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Abstract only a limited number of variables. Constraints of
this type are callegylobal. Global constraints are very
In a constraint satisfaction problem (CSP) the goal is diverse, the current Clobal Constraint Catalog (see
to find an assignment of a given set of variables subject toht t p: / / www. emn. fr/ x- i nf o/ sdenasse/ gccat /)
specified constraints. A global cardinality constraint is a  lists 313 types of such constraints. In this paper we focus
additional requirement that prescribes how many variables onglobal cardinality constraint$3, 5, 19]. A global cardi-
must be assigned a certain value. We study the complexitynality constraintr is specified for a set of valugs and a
of the problemCCSP(T"), the constraint satisfaction prob-  set of variabled’, and is given by a mapping : D — N
lem with global cardinality constraints that allows only-re  that assigns a natural number to each elemen cfuch
lations from the sef. The main result of this paper charac- that ), _,m(a) = |V|. An assignment of variablek’
terizes set§’ that give rise to problems solvable in polyno- satisfiesr if for eacha € D the number of variables that
mial time, and states that the remaining such problems aretake valuex equalst(a). In a CSP with global cardinality
NP-complete. constraints, given a CSP instance and a global cardinality
constraintr, the goal is to decide if there is a solution of
the CSP instance satisfying We consider the following
problem: Characterize sets of relatiofissuch that CSP
with global cardinality constraint that uses relationgtiro

| traint satisfacti blem (CSP) , T, denoted byCCSP(T"), is solvable in polynomial time.
n a constraint satisfaction problem we are given a . o
set of variables, and the goal is to find an assignment of the The complexity ofCCSP(I') has been studied in [3] for

. . o . . _setsI" of relations on a 2-element set. It was shown that
variables subject to specified constraints, and a constrain . . ST .
. ; o CSP(I") is solvable in polynomial time if and only if every
is usually expressed as a requirement that combinations o Lo S
. . relation inT" is width-2-affine, i.e. it can be expressed as
values of a certain (usually small) set of variables belong . . i
. . . . 7 the set of solutions of system of linear equations over a 2-
to a certain relation. CSPs have been intensively studied in . . . e
. . . element field containing at most 2 variables. Otherwise it is
both theoretical and practical perspectives. On the thieore . .
: : T NP-complete. In this cas@CSP(T") is also known as the
ical side the key research direction has been the complex-k ONES(T') problem, since a global cardinality constraint
ity of the CSP when either the way the constraints interact P ! g y

; . can be expressed by specifying how many ones (the set of
(more precisely, the hypergraph formed by the variable sets .
of the constraints) is restricted [12, 13, 14], or restoiat values is thought to bg0, 1}) one wants to have among

: the values of variables. The parametrized complexity-of
are on '.[he t_ype of aIIov_ved relations [16, 8, 6, 7, 2]. In the ONES(T") has also been studied [18], wherés used as a
latter direction the main focus has been on the so called

Dichotomy conjecturg10] suggesting that every CSP re- parameter.

stricted in this way is either solvable in polynomial time or " thiS paper we characterize sets of relatiéhen an
is NP-complete. arbitrary finite setD that give rise to aCCSP(T") prob-

This ‘pure’ constraint satisfaction problem is some- lem sol\r/]able |Elpolyno'\rlr;al tlmel, atmdero;e tlhatln i[alcljothe.r
times not enough to model practical problems, as someCas€s the probiem IS NF-complete. or 2-element domains
constraint that have to be satisfied are not ‘local’ in [9], the polynomial-time solvable cases rely on the fact tha

the sense that they cannot be viewed as applied toif th_e value of a variable is set, then thi_s forces a uni_qt_Je

assignment on the component of the variable. Generalizing
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1 Introduction




difficult if a value is replaced by a set of equivalent values,
thus in particular the problem is tractabldifconsists of a

binary relation that is a one-to-one mapping between equiv-

such pairs will be denoted by, e.da, b). If a is an equiv-
alence relation on a sé? thenD/ , denotes the set of-
classes, and® for a € D denotes thex-class containing:.

alence classes of the domain. The situation becomes sigSometimes we need to emphasize that the unary projections

nificantly more complicated if there are several such rela-

tions: to ensure tractability, the equivalence classeg bav

pry R, pry R of a binary relationR are setsA and B. We
denote thisbyR C A x B.

be coordinated in a certain way. We do not see an easy way Constraint Satisfaction Problem with cardinality

of giving a combinatorial characterization of the tracéabl

constraints. Let D be a finite set and® a constraint lan-

cases. However, we can obtain a compact characterizatioguage overD. An instance of theConstraint Satisfaction

using logical definability.

Sets of relation§' that give rise to polynomial time solv-
able problem are given by the following 3 conditions: (1)
every relationR that can be derived froiin can be expressed
as a conjunction of binary relations; (2) every such binary
relation @ involved in the definition ofR is athick map-
ping, i.e. Q@ C A x B for some setsd, B and there are
equivalence relations, 5 on A, B, respectively, and a map-
pingp : A/, — B/ﬁ such that(a,b) € @ if and only if
b? = ¢(a®); (3) any pair of equivalence relations 3 that
appear in the definition of binary projections of any such
derivable relatiorR is non-crossingthat is, for anyx-class
C and anyg-classD eitherC N D = (), or C C D, or
D CcC.

The paper is structured as follows. After introducing in

Problem (CSP for short)CSP(T") is a pairP = (V,C),
whereV is a finite set ofvariablesand( is a set ofcon-
straints Every constraintis a palt’ = (s, R) consisting of
anng-tuples of variables, called theonstraint scopend
annc-ary relationR € I', called theconstraint relation A
solution of P is a mappingp: V' — D such that for every
constraintC' = (s, R) the tuplep(s) belongs taR.

A global cardinality constrainfor a CSP instanc® is
amappingr : D — Nwith ), 7(a) = [V]. Asolution
 of P satisfies the cardinality constrainif the number of
variables mapped to eache D equalsr(a). The variant
of CSP(T") allowing global cardinality constraints will be
denoted byCCSP(I"); the question is, given an instanfe
and a cardinality constraimt, whether there is a solution of
P satisfyingr.

Section 2 necessary definition and notation, in Section 3 we

study properties of thick mappings, state the main result,

and prove that recognizing if a setgives rise to a polyno-
mial time problem can also be done in polynomial time. In
Section 4 we present an algorithm solvid@SP(I"). Then

a result similar to the key result of the algebraic approach

to the CSP is proved in Section 5.1: Addingltoa rela-
tion definable i by a primitive positive formula does not
increase the complexity of the problem. We also prove in
Section 5.2 that adding tr@onstantrelations does not in-
crease the complexity adfCSP(I"). Section 6 proves the
hardness part of the theorem.

2 Preliminaries

Relations and constraint languagesThe set of all tu-
ples of elements from a sé? is denoted byD". We de-
note tuples in boldface, e.ga, and their components by
a[l],a[2],.... Forasubsel = {iy,...,ix} C {1,...,n}
with i1 < ... < 4 and ann-tuplea, by pr;a we denote
the projection of a onto I, the k-tuple (a[i1], ..., alix]).
An n-ary relation on setD is any subset oD". A set of
relations overD is called aconstraint languagever D.
Sometimes we use instead of relatiBrthe corresponding
predicateR(z1, . .., z,). Using predicates we caxpress
or definerelations through other relations by means of logi-
cal formulas. Therojectionpr; R of R is thek-ary relation
{pr;a|ac R}.

Pairs from equivalence relations play a special role, so

Example 1 If T is a constraint language on the 2-element
set{0, 1} then to specify a global cardinality constraint it
suffices to specify the exact number of ones we want to have
in a solution. This problem is also known as th®©NES(T")
problem, [9].

Sometimes it is convenient to use arithmetic operations
on cardinality constraints. Let, 7’ : D — N be cardinal-
ity constraints on a seb, andc¢ € N. Thenw + =’ and
cm denote cardinality constraints given by + 7')(a) =
7m(a) + 7'(a) and(cr)(a) = ¢ - w(a), respectively, for any
a € D. Furthermore, we extend addition to sélsII’ of
cardinality vectors in a convolution sendé:I1' is defined
as{r+' |7 ell,n’ €Il'}.

Primitive positive definitions and polymorphisms. We
now introduce the algebraic tools that will assist us thieug
out the paper. Lell be a constraint language on a g&tA
relation R is primitive positive (pp-) definablia I if it can
be expressed using (a) relations frby(b) conjunction, (c)
existential quantifiers, and (d) the binary equality relas.
The set of all relations pp-definablelihwill be denoted by

()

Example 2 An important example of pp-definitions that
will be used throughout the paper is tpeoductof binary
relations. LetR,  be binary relations. The® o Q) is the
binary relation given by

(Ro@)(x,y) = FzR(x,2) A Q(2,y).



In this paper we will need a slightly weaker notion of solutiony € R, ,,, and every: € V'\ {v, w}, the algorithm
definability. We say thatR is pp-definablein I' with- checks ifi) can be extended to a partial solution7f on
out equalitiesif it can be expressed using only items (a)— {v,w,u}. If not it updatesP’ by removingy from R, ,,.
(c) from above. The set of all relations pp-definable in This step is repeated until no more changes happen.

I" without equalities will be denoted b{(T"))’. Clearly,
(I)) C ((I')). The two sets are different only on rela-
tions with redundancies. L&® be a (sayn-ary) relation.
A redundancyof R is a pairi, j of its coordinate positions
such that, for any € R, afi] = a[j].

Lemma5 LetP = (V,C) be an instance ofSP(T").

(&) The problem obtained froni? by applying 2-
CONSISTENCYis 2-consistent;

(b) On every step ad2-CoNsISTENCYfor any pairv, w €
V the relationR, ., belongs to((I"))’.

Lemma 3 For every constraint languag€, everyR €

((T")) without redundancies belongs ta"))’. 3 The results
A polymorphisnof a (say,n-ary) relationk on D is a 3.1 Decomposability, thick mapping, and
mappingf : D¥ — D for somek such that for any tuples cardinality constraints
ai,...,a; € Rthetuple
We introduce several properties of relations that are nec-
flar,... ax) essary to describe the relations for which, as we will prove,
= (flai[l],...,ag[l]),..., f(ar[n], ..., ax[n])) CCSP(I) is solvable in polynomial time.
An n-ary relationR is said to be2-decomposablié a €
belongs tak. Operationf is a polymorphismof a constraint g if and only if, for anyi, j € {1,...,n}, pr, ;acpr R
languagd’ if it is a polymorphism of every relation from. A binary relationR C A x B is called ahick mappingf

There is a tight connection, a Galois correspondence, bethere are equivalence relatiomsnd on A and B, respec-
tween polymorphisms of a constraint language and relationsjyely, and a one-to-one mapping Al — B/ﬁ (thus, in
L) a )

pp-definable in the language, see [11, 4]. This connection__ .. - ;
has been extensively exploited to study the ordinary Con_Part|cuIar,|A/a| - |B/ﬁ|) such thata, b) € R if and only

straint satisfaction problems [16, 8]. Here we do not need if ¥° = ¢(a®). In this case we shall also say thtis a

the full power of this Galois correspondence, we only need thick mapping with respect ta, 3, andp. Given a thick
the following result: mappingR the corresponding equivalence relations will be

denoted byv}, anda%. Thick mappingR is said to betriv-

Lemma 4 If operationf is a polymorphism of a constraint  ial if aj; andaZ are the total equivalence relatiofis, 12)°
languagerl’, then it is also a polymorphism of any relation and(pr, R)?, respectively.

1 /
from ({I")), and therefore of any relation frof{I))". Observation 6 Binary relationR C A x B is a thick map-

ping if and only if wheneveta, ¢), (a,d), (b,d) € R, the

Consistency. Let us fix a constraint languade on a .
y guage pair (b, ¢) also belongs tdR.

setD and letP = (V,C) be an instance ofSP(T"). A

partial solutionof P on a set of variable$V’ C V is a We say that two set€’ and D are non-crossingif
mappingy : W — D that satisfies the constraigi/ N CND=0,0orC CD,orD C C. Apaira, 8 of equiv-
s, Pryyns I?) for every(s, R) € C. HereW N's denotes the  glence relations ison-crossingf every a-classC forms
subtuple ofs consisting of those entries efthat belong 3 non-crossing pair with everg-classD. Note that this
to W. InstanceP is said to bek-consistentf for any k- is equivalent to saying that vV 3 = a U 38 holds, where
elementsell’ C V and anys € V'\ W any partial solution v 3 denotes the smallest equivalence relation containing
onW can be extended to a partial_ s_o_IutionI@hU_ {v}. As botha and3. A pair of thick mappings? C 4; x A, and
we only neec_k = 2, all further definitions are given under  p/ ¢ B, x B, is callednon-crossingf ok, and a]}'%, are
this assumption. non-crossing for any, j € {1,2}.

Any instance? = (V,C) can be transformed to
a 2-consistent instance by means of a standard 2-Observation7 If o, 3 are non-trivial non-crossing equiva-
ConsISTENCYalgorithm. This polynomial-time algorithm  lence relations, then vV 3 = o U 3 is non-trivial.
works as follows. First, for each pair,w € V it cre-
ates a constraint(v, w), R, .,) WhereR, ,, is the binary _ _ .
relation consisting of all partial solutiong on {v, w}, i.e. (1) R = R1 N Ry is a thick mapping. If;, R, are non-
R, includes pairgv(v),(w)). These new constraints ~Crossing, theri?, 2, and R, R, are also non-crossing.
are added td’, let the resulting instance be denoted by (2) If Ry, Ry is a non-crossing pair theR’ = R; o Ry is a
P’ = (V,C’). Second, for each pair,w € V, every partial  thick mapping.

Lemma 8 Let Ry, R» be a pair of thick mappings.



For a sel” of thick mappings on a sé? let [I'] denote the Now let A be a non-crossing set oR. We define a
set of binary relations that can be obtained frbimy means  ternary operatiom: that is a polymorphism oA and ama-
of intersections and products. A debf thick mappingsis  jority operation, that is;m satisfies equations(z, z,y) =
said to benon-crossingf I' = [I'], and the members df m(z,y,z) = m(y,z,x) = xz. LetA = {a,b,c} C D,
are pairwise non-crossing. and letn;, n2,m3 are given byy, = Ega 4({(a,b)}), 72 =

A (say, n-ary) relationR is said to benon-crossing de-  Ega 4({(b,¢)}), 13 = Ega_a({{c,a)}). Then
composabléf it is 2-decomposable and all the binary pro- ' '

jectionspr,; R belong to a certain non-crossing set of thick a, i C 73,
mappings. Sometimes we need to stress that the binary pro- (@ 0:¢) = { b, if 72 C i andny C s,
jections belong to a non-crossing skt ThenR is called a, it 93 C iy

A-non-crossing decomposable. A key point in our algorith- | emma 12 Operationm is a majority operation and is a
mic results is that the propert¥-non-crossing decompos-  polymorphism of\.

able is closed under pp-definitions (Lemma 14). Note that ) )
this is not true for the property 2-decomposable. Corollary 13 Let A be a non-crossing set of thick map-

Now we are able to state the main result of the paper: ~ Pings andl’ is a set ofA-non-crossing decomposable re-
lations. Ther™ has a majority polymorphism.
Theorem 9 LetI" be a constraint language. The problem
CCSP(TI) is polynomial time if there is a non-crossing set
A of thick mappings such that every relation frdms A-
non-crossing decomposable and NP-complete otherwise.

Proof: (of Theorem 10) By Theorem 9, given a con-
straint languagd’, it suffices to check whether or nét
is A-non-crossing decomposable for a certain non-crossing
set of thick mappinga.
3.2 Meta-Problem S_et Ay to be the set of all binary_ pr_ojections of
relations fromI". It follows from the definition of non-
crossing decomposable constraint languages, thdt if
is A’-non-crossing decomposable for somé then it
is A-non-crossing decomposable far = [Ag]. First,
computeA by setting initiallyA = A, and then iteratively
Theorem 10 Let D be a finite set. The meta-problem for finding intersections and products of relations fréxrand
CCSP(T') is polynomial time solvable. adding the result taA if it is not already there. Since

- D is fixed, the maximal number of members &, and

To prove Theorem 10 we need several auxiliary state- therefore the number of iterations of the process above
ments. For a non-crossing s&tof thick mappingdJn(A) is bounded by the constaat?’. Second, check ifA
der11ote2$ the sqpr, B | R € A, i € {1,2}};andEqv(A) = contains a relation that is not a thick mapping, and that all
{ap,ap | R € A} As S easily seielrEqv(AQ) < A;13|nce pairs of thick mappings are non-crossing. Again, as the
foranyR € Awe haven, = Ro ™" andaj = B "o R.  ymper of relations imA is bounded by a constant, this

For a subsetl C D by Sg, (4) we denote the smallest ., he done in constant time. Third, construct the majority
set fromUn(A) that containsd if A C B for someB ¢ operationm as described above. Finally, checkiif is a

Un(A); otherwiseSg, (4) = D. Observe thatif3,C' € o\ morphism of. This last step can be done in a time
Un(A) the?B nc e EJ"(A)' Indeedl, IetlB = pri R, cubic in the total size of relations i, since it suffices for
¢ =pnR Wh‘freR’lR € A. Thenag,ap € Aand  oa0h relationR < T to applym to every triple of tuples in
BNC =pr(ap Nag). Thus there is a unique minimal - 5 * gy corollary 13, ifl" is A-non-crossing decomposable
setinUn(A) containingA. _ thenm is a polymorphism of’. On the other hand, i
_Let A € Un(A). The set of all equivalence rela- s 5 holvmorphism of” then by [1]T is 2-decomposable.
tions from Eqv(A) that are relations omd is denoted  p\thermore, as is checked before, all binary projectidns o

b)g Equa(4). For a subsetd C D and a setB C relations froml" belong to the non-crossing s&t implying
A® by Ega 4(B) we denote the smallest relation from ¢ non-crossing decomposable. O

Eqva(Sga(A)) suchthatB C Ega 4(B). Foranya, 3 €
Eqva (A) the relationsy A G anda Vv 3 belong toEqv A (A4).
To show thatv Vv 3 € Equa (A) we neechh V S =a U =
a o 3 that follow from the fact thaf\ is non-crossing. Thus
Ega a(B) is properly defined.

We also consider thmeta-problenfor CCSP(T"). Sup-
poseD is fixed. Given a finite constraint languafen D,
decide ifCCSP(T") is solvable in polynomial time.

4  Algorithm

In this section we fix a non-crossing sét of thick
Lemma 1l Let A = {a,b,c} andn; = Egp 4({{a,b)}), mappings, and &-non-crossing decomposable §etWe
2 = Egp 2({(b;&)}), n3 = Egp 4({{c,a)}). Then present a polynomial-time algorithm for solviGgCSP(T")
., 12,73 are all comparable. ’ in this case.



4.1 Prerequisites

Let T be a constraint language and et= (V,C) be a
2-consistent instance ¢fCSP(I"). By bin(P) we denote
the instancéV,C’) such thatC’ is the set of all constraints
of the form{((v, w), R, ) Wherev,w € V andR,_,, is the
set of all partial solutions ofw, w}.

Lemma 14 Let A be a non-crossing set of thick mappings,

and letT" be a set ofA-non-crossing decomposable rela-
tions.

(1) Any R pp-definable i is A-non-crossing decompos-
able.

(2) If P is a 2-consistent instance 6ICSP(T") thenbin(P)
has the same solutions &s

Let P = (V,C) be an instance o€ CSP(T"). Apply-
ing algorithm 2-@®NSISTENCYWwe may assume th& is
2-consistent, and, by Lemma 14, as all relation§ aire
2-decomposable, that every constraint relatiorPois 2-
decomposable, and therefore every constrairf® @fan be

Lemma 18 Suppose&7(P) is connected.

(1) For anyv, w € V there is a one-to-one correspondence
1y betweens, /71 andS,, /71 such that for any solution

pof Pif p(v) € A € S”/m’ thenp(w) € Pyw(A) €
w/nw'

(2) The mappingsg,,,, are consistent, i.e. for any, v, w €
V we havep,., () = tvw(Yun(z)) for everyz.

4.2 Algorithm

We split the algorithm into two parts. Algorithma&pi-
NALITY (Figure 1) just ensures 2-consistency and initializes
a recursive process. The main part of the work is done by
ExT-CARDINALITY (Figure 2).

Algorithm ExT-CARDINALITY solves the more general
problem of computing the set of all cardinality constraints
« that can be satisfied by a solution Bf Thus it can be
used to solve directly CSP witkxtended global cardinal-
ity constraintswhere the input contains a ddtof allowed
cardinality constraints and the solution can satisfy arng on

assumed to be binary, and every constraint relation belongLf them.

to [A] = A. Let constraints o be {(v, w), R..,) for each
pair of differentv, w € V. LetS,, v € V, denote the set of
a € D such that there is a solutiamof P with ¢(v) = a.

The algorithm considers three cases. Step 2 handles the
trivial case when the instance consists of a single variable
and there is only one possible value it can be assigned. Oth-

By [15] if a constraint language has a majority polymor- €rwise, we decompose the instance either by partitioning

phism, then every 2-consistent problenglebally consis-

the variables or by partitioning the domain of the variables

tent that is every partial solution can be extended to a global If G(P) is not connected, then the satisfying assignments

solution of the problem. In particuldp, is globally consis-
tent, thereforeS, = pr; Ry, foranyw € V, w # v. Con-
straint((v, w), R, ) is said to berivial if R,, = S, X Sw,
otherwise it is said to beon-trivial.

The graph of P, denotedG(P), is a graph with

vertex setV and edge setF = {vw | v,w €
V and((v,w), Ryw) is non-trivial}.
Observation 15 By the 2-consistency of, for any

U, U, w € V, Ru’u c Ruw o Rw’u-

Lemma 16 Let R, R’ be a non-crossing pair of non-trivial
thick mappings such thatr, R = pr;R’. ThenRo R’ is
also non-trivial.

Suppose thaty(P) is connected and fix € V. By
Observation 15 and Lemma 16, for any € V' the con-
straint ((v, w), Ryy) IS non-trivial. Note that due to 2-
consistency, all thez}%w are over the same set. Sgt =
Vuwev_ (v} r,.,- I [V] = 1 we sety, to be the equality
relation.

Lemma 17 If G(P) is connected then the equivalence re-

lationsn, andaj, (foranyw € V — {v}) are non-trivial.

of P can be obtained from the satisfying assignments of the
connected components. Thus a cardinality constrairan

be satisfied if it arises as the sum+- - - - + 7, of cardinal-

ity constraints such that theth component has a solution
satisfyingr;. Instead of considering all such sums (which
would not be possible in polynomial time), we follow the
standard dynamic programming approach of going through
the components one by one, and determining all possible
cardinality constraints that can be satisfied by a solution f
the first; components (Step 3).

If the graphG(P) is connected, then we fix a variable
vo and go through each class of the partitions,,, (Step
4). If vy is restricted ta4, then this implies a restriction for
every other variablev. We recursively solve the problem
for the restricted instance arising for each classf con-
straint7 can be satisfied, then it can be satisfied for one of
the restricted instances.

The correctness of the algorithm follows from the dis-
cussion above. The only point that has to be verified is that
the instance remains 2-consistent after the recursions Thi
is obvious if we recurse on the connected components (Step
3). In Step 4, 2-consistency follows from the fact that if
(a,b) € Ry, can be extended by € S,, then in every
subproblem either these three values satisfy the instaace r
stricted to{v, w, u} or a, b, ¢ do not appear in the domain



of v, w, u, respectively. INPUT: A 2-consistentinstance = (V,C)

To show that the algorithm runs in polynomial time, ob- of CCSP(I') _
serve first that every step of the algorithm (except the re- OUTPUT: The set of cardinality constraintssuch
cursive calls) can be done in polynomial time. Here we use that? has a solution that satisfies

that D is fixed, thus the size of the s&t is polynomially Step 1. construct the grapi(P) = (V, E)
bounded. Thus we only need to bound the size of the reCUrsiep 2. if || = 1 and the domain of this variable is
sion tree. If we recurse in Step 3, then we produce instances a singleton{a} then do

whose graphs are connected, thus it cannot be followed byStep 2.1 setll := {r} wherer(z) = 0

recursing again in Step 3. In Step 4, the domain of every exceptr(a) = 1

variable is decreased: by Lemma 1ji, is nontrivial for tep 3. else ifG(P) is disconnected and

any variablew. Thus in any branch of the recursion tree, Gi= (W, B),...,Gy = (Vi, Ey) are
recursion in Step 4 can occur at moBt| times, hence the its connected componerds

depth of the recursion tree @(|D|). As the number of Step 3.1 setll := {r} wherer(z) = 0

branches is polynomial in each step, the size of the recur-geep 3.2 for i — 1 to k do

sion tree is polynomial. Step3.2.1  setll := IT + EXT-CARDINALITY (Py,)
INPUT:  Aninstance? = (V,C) of CCSP(T"), and en((ajri}dfor

a cardinality constraint
OUTPUT: YES ifP has a solution satisfying,
NO otherwise

Step 4. else do
Step 4.1 foreachv € V find 7,
Step 4.2 fix vo € V and setIl := 0

Step1l. apply 2-CONSISTENCYtO P Step 4.3 for each,,-classA do
Step2.  setll :=EXT-CARDINALITY (P) Step 4.3.1 setPy4 := (V,C4) where for every
Step 3. if 7 € II output YES v,w € V the setC4 includes

else outputNO the constraint

<(U’ w)) R’Uw N (w’Uo’U(A) X w’Uo’w (A))>
Step 4.3.2 setll := IT U EXT-CARDINALITY (P4)
endfor
enddo
Step 4. output IT

Figure 1. Algorithm CARDINALITY .

5 Definable relations, constant relations, and

the complexity of CCSP Figure 2. Algorithm EXT-CARDINALITY .
We present two reductions that will be crucial for the

proofs in Section 6. In Section 5.1, we show that adding  LetP = (V,C) be aCCSP(I" U { R}) instance. W.l.0.g.

relations that are pp-definable (without equalities) dagis n let 1, ..., C, be the constraints involving. InstanceP’

make the problem harder, while in Section 5.2, we show the of CCSP(T") is constructed as follows.

same for unary constant relations. Variables: Replace every variablefrom V' with a seti,
of variables of sizg| D| and introduce a set ¢D| variables

5.1 Definable relations and the complex- for each constraint involving?. Formally,

ity of cardinality constraints

Theorem 19 LetI" be a constraint language antl a rela-
tion pp-definable i without equalities. The@CSP(T" U
{R}) is reducible toCCSP(I"). Non-R constraints: For everyC; = ((v1,...,v), Q)
with ¢ > ¢, introduce all possible constraints of the form
Proof (sketch): We proceed by induction on the struc-  ((us, ..., ur), @), whereu; € W, forj € {1,...,¢}.

q
W = U Wy U{wn, ..., wg U U{w},...,wlm*l}.
veV i=1

ture of pp-formulas. The base case of induction is given R constraints: For every C; = {((v1,...,v),R),
by R € T'. There are two cases: whdn is defined by ¢ < g, introduce all possible constraints of the form
conjunction of two relations, and wheR(x1,...,z,) = (w1, ..., ug,w;), R'), whereu; € W, j € {1,...,£}.
JzR'(x1,..., x4, x). In the first case it suffices to replace It is not hard to see that iP has a solution satisfying
in an instance of£CSP(T") every constraint usind with cardinality constraint then?’ has a solution satisfying the
two constraints using the conjuncts. So, we consider thecardinality constraint’ = |W, | - = + ¢. Thus it suffices to
second case. show that if P’ has a solution) satisfyings’, then? has a



solution satisfyingr.

Leta € D andU,(¢) = v a) = {u e W | ¥(u) =
a}. Observe first thatifp : V' — D is a mapping such that
Uyo) (W) N W, # 0 for everyv € V (i.e.,p(v) appears on
at least one variable' € W, in ), theny satisfies all the
constraints ofP. Then we show that it is possible to con-
struct such g that also satisfies the cardinality constraint
7. Since|W,| = ¢|D|, even if setl/, (1) contains ally| D|
variables of the formw; andw?, it has to intersect at least
m(a) setsW,. Using this observation we construct a bipar-
tite graph indicating which intersectio§,(v) N W, are

nonempty, show that required solutions correspond to per-
fect matchings in this graph, and prove that such a perfect

matching exists using Hall’s Theorem.

5.2 Constant relations and the complexity
of cardinality constraints

Let D be a set, and let € D. The constant rela-
tion C, is the unary relation that contains only one tuple,
(a). If a constraint languagkg over D contains all the con-

Given an instanc® = (V,C) of CCSP(I' U {C,}), we
construct instanc®’ = (V’,C’) of CCSP(T").

e Let W C V be the set of variables, on which the con-
stant relatior(, is imposed, that is] contains the con-
straint((v), Cy). Setn = |V|. The setV’ of variables
of P’ is the disjoint union of the séf (n) of variables
of MVM(T',n) andV \ W.

e The setC’ of constraints ofP’ consists of three parts:

(a) C1, the constraints dIVM(T', n);

(b) Ci, the constraints gP that do not include vari-
ables fromiv;

(c) ¢4, for any constraint{(vy,...,v,),R) € C
whose scope contains variables constrained by
C, (without loss of generality let,..., v,
be such variables)’} contains all constraints
of the form ((wi,...,wk,Vet1,...,0m), R),
wherews, ..., w; € V.

We show thatP has a solution satisfying a cardinality
constraintr if and only if P’ has a solution satisfying car-

stant relations, then they can be used in the correspondsdinality constraint’ given by

ing constraint satisfaction problem to force certain vari-

ables to take some fixed values. The goal of this section

is to show that for any constraint languaehe problem
CCSP(T'U {C, | a € D}) is polynomial time reducible to
CCSP(T'). For the ordinary decision CSP such a reduction
exists wherl™ does not have unary polymorphisms that are
not permutations, see [8].

Let R be a (sayn-ary) relation on a seb, and letf be
a mapping fromD to 27, the powerset o). Mapping f
is said to be anulti-valued morphisnof R if for any tuple
(a1,...,ay) € Rthe setf(aq) x ... x f(an) is a subset of
R. Mapping f is a multi-valued morphism of a constraint
languagé’ if it is a multi-valued morphism of every relation
in I". Mappings of this kind are also known hgperopera-
tions see e.g. [20].

Theorem 20 Let I" be a finite constraint language over a
setD. ThenCCSP(I' U {C, | a € D}) < CCSP(I).

Proof: LetD = {di,...,d;} anda = d;. We show
that CCSP(T" U {C,,}) < CCSP(T"). This clearly implies
the result. We make use of the following multi-valued mor-
phism gadgeMVM(T',n) (i.e. a CSP instance). Observe
that it is somewhat similar to thiadicator problem[17].

e The set of variables i (n) = (J*_, Vi, whereV,
contains:**+1~% elements. All set¥/;, are assumed to
be disjoint.

e The constraints are as follows: For evekRye I' and
every(as,...,a,) € R we include all possible con-
straints of the form((v4,...,v,), R) wherev; € V,,
fori e {1,...,k}.

m(a) + (Vo] = W)), ifi=1,
m(di) + [Va,|, otherwise

ﬂmgz{

Suppose thaP has a right solutiorp. Then a required
solution forP’ is given by

ifoeV\W,
if veVy,.

Y(v) = { ZZ(,U)’
Itis clear that) is a solution tgP’ and it satisfiesr’.

Suppose thaP’ has a solution) that satisfiesr’. Since
7'(a) > |V'\ V4| (usingd; = a), thereis a € V, such
thaty)(v) = a. Thus the assignment

ﬂw={f@%

is a satisfying assignmeff, but it might not satisfyr. Us-
ing the following claims one can show th& has a so-
lution ¢, wherey obtained this way satisfies. Observe
that what we need is that i valued; appears on exactly
7'(d;) — |Va,| variables oft” \ .

CLaiM 1. Mappingf taking everyd; € D to the set
{¢(v) | v € Vg, } is a multi-valued morphism df.

Proof of this claim is straightforward.

if veV\W,
ifoeWw

CLAIM 2. Let f be the mapping defined in Claim 1.
Thenf* defined byf*(b) := f(b) U {b} for everyb € D is
also a multi-valued morphism a&f.

We show that for every; € D, there is anm; > 1 such
thatd; € f7(d;) for everyj > m;. Taking the maximum



m of these values, we get; € f™1(d;) and f(d;) C
fm+i(d;) (asd; € f™(d;)) for everyi, proving the claim.

The proof is by induction on. If d; € f(d;), then
we are done as we can set; = 1 (note that this is al-
ways the case foi = 1, since we observed above that
valued; has to appear on a variable ©f,)). So let us
suppose that; ¢ f(d;). LetD; = {di,...,d;} and let
g; - D, — 2D: defined bygz(d]) = f(dj) N D;. Ob-
serve thatg;(d;) is well-defined, i.e.,gi(d;) # 0: the
setVy, containsnt1=7 > p*t1=% variables, while the
number of variables where values not fram appear is
Z?:iﬂ 7' (de) <n+ Z?:i+1 nh =t <kt

LetT := U,~, g/(d;). We claim thatd; € T. Suppose
thatd; ¢ T. By the definition of7" and the assumption
d; ¢ f(d;), foreveryb € T'U {d,}, the variables iV}, can
have values only frofi’ and fromD\ D;. The total number
of variables inVy, b € T U {di} is Yy, 270
while the total cardinality constraint of the values frahu
(D\ D;)is

k
Z ’/'T/(b) <n+znk+17b+ Z nk+17€

beTU(D\D;) beT (=i+1
< ankb 4okt Z 1=t
beT beTu{d:}

a contradiction. Thud; € T, thatis, there is a valug < i
such thatl; € f(d;) andd; € f°(d;) for somes > 1. By
the induction hypothesisl; € f™(d;) for everym > n;,
thus we have thal; € f™(d;) if m is at leastn; := 1+
m; + s. This concludes the proof of Claim 2.

Let Dt (resp.,D~) be the set of those valuésc D that
appear on more than (resp., less thait)) — |V, | variables
of V.\ W. ltis clear that if D*| = |[D~| = 0, theny
obtained fromy satisfiest. Futhermore, if D*| = 0, then
|ID-] = 0 as well. Thus suppose th@* = () and let

S = Upept o1 [* (D).
CLAIM 3. SN D~ #0.

We skip the proof this claim.

By Claim 3, there is a valu¢~ € SN D, which means
that there is ait ¢ DT and a sequence of distinct values
bo =d", by, ..., by = d” suchthab;., € f(b;) for every
0 <i<{ Letv € V\ W be an arbitrary variable with
valued™. We modify) the following way:

1. The value ob is changed frond*™ tod—.

2. For everyd < i < ¢, one variable inV;, with value
bi+1 is changed té,.

by = d~ (by one). We have to argue that the transformed
assignment still satisfies the constraints Bf. Since

d= € fd"), the multi-valued morphisnf* of Claim 2
implies that changing™ to d~ on a single variable and not
changing anything else also gives a satisfying assignment.
The rest of the proof is fairly straightforward. |

We will use the following simple lemma:

Lemma 21 Let o be an equivalence relation on a sét
anda € D. Thena® € ((a, C,))".

6 Hardness

We prove that il does not satisfy the conditions of The-
orem 9 therCCSP(T") is NP-complete.

For a (sayn-ary) relationR over a setD and a subset
D' C D, by R|p, we denote the relatiof(as, ..., a,) |
(a1,...,a,) € Randay,...,a, € D’}. For a constraint
languagd” over D we usel’| p- to denote the constraint lan-
guage{R|p/ | R € I'}. We can easily simulate the restric-
tion to a subset of the domain by setting to 0 the cardinality
constraint on the unwanted values:

Lemma 22 For any constraint language over a setD and
anyD’ C D, the problemCCSP(I'|p/) is polynomial time
reducible toCCSP(T").

Suppose now that a constraint languégeoes not sat-
isfy the conditions of Theorem 9. Then one of the following
cases takes place: (&)))’ contains a binary relation wich
is not a thick mapping; or (b}(I"}))’ contains two equiv-
alence relations that are not a non-crossing pair; of’(c)
contains a relation which is not 2-decomposable. We con-
sider these three cases in turn.

One of the NP-complete problems we will reduce to
CCSP(R) is the BPARTITE INDEPENDENTSET problem
(or BIS for short). In this problem, given a connected bi-
partite graphG with bipartitionVy, V5, and numberg;, ko,
the goal is to verify if there exists an independentSetdf
G such thaS N Vi| > ky and|S N Vz| > ke, Itis easy
to see that the problem is hard even for graphs containing
no isolated vertices. By representing the edges of a bipar-
tite graph with the relatiolR® = {(a, ¢), (a,d), (b,d)}, we
can express the problem of finding an bipartite independent
set. Valueb (resp.a) represents selected (resp., unselected)
vertices inV7, while valuec (resp.,d) represents selected
(resp., unselected) vertices . With this interpretation,
the only combination that relatioR excludes is that two
selected vertices are adjacent. By Observation 6, if abinar
relation is not a thick mapping, then it contains something

Note that these changes do not modify the cardinalities of very similar toR. However, some of the valuesb, ¢, and
the values: the second step increases only the cardinalityl might coincide and the relation might contain further tu-
of by = d* (by one) and decreases only the cardinality of ples such agc, d). Thus we need a delicate case analysis to



show that the problem is NP-hard for binary relations that
are not thick mappings.

Lemma 23 Let R be a binary relation which is not a thick
mapping. ThelCCSP({R}) is NP-complete.

By the minimality of R all binary projections of
R’ are pairwise non-crossing thick mappings. It is
straightforward that (a[l],a[2],a[3]) ¢ R/, while,
since any proper projection of2 is 2-decomposable,
pr{2,...,n}a € pr{Q,...,n}R1 pr{1,3,...,n}a € pr{1,3,...,n}R'

Next we show hardness in the case when there are twoPT{1,2.4,..n,}8 € Pr{124 .}/, implying (a[l],a[2]) €

equivalence relations that are crossing.

Lemma 24 Let R, ) be a crossing pair of equivalence re-
lations. TherCCSP({ R, Q}) is NP-complete.

Proof: Let R, Q be equivalence relations dn andD’,
respectively. As these relations are not a non-crossing pai
there area,b,c € D N D’ such that{a,c) € R\ @ and
<C, b> € Q \ R. LetR = R\{a,b,c} and@Q’ = Q|{a,b,c}-
Clearly,

R ={(a,a), (b)), (c,c),(a,c),(c,a)},

Ql = {(a7 CL), (b7 b)a (Cv C)a (b7 C)a (Cv b)}
By Lemma 22, CCSP({R’,Q’}) is polynomial time
reducible to CCSP({R,Q}). Consider R"(z,y)
Jz(R/(z,2) AN Q'(z,y)). We have thaCCSP(R") is re-
ducible toCCSP({R’,Q’}) and
R" ={(a,a), (b,b), (c,c),(a,c),(c,a),(b,c), (c,b),(a,b)}.

Observe thaR” is not a thick mapping and by Lemma 23,
CCSP(R") is NP-complete. O

Finally, we prove hardness in the case when there is a

relation that is not 2-decomposable. An example of such a
relation is a ternary Boolean affine relationt y + 2z = ¢

for ¢ = 0 or ¢ = 1. The CSP with global cardinality con-
straints for this relation is NP-complete by [9]. Our strat-
egy is to obtain such a relation from a relation that is not
2-decomposable. However, as in Lemma 23, we have to
consider several cases.

Lemma 25 Let R be a relation whose binary projections is
contained in a non-crossing set of thick mappings, Rus
not 2-decomposable. Th&CSP({ R}) is NP-complete.

Proof: We chooseR to be the ‘smallest’ non-2-
decomposable relation in the sense that every reldtion
(({R}U{C, | a € D})) that either have smaller arity, or
R’ C R, is non-crossing decomposable, and every relation
obtained fromR by restricting on a proper subset bfis

also non-crossing decomposable. By Theorems 19, 20, and

Lemmas 22, 23, 24, it suffices to consider relations satisfy-
ing these conditions.

RelationR is ternary. Clearly, it is not binary; suppose
that its arity is more than 3. Let ¢ R be a tuple such that
pr;;a € pr;; R foranyi, j. Let

R'(z,y,2)

gy o (R(x,y, 2, Tay ..y Tn) A

Ca[4] (Z4> Ao A Ca[n] (l‘n))

prip i, (a[2],a[3]) € prog R, (a[l],a[3]) € prygR’. Thus
R’ is not 2-decomposable, a contradiction.

Let(a,b,c) € Rand(a,b,d), (a,e,c), (f,b,c) € R, and
let B = {a,b,c,d,e, f}. As R is not 2-decomposable,
we should havé? = R .

If Ri2 = pry,R is a thick mapping with respect to
me,n21, R1s = prigR is a thick mapping with respect to
s, N31, andRaeg = pryg R IS a thick mapping with respect
to m23, 732, then(a, f) € ma2 N ms, (b,e) € na1 N 123,
and{c,d) € ns1 Nns2. Let the corresponding classes of
M2Mn13, N21M1e23, andns; Nns2 be By, By, andBs, respec-
tively. ThenB; = pr; R, Bs = pry R, B3 = pr3R. Indeed,
if one of these equalities is not true, since by Lemma 21
By, Bs, B3 are pp-definable ik without equalities, the re-
lation R'(x,y,z) = R(z,y, 2) A B1(x) A Ba(y) A B3(2) is
pp-definable ink and the constant relations, is smaller than
R, and is not 2-decomposable.

Next we show thata,g) € pri,R for all ¢ € pryR.

If there is g with (a,g) ¢ prioR then settingC(y) =
Jz(prioR(z,y) A Co(z)) we haveb, e € C andC' # pryR.
ThusR'(z,y, z) = R(x,y, z) AC(y) is smaller thark and
is not 2-decomposable. The same is truedandpr; R,
and forb andpr; R. Since every binary projection a@? is
a thick mapping this implies thatr,, R = pr; R X pryR,
pros R = pryR x prgR, andpr3R = pr; R X prgR.

For eachi € {1,2,3} and everyp € pr;R, the relation
RY(zj,xr) = 3z (R(x1, 22, 23) ANCy(;)), where{j, k} =
{1,2,3} \ {i}, is definable inR and therefore is a thick
mapping with respect to, say;;, 7. Our next step is to
show thatR can be chosen such thﬁ@ does not depend on
the choice op andi.

If one of these relations, sai?, equalspr, R x pr3R,
while another one, sai{ does not, then considéi5. We
have{p} x pr,R C R§. Moreover, since by the choice &f
relation Y is a non-trivial thick mapping there is€ pryR
such that(r,c) € R?, hence(q,r) ¢ RS. ThereforeR§
is not a thick mapping, a contradiction. SinB4 does not
equalpr, R x pry R, everyn;; is non-trivial. Let

V U
J€{1,2,33\{i} Je{1,2,3}\{i}

pEprjR pEprjR

= i i

As we observed before Lemma 1},is pp-definable inR
and constant relations without equalities. Since allrtf;e
are non-trivialy; is also non-trivial. We set

R'(z,y,2)

32’y 2 (R, 2") A () A
n2(y,y") Anz(2,2')).
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