSET problem
(or BIS for short). In this problem, given a connected bi-
partite graphG with bipartitionV1, V2 and numbersk1, k2,
the goal is to verify if there exists an independent setS of
G such that|S ∩ V1| ≥ k1 and|S ∩ V2| ≥ k2. It is easy
to see that the problem is hard even for graphs containing
no isolated vertices. By representing the edges of a bipar-
tite graph with the relationR = {(a, c), (a, d), (b, d)}, we
can express the problem of finding an bipartite independent
set. Valueb (resp.,a) represents selected (resp., unselected)
vertices inV1, while valuec (resp.,d) represents selected
(resp., unselected) vertices inV2. With this interpretation,
the only combination that relationR excludes is that two
selected vertices are adjacent. By Observation 6, if a binary
relation is not a thick mapping, then it contains something
very similar toR. However, some of the valuesa, b, c, and
d might coincide and the relation might contain further tu-
ples such as(c, d). Thus we need a delicate case analysis to
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show that the problem is NP-hard for binary relations that
are not thick mappings.

Lemma 23 LetR be a binary relation which is not a thick
mapping. ThenCCSP({R}) is NP-complete.

Next we show hardness in the case when there are two
equivalence relations that are crossing.

Lemma 24 LetR,Q be a crossing pair of equivalence re-
lations. ThenCCSP({R,Q}) is NP-complete.

Proof: LetR,Q be equivalence relations onD andD′,
respectively. As these relations are not a non-crossing pair
there area, b, c ∈ D ∩ D′ such that〈a, c〉 ∈ R \ Q and
〈c, b〉 ∈ Q \ R. Let R′ = R|{a,b,c} andQ′ = Q|{a,b,c}.
Clearly,

R′ = {(a, a), (b, b), (c, c), (a, c), (c, a)},

Q′ = {(a, a), (b, b), (c, c), (b, c), (c, b)}.

By Lemma 22, CCSP({R′, Q′}) is polynomial time
reducible to CCSP({R,Q}). ConsiderR′′(x, y) =
∃z(R′(x, z) ∧ Q′(z, y)). We have thatCCSP(R′′) is re-
ducible toCCSP({R′, Q′}) and

R′′ = {(a, a), (b, b), (c, c), (a, c), (c, a), (b, c), (c, b), (a, b)}.

Observe thatR′′ is not a thick mapping and by Lemma 23,
CCSP(R′′) is NP-complete. 2

Finally, we prove hardness in the case when there is a
relation that is not 2-decomposable. An example of such a
relation is a ternary Boolean affine relationx + y + z = c
for c = 0 or c = 1. The CSP with global cardinality con-
straints for this relation is NP-complete by [9]. Our strat-
egy is to obtain such a relation from a relation that is not
2-decomposable. However, as in Lemma 23, we have to
consider several cases.

Lemma 25 LetR be a relation whose binary projections is
contained in a non-crossing set of thick mappings, butR is
not 2-decomposable. ThenCCSP({R}) is NP-complete.

Proof: We chooseR to be the ‘smallest’ non-2-
decomposable relation in the sense that every relationR′ ∈
〈〈{R} ∪ {Ca | a ∈ D}〉〉′ that either have smaller arity, or
R′ ⊂ R, is non-crossing decomposable, and every relation
obtained fromR by restricting on a proper subset ofD is
also non-crossing decomposable. By Theorems 19, 20, and
Lemmas 22, 23, 24, it suffices to consider relations satisfy-
ing these conditions.

RelationR is ternary. Clearly, it is not binary; suppose
that its arity is more than 3. Leta 6∈ R be a tuple such that
prija ∈ prijR for anyi, j. Let

R′(x, y, z) = ∃x4, . . . , xn(R(x, y, z, x4, . . . , xn) ∧

C
a[4](x4) ∧ . . . ∧ Ca[n](xn)).

By the minimality of R all binary projections of
R′ are pairwise non-crossing thick mappings. It is
straightforward that (a[1],a[2],a[3]) 6∈ R′, while,
since any proper projection ofR is 2-decomposable,
pr{2,...,n}a ∈ pr{2,...,n}R, pr{1,3,...,n}a ∈ pr{1,3,...,n}R,
pr{1,2,4,...,n}a ∈ pr{1,2,4,...,n}R, implying (a[1],a[2]) ∈
pr12R

′, (a[2],a[3]) ∈ pr23R
′, (a[1],a[3]) ∈ pr13R

′. Thus
R′ is not 2-decomposable, a contradiction.

Let (a, b, c) 6∈ R and(a, b, d), (a, e, c), (f, b, c) ∈ R, and
let B = {a, b, c, d, e, f}. As R|B is not 2-decomposable,
we should haveR = R|B.

If R12 = pr12R is a thick mapping with respect to
η12, η21, R13 = pr13R is a thick mapping with respect to
η13, η31, andR23 = pr23R is a thick mapping with respect
to η23, η32, then〈a, f〉 ∈ η12 ∩ η13, 〈b, e〉 ∈ η21 ∩ η23,
and 〈c, d〉 ∈ η31 ∩ η32. Let the corresponding classes of
η12∩η13, η21∩η23, andη31∩η32 beB1, B2, andB3, respec-
tively. ThenB1 = pr1R,B2 = pr2R,B3 = pr3R. Indeed,
if one of these equalities is not true, since by Lemma 21
B1, B2, B3 are pp-definable inR without equalities, the re-
lationR′(x, y, z) = R(x, y, z)∧B1(x)∧B2(y)∧B3(z) is
pp-definable inR and the constant relations, is smaller than
R, and is not 2-decomposable.

Next we show that(a, g) ∈ pr12R for all g ∈ pr2R.
If there is g with (a, g) 6∈ pr12R then settingC(y) =
∃z(pr12R(z, y)∧Ca(z)) we haveb, e ∈ C andC 6= pr2R.
ThusR′(x, y, z) = R(x, y, z)∧C(y) is smaller thanR and
is not 2-decomposable. The same is true fora andpr3R,
and forb andpr3R. Since every binary projection ofR is
a thick mapping this implies thatpr12R = pr1R × pr2R,
pr23R = pr2R× pr3R, andpr13R = pr1R× pr3R.

For eachi ∈ {1, 2, 3} and everyp ∈ priR, the relation
Rp

i (xj , xk) = ∃xi(R(x1, x2, x3)∧Cp(xi)), where{j, k} =
{1, 2, 3} \ {i}, is definable inR and therefore is a thick
mapping with respect to, say,ηp

ij , η
p
ik. Our next step is to

show thatR can be chosen such thatηp
ij does not depend on

the choice ofp andi.
If one of these relations, say,Rp

1, equalspr2R × pr3R,
while another one, sayRq

1 does not, then considerRc
3. We

have{p}×pr2R ⊆ Rc
3. Moreover, since by the choice ofR

relationRq
1 is a non-trivial thick mapping there isr ∈ pr2R

such that(r, c) 6∈ Rq
1, hence(q, r) 6∈ Rc

3. ThereforeRc
3

is not a thick mapping, a contradiction. SinceRa
1 does not

equalpr2R× pr3R, everyηp
ij is non-trivial. Let

ηi =
∨

j∈{1,2,3}\{i}
p∈prjR

ηp
ji =

⋃

j∈{1,2,3}\{i}
p∈prjR

ηp
ji.

As we observed before Lemma 11,ηi is pp-definable inR
and constant relations without equalities. Since all theηp

ji

are non-trivial,ηi is also non-trivial. We set

R′(x, y, z) = ∃x′, y′, z′(R(x′, y′, z′) ∧ η1(x, x
′) ∧

η2(y, y
′) ∧ η3(z, z

′)).
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Let Qp
i be defined forR′ in the same way asRp

i for R.
Observe that since(p, q, r) ∈ R′ if and only if there is
(a′, b′, c′) ∈ R such that〈a, a′〉 ∈ η1, 〈b, b′〉 ∈ η2, 〈c, c′〉 ∈
η3, the relationsQp

1,Qq
2,Qr

3 for p ∈ pr1R
′, q ∈ pr2R

′, r ∈
pr3R

′ are thick mappings with respect to the equivalence re-
lationsη1, η2, relationsη2, η3, and relationsη1, η3, respec-
tively. Since all the binary projections ofR′ equal to the
direct product of the corresponding unary projections and
η1, η2, η3 are non-trivial,R′ is not 2-decomposable, and we
can replaceR withR′. Thus we have achieved thatηp

ij does
not depend on the choice ofp andi.

Next we show thatR can be chosen such thatpr1R =
pr2R = pr3R, η1 = η2 = η3, and for eachi ∈ {1, 2, 3}
there isr ∈ priR such thatRr

i is a reflexive relation. If, say,
pr1R 6= pr2R, or η1 6= η2, or Rr

3 is not reflexive for any
r ∈ pr3R, consider the following relation

R′(x, y, z) = ∃y′, z′(R(x, y′, z) ∧R(y, y′, z′) ∧ Cd(z
′)).

First, observe thatprijR
′ = priR

′ × prjR
′ for any i, j ∈

{1, 2, 3}. Then, for any fixedr ∈ pr3R
′ = pr3R the

relationQr
3 = {(p, q) | (p, q, r) ∈ R′} is the product

Rr
3 ◦ (Rd

3)
−1, that is, a non-trivial thick mapping. Thus

R′ is not 2-decomposable. Furthermore,pr1R
′ = pr2R

′ =
pr1R, for anyr ∈ pr3R

′ the relationQr
3 is a thick map-

ping with respect toη1, η1, andQd
3 is reflexive. Repeating

this procedure for the first and third coordinate positions,
we obtain a relationR′′ with the required properties. Re-
placingR with R′′ if necessary, we may assume thatR also
has all these properties.

SetB = pr1R = pr2R = pr3R andη = η1 = η2 = η3.
Let p ∈ B be such thatRp

1 is reflexive. Let alsoq ∈ B
be such that〈p, q〉 6∈ η. Then(p, p, p), (p, q, q) ∈ R while
(p, p, q) 6∈ R. Chooser such that(r, p, q) ∈ R. Then
the restriction ofR onto 3-element set{p, q, r} is not 2-
decomposable. ThusR can be assumed to be a relation on
a 3-element set.

If η is not the equality relation, say,〈p, r〉 ∈ η, then as
the restriction ofR onto{p, q} is still a not 2-decomposable
relation,R itself is a relation on the set{p, q}. It is not hard
to see that it is the affine relationx + y + z = 0 on {p, q}.
The CSP with global cardinality constraints for this relation
is NP-complete by [9].

Suppose thatη is the equality relation. Since each of
Rp

1, R
q
1, R

q
1 is a mapping andRp

1 ∪ Rq
1 ∪ Rr

1 = B2, it
follows that the three relations are disjoint. AsRr

1 is the
identity mapping,Rq

1 andRr
1 are two cyclic permutations

of (the 3-element set)B. Hence either(p, q) or (q, p)
belongs toRq

1. Let it be (p, q). RestrictingR onto {p, q}
we obtain a relationR′ whose projectionpr23R

′ equals
{(p, p), (q, q), (p, q)}, which is not a thick mapping. A
contradiction with the choice ofR. 2
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