Constraint satisfaction parameterized by solution size

Andrei A. Bulatov!* and Ddniel Marx2**

1 Simon Fraser University
abulatov@cs.sfu.ca
2 Humboldt-Universitit zu Berlin
dmarx@cs.bme.hu

Abstract. In the constraint satisfaction problem (CSP) corresponding to a con-
straint language (i.e., a set of relations) I', the goal is to find an assignment of
values to variables so that a given set of constraints specified by relations from
I' is satisfied. In this paper we study the fixed-parameter tractability of constraint
satisfaction problems parameterized by the size of the solution in the following
sense: one of the possible values, say 0, is “free,” and the number of variables
allowed to take other, “expensive,” values is restricted. A size constraint requires
that exactly k variables take nonzero values. We also study a more refined version
of this restriction: a global cardinality constraint prescribes how many variables
have to be assigned each particular value. We study the parameterized complexity
of these types of CSPs where the parameter is the required number k of nonzero
variables. As special cases, we can obtain natural and well-studied parameter-
ized problems such as INDEPENDENT SET, VERTEX COVER, d-HITTING SET,
BICLIQUE, etc. In the case of constraint languages closed under substitution of
constants, we give a complete characterization of the fixed-parameter tractable
cases of CSPs with size constraints, and we show that all the remaining problems
are W[1]-hard. For CSPs with cardinality constraints, we obtain a similar clas-
sification, but for some of the problems we are only able to show that they are
BICLIQUE-hard. The exact parameterized complexity of the BICLIQUE problem
is a notorious open problem, although it is believed to be W[1]-hard.

1 Introduction

In a constraint satisfaction problem (CSP) we are given a set of variables, and the goal
is to find an assignment of the variables subject to specified constraints. A constraint
is usually expressed as a requirement that combinations of values of a certain (usually
small) set of variables belong to a certain relation. In the theoretical study of CSPs, one
of the key research direction has been the complexity of the CSP when there are restric-
tions on the type of allowed relations [9,3,2]. This research direction has been started
by the seminal Schaefer’s Dichotomy Theorem [17], which showed that every Boolean
CSP (i.e., CSP with 0-1 variables) restricted in this way is either solvable in polyno-
mial time or is NP-complete. An outstanding open question is the so called Dichotomy
conjecture of Feder and Vardi [7] which suggests that the dichotomy remains true for

* Research supported by an NSERC Discovery grant.
** Research supported by the Alexander von Humboldt Foundation and OTKA grant 67651.

CSPs over any fixed finite domain. The significance of a dichotomy result is that it is
very likely to provide a comprehensive understanding of the algorithmic nature of the
problem. Indeed, in order to obtain the tractability part of such a conjecture one needs
to identify all the algorithmic ideas relevant for the problem.

Parameterized complexity [6,8] investigates the complexity of problems in finer de-
tails than classical complexity. Instead of expressing the running time of an algorithm as
a function of the input size n only, the running time is expressed as a function of n and a
well-defined parameter k of the input instance (such as the size of the solution k£ we are
looking for). For many problems and parameters, there is a polynomial-time algorithm
for every fixed value of k, i.e., the problem can be solved in time n/(*). In this case,
it makes sense to ask if the combinatorial explosion can be limited to the parameter k
by improving the running time to f(k) - n°(1). Problems having algorithms with run-
ning time of this form are called fixed-parameter tractable (FPT); it turns out that many
well-known NP-hard problems, such as k-VERTEX COVER, k-PATH, and k-DISJOINT
TRIANGLES are FPT. On the other hand, the theory of W[1]-hardness suggests that cer-
tain problems (e.g., k-CLIQUE, k-DOMINATING SET) are unlikely to be FPT.

The canonical complete problems of the W-hierarchy are (circuit) satisfiability prob-
lems where the solution is required to contain exactly &k ones. This leads us to the study
of Boolean CSP problems with the goal of finding a solution with exactly k ones. The
first attempt to study the parameterized complexity of Boolean CSP was made in [14].
If we consider 0 as a “cheap” value available in abundance, while 1 is “costly” and of
limited supply then the natural parameter is the number of 1’s in a solution. Boolean
CSP asking for a solution that assigns exactly k ones is known as the k-ONES prob-
lem [5,11]. Clearly, the problem is polynomial-time solvable for every fixed k (by brute
force), but it is not at all obvious whether it is FPT. For example, it is possible to express
k-VERTEX COVER (which is FPT) and k-INDEPENDENT SET (which is W[1]-hard) as
a Boolean CSP. Therefore, characterizing the parameterized complexity of k-ONES re-
quires understanding a class of problems that includes, among many other things, the
most basic graph problems. It turned out that the parameterized complexity of the k-
ONES problem depends on a new combinatorial property called weak separability [14].
Assuming that the constraints are restricted to a finite set I" of Boolean relations, if ev-
ery relation in I" is weakly separable, then the problem is FPT; if I" contains even one
relation violating weak separability, then the problem is W[1]-hard.

There have been further parameterized complexity studies of Boolean CSP [12,18,13],
but CSP’s with larger domains were not studied. In most cases, we expect that results
for larger domains are much more complex than for the Boolean case, and usually re-
quire significant new ideas. The goal of the present paper is to generalize the results
of [14] to non-Boolean domains. First, we have to define what the proper generaliza-
tion of k-ONES is if the variables are not Boolean. One natural generalization assumes
that there is a distinguished “cheap” value 0 and requires that in a solution there are
exactly k£ nonzero variables. We will call this version of the CSP a constraint satis-
faction problem with size constraints and denote by OCSP. Another generalization of
k-ONES specifies the number 7(d) of variables assigned each nonzero value d: A map-
ping 7 : D\ {0} — Nis given, and it is required that for each nonzero value d, exactly
7(d) variables are assigned value d. In the CSP and Al literature, requirements of this

form are called global cardinality constraints [1,15]. We will call this problem the con-
straint satisfaction problem with cardinality constraints and denote it by CCSP. In both
versions, the parameter is the number of nonzero values required, that is, k£ for OCSP,
and ;¢ py oy 7(d) for CCSP. The usual (non-parametrized) complexity of CCSP over
arbitrary domain was characterized in [4]. We investigate both versions; as we shall see,
there are unexpected differences between the complexity of the two variants.

A natural minor generalization of CSPs is allowing the use of constants in the in-
put, that is, some variables in the input can be fixed to constant values, or equivalently
the constant unary relation {(d)} is allowed for every element d of the domain. It is
known that the complexity of the decision CSP (corresponding to a ‘core’ structure)
does not change with this generalization [3]. While there is no similar result for the
versions of CSPs we study here (and thus this assumption may diminish the general-
ity of our results), this setting is still quite general and at the same time more robust.
Many technicalities can be avoided with this formulation. For example, the availability
of constants ensures that the decision and search problems are equivalent: by repeatedly
substituting constants and solving the decision problem, we can actually find a solution.

Is weak separability the right tractability criterion in the non-Boolean case? It is not
difficult to observe that the algorithm of [14] using weak separability generalizes for
non-Boolean problems>. However, it is not true that only weakly separable relations are
tractable. It turns out that there are certain degeneracies and symmetries that allow us to
solve the problem even for some relations that are not weakly separable. To understand
these degenerate situations, the notion of multivalued morphisms (a generalization of
homomorphisms) turns out to be crucial.

Results. For CSP with size constraints, we prove a dichotomy result:

Theorem 1.1. For every finite I' closed under substitution of constants, OCSP(I") is
either FPT or W[1]-hard.

The precise tractability criterion (which is quite technical) is stated in Section 4. The
algorithmic part of Theorem 1.1 consists of a preprocessing to eliminate degeneracies
and trivial cases, followed by the use of weak separability. In the hardness part, we
take a relation R having a counterexample to weak separability, and use it to show that
a known W[1]-hard problem can be simulated with this relation. In the Boolean case
[14], this is fairly simple: by identifying coordinates and substituting 0’s, we can assume
that the relation R is binary, and we need to prove hardness only for two concrete binary
relations. For larger domains, however, this approach does not work. We cannot reduce
the counterexample to a binary relation by identifying coordinates, thus a complex case
analysis would be needed. Fortunately, our hardness proof is more uniform than that.
We introduce gadgets that control the values that can appear on the variables. There are
certain degenerate cases when these gadgets do not work. However, these degenerate
cases can be conveniently described using multivalued morphisms, and these cases turn
out to be exactly the cases that we can use in the algorithmic part of the proof.

In the case of cardinality constraints, we face an interesting obstacle. Consider the
binary relation R containing only tuples (0, 0), (1, 0), and (0, 2). Given a CSP instance
with constraints of this form, finding a solution where the number of 1’s is exactly k

3 In fact, we give an algorithm for non-Boolean domains that is simpler then the one in [14].

and the number of 2’s is exactly k is essentially equivalent to finding an independent set
of a bipartite graph with k vertices in both classes, or equivalently, a complete bipartite
graph (biclique) with k + k vertices. The parameterized complexity of the k-BICLIQUE
problem is a longstanding open question (it is conjectured to be W[1]-hard). Thus at
this point, it is not possible to give a dichotomy result similar to Theorem 1.1 in the
case of cardinality constraints, unless we prove that BICLIQUE is hard:

Theorem 1.2. For every finite I closed under substitution of constants, CCSP(I") is
either FPT, or BICLIQUE-hard.

2 Preliminaries

Constraint satisfaction problem with size and cardinality constraints. Let D be a
set. We assume that D contains a distinguished element 0. Let D™ denote the set of all
n-tuples of elements from D. An n-ary relation on D is a subset of D", and a constraint
language I is a set of relations on D. In this paper constraint languages are assumed to
be finite. We denote by dom(I”) the set of all values that appear in tuples of the relations
in I'. Given a constraint language I, an instance of the constraint satisfaction problem
(CSP) is a pair I = (V,C), where V is a set of variables, and C is a set of constraints. A
constraint is a pair (s, R), where R is a (say, n-ary) relation from I', and s is an n-tuple
of variables. A satisfying assignment of I is a mapping 7 : V' — D such that for every
(s,R) € C withs = (s1...,s,) the image 7(s) = (7(s1),...,7(s,)) belongs to R.
The question in the CSP is whether there is a satisfying assignment for a given instance.
The CSP over constraint language I is denoted by CSP(I").

The size of an assignment is the number of variables receiving nonzero values. A
size constraint is a prescription on the size of the assignment. A cardinality constraint
for a CSP instance [is a mapping 7 : D — Nwith), 7(a) = [V]. A satisfying as-
signment 7 of I satisfies the cardinality constraint 7 if the number of variables mapped
toeach a € D equals 7(a). We denote by CCSP(I") the variant of CSP(I") where the in-
put contains both a cardinality constraint 7 and the size constraint k = D\{0} m(a)
(this constraint is used a parameter); the question is, given an instance I, an integer
k, and a cardinality constraint 7, whether there is a satisfying assignment of I of size
k and satisfying 7. So, instances of OCSP (resp., CCSP) are triples (V,C, k) (resp.,
quadruples (V,C, k, m)). A solution of an instance is a satisfying assignment satisfying
the size/cardinality constraints. For both OCSP(I") and CCSP(I"), we are interested in
FPT with respect to the parameter k. The INDEPENDENT SET problem is representable
as OCSP(R;g), where Rys = {(0,0),(0,1),(1,0)}. Similarly, the BICLIQUE prob-
lem in which given a bipartite graph G(A, B), find two A’ C A and B’ C B with
|A’| = |B’| = t and such that every vertex of A’ is adjacent with every vertex of B’.
This problem is equivalent to CCSP({Rpc}), where Rp¢ is a relation on {0,1,2}
given by {(0,0), (1,0), (0,2)}.

Closures and 0-validity A constraint language is called constant closed (cc-, for
short) if along with every (say, n-ary) relation R, any ¢, 1 < ¢ < n, and any d € D the
relation obtained by substitution of constants R1%* = {(ay,...,ai_1,0i11,-..,0a,) |
(a1,...,0i-1,d,ait1,...,a,) € R}, also belongs to R. Substitution of constants

dy, ..., d4 for coordinate positions i1, ..., 1, is defined in a similar way; the resulting
relation is denoted by RI?1»+%ai91:-da We call the smallest cc-language containing a
constraint language I" the cc-closure of I'. It is easy to see that the cc-closure of I is
the set of relations obtained from relations of I" by substituting constants.

Let f be a satisfying assignment for an instance I = (V,C, k) of OCSP(I") and S =
{v | f(v) # 0}. We say that the instance I’ = (V’/,C’, k') is obtained by substituting the
nonzero values of f as constants if I' is constructed as follows: V' = V'\ S, and for each
constraint (s, R) € C such that v;,,...v;_are the variables from s contained in S and
{vj,,-..,v;,} = s\S, weinclude in C’ the constraint {(vj, , ..., v;,), BRIt irif i) f (Wi)y,
The size constraint k' is set to k minus the size of f. This operation is defined similarly
for a CCSP(I") instance I = (V,C, k,), but in this case the new cardinality constraint
7' is givenby '(d) = w(d) — [{v € V | f(v) = d}|.

A relation is said to be 0-valid if the all-zero tuple belongs to the relation. A con-
straint language I" is a ccO-language if every R € I is 0-valid, and if R’ is a 0-valid
relation obtained from R by substitution of constants, then R’ € I". Observe that if I is
a cc-language and I is the set of 0-valid relations in I, then I is a ccO-language (but
not necessarily a cc-language).

We say that tuple t; = (a1, ...,a,) is an extension of tuple to = (by,...,b,) if
they are of the same length and for every 1 < i < r, a; = b; if b; # 0. Tuple to
is then called a subset of t1. A minimal satisfying extension of an assignment f is an
extension f’ of f (where f, f’ are viewed as tuples) such that f” is satisfying, and f has
no satisfying extension f”” # f’ such that f” is an extension of f”.

By repeatedly branching on the unsatisfied constraints, a simple bounded search
tree algorithm can enumerate all the minimal satisfying extensions of an assignment.

Lemma 2.1. Let I be a finite constraint language over D. There are functions d'(k)
and €' (k) such that for every instance of CSP(I") with n variables, every assignment f
has at most d’-(k) minimal satisfying extensions of size at most k and all these minimal
extensions can be enumerated in time €/ (k)n©().

A consequence of Lemma 2.1 is that, as in [14], CCSP(I") and OCSP(I") can be
reduced to a set of 0-valid instances. We enumerate all the minimal satisfying extensions
of size at most k of the all zero assignment (where k is the size constraint) and obtain
the O-valid instances by substituting the nonzero values as constants.

Corollary 2.2. Let I' be a cc-language and let Iy C I be the set of all 0-valid rela-
tions. Then CCSP(I") is FPT/W[1]-hard/BICLIQUE-hard if and only if CCSP(I) is.
The same holds for OCSP(I") and OCSP(Iy).

A nonzero satisfying assignment f is said to be a minimal (nonzero) satisfying as-
signment if it is not a proper extension of any nonzero satisfying assignment.

Lemma 2.3. Let I be a finite constraint language. There are functions dr(k) and
er (k) such that for any instance of CSP(I") with n variables every variable v is nonzero
in at most dp 1,y minimal satisfying assignments of size at most k and all these minimal
satisfying assignments can be enumerated in time e p(k)no(l).

3 Properties of constraints

By Corollary 2.2, for proving Theorems 1.1 and 1.2 it is sufficient to consider only
ccO-languages. Thus in the rest of the paper, we consider only ccO-languages.

3.1 Weak separability

In the Boolean case, the tractability of 0-valid constraints depends only on weak sep-

arability [14]. This is not true exactly this way for larger domains: as we shall see

(Theorems 4.1 and 5.1), the complexity characterizations have further conditions.
Tuples t1 = (a1, ...,a,) and t2 = (by,...,b,) are disjoint if a; = 0 or b; = 0 for

every 4. The union of disjoint tuples t; and to is t1 + t2 = (cy, ..., ¢,) where ¢; = a;
if a; # 0 and ¢; = b; otherwise. If (a1, ...,a,) is an extension of (b1, ...,b,), then
their difference is the tuple (cy, ..., c,.) where ¢; = a; if b; = 0 and ¢; = 0 otherwise.

A tuple t is contained in a set C' C D if every nonzero entry of t is in C.

A 0-valid relation R is said to be weakly separable if the following two conditions
hold: (1) For every disjoint tuples t1, to € R, we have t;+t5 € R. (2) For every disjoint
tuples t1,to with to, t1 + to € R, we have t; € R. A constraint language I is said to
be weakly separable if every relation from I is weakly separable. If constraint language
I" is not weakly separable, then we call a triple (R, t1,t2), R € I', witnessing that a
union counterexample if t1, to violate condition (1), while if t1, to violate condition (2)
it is called a difference counterexample.

The following combinatorial property is the key for solving weakly separable in-
stances (this property does not necessarily hold for arbitrary relations):

Lemma 3.1. Let I" be a weakly separable finite ccO-language over D and I an instance
of CCSP(I") or OCSP(I').

(1) Any satisfying assignment of I is a union of pairwise disjoint minimal ones.

(2) If there is a satisfying assignment f with f(v) = d for some variable v and d € D,
then there is a minimal satisfying assignment f' with f'(v) = d.

In light of Lemma 3.1(1), it is sufficient to enumerate every minimal assignment of
size at most k (using Lemma 2.3) and then to find a disjoint minimal assignments that
together satisfy the size/cardinality constraints. As the total size of the assignments we
select is at most k£ and furthermore Lemma 2.3 implies that each variable is nonzero in at
most a bounded number of these minimal assignments, the fixed-parameter tractability
of finding such disjoint assignments can be shown by standard arguments.

Theorem 3.2. Let I' be a finite weakly separable ccO-language over D.
1. A solution to an instance (V,C, k,) of CCSP(I") can be found in time e (k)|V|°™).

2. A solution to an instance (V,C, k) of OCSP(I") can be found in time k'°\= e (k)|V |00,
3.2 Morphisms

Homomorphisms and polymorphisms are standard tools for understanding the com-
plexity of constraints [3,10]. We make use of the notion of multivalued morphisms, a

generalization of homomorphisms, that in a different context has appeared in the liter-
ature (see, e.g. [16]) under the guise of hyperoperation. We classify the values into 4
types according to the existence of such morphisms (Definition 3.3). This classification
and the observation that these types play an essential role in the way the MVM gadgets
(Section 3.4) work are the main technical ideas behind the hardness proofs.

For a subset 0 € D’ C D and an n-ary relation R on D, by R|p, we denote the
relation R N (D")™. For a language I, I'|p contains every relation R|p, for R € I

Foratuplet = (ay,...,a,) € dom(I")", we denote by h(t) the tuple (h(a1),...,h(a)).
An endomorphism of I' is a mapping h : dom(I") — dom(I") such that ~(0) = 0 and
for every R € I' and t € R, the tuple h(t) is also in R. Observe that the require-
ment h(0) = 0 is nonstandard, but it is natural in our setting. The mapping sending all
elements of dom(I") to 0 is an endomorphism of any 0-valid language. An inner homo-
morphism of I" from D4 to Dy with 0 € Dy, Dy C dom(I") is a mapping h : D1 — Do
such that h(0) = 0 and h(t) € R holds for any r-ary relation R € I"and t € D] N R.

A multivalued morphism of T' is a mapping ¢ : dom(I") — 29°™(I") guch that
#(0) = {0} and forevery R € I" and (aq,...,a,) € R, we have ¢(ay) X - - - x ¢(a,) C
R. An inner multivalued morphism ¢ from D to Dy where 0 € Dy, Dy C dom(I") is
defined to be a mapping ¢ : Dy — 2P2 such that ¢(0) = {0} and for every R € I and
(a1,...,a;) € Rjp,, wehave ¢(ay) x --- x ¢(ar) C Rp,.

Observe that if ¢ : dom(I") — 29°™() is a multivalued morphism of a constraint
language I, and ¢/ : dom(I") — 29°™(I) is a mapping such that ¢/(d) C ¢(d) for
d € dom(I), then ¢’ is a multivalued morphism. Similar statement holds for inner
multivalued morphisms v, ¢ : D — 202,

The product g o h of two endomorphisms or inner homomorphisms is defined by
(go h)(x) = h(g(x)) for every = € D.If ¢ and ¢ are (inner) multivalued morphisms
then their product ¢ o ¢} is given by (¢ 0 ¥)(z) = U, ¢ p(z) ¥ (¥)-

For z,y € dom(I"), we say that « produces y in I" if I has a multivalued morphism
¢ with ¢(x) = {0,y} and ¢(z) = {0} for every z # x. Observe that the relation “z
produces ¥ is transitive.

Definition 3.3. A value y € dom(I") is

1. regular if there is no multivalued morphism ¢ where 0,y € ¢(x) for some x €
dom(I"),

2. semi-regular if there is a multivalued morphism ¢ where 0,y € ¢(x) for some x €
dom(I"), but there is no x € dom(I") that produces vy,

3. self-producing if y produces y, and for every x that produces vy, y also produces x.
4. degenerate otherwise.

It will sometimes be convenient to say that a value y has type 1, 2, 3, or 4. We need the
following simple properties:

Proposition 3.4. If there is an endomorphism h with h(x) = y, then the type of x
cannot be larger than that of y.

Proposition 3.5. Every degenerate value vy is produced by a nondegenerate value .

3.3 Components

The structure of endomorphisms and inner homomorphisms plays an important role in
our study. Let I" be a ccO-language. A retraction to X C D \ {0} is a mapping retx
such that retx (z) = z for x € X and retx(z) = 0 otherwise. A nonempty subset
C C D\ {0} is a component of I' if retc is an endomorphism of I". A component
C' is minimal if there is no component that is a proper subset of C'. If a set C' is not a
component, then there is arelation R € I"and t € R such thatt’ = retct € R. Observe
that the intersection of two components is also a component (if it is nonempty). Hence
for every nonempty X C D \ {0}, there is a unique inclusion-wise minimal component
that contains X ; this component is called the component generated by X (or simply the
component of X). The importance of components comes from the following result:

Lemma 3.6. If I' is not weakly separable, then either

— there is a union counterexample (R, ty1,to) such that tq (resp., t2) is contained in a
component generated by a value aq (resp., as), or

—there is a difference counterexample (R, t1,t2) such that both t1 and to are contained
in a component generated by a value a;.

3.4 Multivalued morphism gadgets

For a relation R and a tuple t € R, we denote by supp(t) the set of coordinate po-
sitions of t occupied by nonzero elements. Let supp, (R) denote the relation obtained
by substituting 0 into all coordinates of R except for supp(t), i.e. if R is r-ary and
supp(t) = {1,...,7}\ {i1,...,4,} then supp; (R) = RI?t,+iri0:.0,

For a cc0-language I" and some 0 € D’ C dom([I"), a multivalued morphism gadget
MVM(T, D’) consists of | D’| — 1 bags of vertices By, d € D’ \ {0}. The number of
variables in each bag will be specified every time it is used. The gadget is equipped with
the following set of constraints. For every R € I" and every tuple t = (a1,...,a,) €
R|p/ (with, say, supp(t) = {i1,...,%4}), we add all possible constraints (s, supp;(R))
where s = (v;,,...,v;,) such that v; € B, forevery j € {i1,...,iq}. The standard
assignment of a gadget assigns a to every variable in bag B, ; observe that it assignment
satisfies every constraint of the gadget. We say that bag B, and the variables in bag B,
represent a.

Proposition 3.7. Ler 0 € D’ C dom(I"). Consider a satisfying assignment | of an
MVM(T, D') gadget. If hy : D' — 29" is a mapping such that hy(a) is the set
of values appearing in bag B, of the gadget and hy(0) = {0}, then hy is an inner
multivalued morphism of I from D' to dom(I").

We define gadgets connecting MVM gadgets. The gadget NAND(G1,G2) on
MVM(I', D) gadgets G, G2 has constraints as follows. For every R € I and disjoint
tuplest; = (ai,...,a;),t2 = (b1,...,b.)in R|p/, we add a constraint (s, suppy ¢, R).
where s = (vs,,...,v;,) with {i1,...i,} = supp(t: + t2), such that v; for j €
{i1,...iq} isinbag B,, of Gy if a; # 0 and v; is in bag By, of G if b; # 0.

If one of G1, G has the standard assignment and the other is fully zero, then all the
constraints in NAND(G1, G2) are satisfied. On the other hand, if both G; and G have

the standard assignment and there is a union counterexample, then NAND(G, G2) is
not satisfied. For the reductions, we need this second conclusion not only if both G;
and G5 have the standard assignment, but also assignments that “behave well” in some
sense. The right notion for our purposes is the following: An inner homomorphism h :
D’ — dom([I") is t-recoverable if I" has an endomorphism A’ such that (ho h’)(t) = t.

Lemma 3.8. Let 0 € D’ C dom(I") and let there be a NAND(G1, G2) gadget on
MVM(I', D) gadgets G4, Ga.

(1) If one of G1 and G2 has the standard assignment and the other gadget is fully zero,
then all constraints of NAND(G1, G2) are satisfied.

(2) If I\ pr has a union counterexample (R, t1,t2) and an assignment T is such that for
i = 1,2, 7 on G, is a t;-recoverable inner homomorphism h;, then NAND(G1, G3) is
not satisfied.

The IMP(G1, G2) gadget is defined similarly, but instead of ti,to € Rjp:, we
require t2,t; + t2 € R p/. An analog of Lemma 3.8 holds for such gadgets.

When the multivalued morphism gadgets are used in the reductions, it will be es-
sential that the bags of the gadgets have very specific sizes. We will ensure somehow
that in a solution each bag is either fully zero or fully nonzero. Our aim is to choose the
sizes of the bags in such a way that if the sum of the sizes of certain bags add up to a
certain integer, then this is only possible if there is exactly one bag of each size.

Fix an integer ¢ and a set 0 € D’ C D. It will be convenient to assume that D’ =
{0,1,...,d}. By ZtD" we denote the set of integers Z;’Jpl forl<:<tand1<j<

d, given by Zf:f’ = (4td)2td+(id+j) + (4td)5td—(id+j).

Lemma 3.9. Let us fixt and D' = {0,1,...,d}. If A C Z4D" and B is a multiset of
values from Z4P" with | SseaS =Y sen S| < (4td)*?, then B is a set and B = A.

3.5 Frequent instances

The following property plays an important role in our algorithms. We say that an in-
stance of CCSP(I") or OCSP(I"), with parameter k is c-frequent (for some integer c) if
for every d € dom(I") \ {0} there are at least ¢ variables that take value d in satisfying
assignments of size at most k. The algorithm of Lemma 2.1 can be used to decide in
fpt-time whether an instance is c-frequent. Lemma 3.10 shows that if an instance is not
c-frequent, it can be reduced to c-frequent instances satisfying an additional technical
requirement. This is done by eliminating values that appear on less than c variables one
by one. A subset 0 € D' C dom([I") is closed (with respect to I') if I" has no inner
homomorphism from D’ that maps some element of D’ to an element in dom(I") \ D’.

Lemma 3.10. Ler I' be a finite ccO-language. Given an instance I of CCSP(I") or
OCSP(I") with parameter k and an integer ¢, we can construct in time fr(k,c)n®M) a
set of c-frequent instances such that

1. instance I has a solution iff at least one of the constructed instances has a solution,
2. each instance I; is an instance of CCSP(I'|p,), respectively, OCSP(I|p,), for some
D; C dom([I') closed in I, and 3. the parameter k; of I; is at most k.

4 Classification for size constraints

Unlike in the Boolean case, weak separability of ' is not equivalent to the tractability of
OCSP(I'): it is possible that I" is not weakly separable, but OCSP(I") is FPT. However,
if there is a subset D’ C dom(I") of the domain such that I'| p is not weakly separable
and D’ has “no special problems” in a certain technical sense, then OCSP(I") is W[1]-
hard. We need the following definitions. A value d € dom(I") is weakly separable if
I{0,4y is weakly separable. A contraction of I" to D’ with 0 € D’ C dom(I’) is an
endomorphism A : dom(I') — D’ such that h(d) # 0 for any d € dom(I") \ {0}.
Contraction h is proper if D’ # dom(I").
The main result for the size constraints CSP is the following dichotomy theorem.

Theorem 4.1. Let I be a finite ccO-language. If there are two sets {0} C Dy C Dy C
dom(I") such that (1) Dy is closed in I', (2) I'\p, has a contraction h to D, (3) I'\p,
has no proper contraction, (4) I'\p, has no weakly separable value that is either de-
generate or self-producing, and (5) I'\p, is not weakly separable, then OCSP(I") is
WI(1]-hard. If there are no such D1, Dy, then OCSP(I") is FPT.

We present an algorithm solving the FPT cases of the problem and then an important
case of the hardness proof, demonstrating the concepts introduced in Section 3.

The algorithm. Let I = (V,C, k) be an instance of OCSP(I"). Let us use Lemma 3.10
to obtain instances I1, ..., I such that [; is a k-frequent instance of OCSP(I}p:) for
some closed set D* C dom(I"). Fix some i and let h be a contraction of I'p+ such that
|h(D?)| is minimum possible. Set Dy := D® and Dy := h(D?).

The pair D1, D violates one of properties (1)—(5) in Theorem 4.1. By the way D,
and D defined, it is clear that (1) and (2) hold. If the pair violates (3), then let g be a
proper contraction of I}p,. Then h o g is a contraction of I|p, such that |g(h(D;))]
is strictly less than |h(D;)|, a contradiction. If Dy, D5 violate (4), then instance I;
always has a solution. Indeed, suppose that d € D; is weakly separable and d is pro-
duced by d' € D1 (possibly d = d’). Let k; be the parameter of I;; then k; < k by
Lemma 3.10(4). Since I; is k-frequent, the set S of variables of I; where d’ can appear
in a satisfying assignment of size at most k contains at least k elements. As d’ produces
d, I'p, has a multivalued morphism ¢ such that ¢(d') = {0,d} and ¢(a) = {0} for
a € Dy \ {d'}. Therefore, for every v € S, the assignment d,, 4 with §, 4(v) = d and 0
everywhere else is a satisfying assignment of I;. As d is weakly separable in I'|p, , the
disjoint union of k; such assignments J,, 4 is a solution to I;. Finally, if (5) is violated,
then instance I; of OCSP(Ip,) has a solution if and only if it has a solution restricted
to Do, and the latter can be decided using Lemma 3.2 (as I'|p, is weakly separable).

Hardness. We say that a set pq, ..., ps of endomorphisms of I is a partition set
if, for every d € D’ \ {0}, p;(d) # 0 for exactly one i. The sum of the partition set is
the mapping h defined such that /(d) is the unique nonzero value in p;(d), ..., pe(d).
The partition set is good if the sum of these pairwise disjoint endomorphisms is also an
endomorphism; otherwise, the partition set is bad.

Lemma 4.2. [fevery value is regular in I\ p,, there is no bad partition set in I\ p,, and
there is a union counterexample in I'|p,, then OCSP(I") is W[1]-hard.

10

Proof. Assume Dy = {0,1,...,p}. The reduction is from MULTICOLORED INDE-
PENDENT SET, the following W[1]-hard problem: Given a graph G' with vertices v; ;
(1 <i<t1<j<n), find an independent set of size ¢ of the form {v y,,..., vy, }.
For each v; ;, we introduce a gadget MVM(I", D;) denoted by G; ;. The bag of G, ;

corresponding to value d € Do \ {0} has size Z"')’>. The size constraint is k :=

Zlezdem\{o} ZZ’fQ. If v;; and vy ; are adjacent, then we add the gadget
NAND(G; j,Gi ;). Also, forevery 1 < ¢ < t,1 < j < j° < n, we add the
NAND(Gi’j, Gi’j/) gadget.

Suppose that there is a solution C' of size exactly ¢ for the MULTICOLORED INDE-
PENDENT SET instance. If vertex v; ; is in C, then set the standard assignment on gad-
get G; ;, otherwise set the zero assignment. It is clear that this results in an assignment
satisfying the size constraint. By Lemma 3.8(1), the constraints of the MVM(I", D3)
gadgets as well as the NAND(G; ;, G; ;) gadgets are satisfied.

For the other direction, suppose that there is a solution 7 satisfying the size con-
straint. First we observe that 7 contains values only from D;. Indeed, if ¢ ¢ D, appears
in bag By of a gadget G; ;, then 7 on G; ; is an inner homomorphism g of I from D,
with g(d) = ¢. Now hog maps a value of D; to ¢, contradicting the assumption that D,
is a closed set. By applying & on a solution, it can be assumed that only values from Do
are used. Thus 7 on the MVM(I", D) gadgets provides multivalued morphisms of I'jp,.
Since every value is regular in I p,, each bag is either fully zero or fully nonzero. The
sizes of the nonzero bags add up exactly to the size constraint k. Thus by Lemma 3.9,
there is exactly one nonzero bag with size ny’dD > forevery 1 <i <tandd € D5\ {0}.

Take a union counterexample (R, t1,ts) in F| D,; by Lemma 3.6, we can assume
that t1, t5 are in the components of I'|p, generated by some a1, as € Da, respectively.
We show that for every 1 < i < ¢, there are values y} and y? such that every endomor-
phism of I'p, given by Gi,y} (resp., Gi,y?) is t;-recoverable (resp., ta-recoverable).
For a fixed i, let g1, ..., g, be arbitrary endomorphisms of I'p, given by G; 1, ...,
G n, tespectively. Since the sizes of nonzero bags are all different, these endomor-
phisms are pairwise disjoint and they form a partition set. As there is no bad partition
set in I'p,, their sum g is an endomorphism of I|p,. Since I'p, has no proper con-
tractions, g has to be a permutation and hence ¢° is the identity for some s > 1. There
is a unique 1 < y! < n such that gyr(a1) # 0. The homomorphism g,1 o g° !
maps every a € D» either to 0 or a; i.e., Gy! © g°~1 = retg for some set S C D,
containing a;. Hence S is a component containing a; and S contains every value of
t. It follows that g, given by Gy3 is ti-recoverable. A similar argument works for
y;, thus the required values y;, y; exist. Let us observe that it is not possible that
y; # y;: by Lemma 3.8(2) the constraints of NAND(G; 1, G; 2) are not satisfied
in this case. Let C' contain vertex v; ; if j = y; = y2. It follows that C' is a mul-
ticolored independent set: if vertices v; j, vy j are adjacent, then some constraint of
NAND(G; j, G j/)=NAND(G; Gi,’y]z) is not satisfied. O

(7

11

5 Classification for cardinality constraints

The characterization of the complexity of CCSP(I") requires a new definition, which
was not relevant for OCSP(I"). The core of I is the component generated by the set of
all nondegenerate values in dom(1I”). We say that I is a core if the core of I" is dom(I").

Theorem 5.1. Let I" be a ccO-language. If there is a 0 € D' C dom(I") s.t. I'\ps is a
core and not weakly separable, then CCSP(I") is BICLIQUE-hard, and FPT otherwise.

A significant difference between the hardness proofs of OCSP(I") and CCSP(I") is
that in OCSP(I"), we can assume that no proper contraction exists and this can be used
to show that certain endomorphisms have to be permutations (see Lemma 4.2). For
CCSP(I"), we cannot make this assumption, thus we need a delicate argument, making
use of the cardinality constraint, to achieve a similar effect.

References

1. Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global constraints. In:
Wallace, M. (ed.) AAAIL LNCS, vol. 3258, pp. 112-117. Springer (2004)
2. Bulatov, A.: Tractable conservative constraint satisfaction problems. In: LICS. pp. 321-330.
IEEE Computer Society (2003)
3. Bulatov, A.A., Jeavons, P., Krokhin, A.A.: Classifying the complexity of constraints using
finite algebras. SIAM J. Comput. 34(3), 720-742 (2005)
4. Bulatov, A.A., Marx, D.: The complexity of global cardinality constraints. In: LICS. pp.
419-428. IEEE Computer Society (2009)
5. Creignou, N., Schnoor, H., Schnoor, I.: Non-uniform boolean constraint satisfaction prob-
lems with cardinality constraint. CSL. LNCS, vol. 5213, pp. 109—-123. Springer (2008)
6. Downey, R.G., Fellows, M.R.: Parameterized Complexity (1999)
7. Feder, T., Vardi, M.Y.: Monotone monadic snp and constraint satisfaction. In: STOC. pp.
612-622 (1993)
. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
9. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. J. ACM 44, 527-548
(1997)
10. Jeavons, P., Cohen, D., Gyssens, M.: How to determine the expressive power of constraints.
Constraints 4, 113-131 (1999)
11. Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of constraint
satisfaction problems. SIAM J. Comput. 30(6), 1863-1920 (2001)
12. Kratsch, S., Wahlstrom, M.: Preprocessing of min ones problems: A dichotomy. In: ICALP
(1). LNCS, vol. 6198, pp. 653—-665. Springer (2010)
13. Krokhin, A.A., Marx, D.: On the hardness of losing weight. In: ICALP. LNCS, vol. 5125,
pp- 662—673. Springer (2008)
14. Marx, D.: Parameterized complexity of constraint satisfaction problems. Computational
Complexity 14
15. Régin, J.C., Gomes, C.P.: The cardinality matrix constraint. In: CP. LNCS, vol. 3258, pp.
572-587. Springer (2004)
16. Rosenberg, I.: Multiple-valued hyperstructures. In: ISMVL. pp. 326-333 (1998)
17. Schaefer, T.J.: The complexity of satisfiability problems. In: STOC. pp. 216-226 (1978)
18. Szeider, S.: The parameterized complexity of k-flip local search for sat and max sat. SAT.
LNCS, vol. 5584, pp. 276-283. Springer (2009)

e

12

