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1. Introduction

Constraint satisfaction problems (CSP) form a rich class ofalgorithmic problems
with applications in many areas of computer science. We onlymention database sys-
tems, where CSPs appear in the guise of the conjunctive querycontainment problem
and the closely related problem of evaluating conjunctive queries. It has been observed
by Feder and Vardi [13] that as abstract problems, CSPs are homomorphism problems
for relational structures. Algorithms for and the complexity of constraint satisfaction
problems have been intensely studied (e.g. [18, 9, 3, 4]), not only for the standard deci-
sion problems but also optimization versions (e.g. [2, 21, 22, 24]) and counting versions
(e.g. [10, 6, 7, 12]) of CSPs.

In this paper we study theCSP enumeration problem, that is, problem of comput-
ing all solutions for a given CSP instance. More specifically, we are interested in the
question which structural restrictions on CSP instances guarantee tractable enumera-
tion problems. “Structural restrictions” are restrictions on the structure induced by the
constraints on the variables. Examples of structural restrictions are “every variable oc-
curs in at most 5 constraints” and “the constraints form an acyclic hypergraph3”. This
can most easily be made precise if we view CSPs as homomorphism problems: Given
two relational structuresA,B, decide if there is a homomorphism fromA toB. Here the
elements of the structureA correspond to the variables of the CSP and the elements of
the structureB correspond to the possible values. Structural restrictions are restrictions
on the structureA. If A is a class of structures, thenCSP(A,−) denotes the restric-
tion of the general CSP (or homomorphism problem) where the “left hand side” input
structureA is taken from the classA. ECSP(A,−) denotes the corresponding enu-
meration problem: Given two relational structuresA ∈ A andB, compute the set of all
homomorphisms fromA toB. The enumeration problem is of particular interest in the
database context, where we are usually not only interested in the question of whether
the answer to a query is nonempty, but want to compute all tuples in the answer. We
will also briefly discuss the correspondingsearchproblem, denotedSCSP(A,−): Find
a solution if one exists.

It has been shown in [1] thatECSP(A,−) can be solved in polynomial time if
and only if the number of solutions (that is, homomorphisms)for all instances is poly-
nomially bounded in terms of the input size and that this is the case if and only if the
structures in the classA have bounded fractional edge cover number. However, usually
we cannot expect the number of solutions to be polynomial. Inthis case, we may ask
which conditions onA guarantee thatECSP(A,−) has a polynomial delay algorithm.
A polynomial delay algorithmfor an enumeration problem is required to produce the
first solution in polynomial time and then iteratively compute all solutions (each so-
lution only once), leaving only polynomial time between twosuccessive solutions. In
particular, this guarantees that the algorithms computes all solutions inpolynomial total
time, that is, in time polynomial in the input size plus output size.

3The other type of restrictions studied in the literature on CSP are “constraint language restrictions”, that
is, restrictions on the structure imposed by the constraintrelations on the values. An example of a constraint
language restriction is “all clauses of a SAT instance, viewed as a Boolean CSP, are Horn clauses”.
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It is easy to see thatECSP(A,−) has a polynomial delay algorithm if the classA
has bounded tree width. It is also easy to see that there are classesA of unbounded
tree width such thatECSP(A,−) has a polynomial delay algorithm. It follows from
our results that examples of such classes are the class of allgrids or the class of all
complete graphs with a loop on every vertex. It is known that the decision problem
CSP(A,−) is in polynomial time if and only if the cores of the structures in A have
bounded tree width [16] (provided the arity of the constraints is bounded, and under
some reasonable complexity theoretic assumptions). Acoreof a relational structureA
is a minimal substructureA′ ⊆ A such that there is a homomorphism fromA to A;
minimality is with respect to inclusion. It is easy to see that all cores of a structure are
isomorphic. Hence we usually speak of “the” core of a structure. Note that the core of
a grid (and of any other bipartite graph with at least one edge) is a single edge, and the
core of a complete graph with all loops present (and of any other graph with a loop)
is a single vertex with a loop on it. The core of a complete graph with no loops is the
graph itself. As a polynomial delay algorithm for an enumeration algorithms yields
a polynomial time algorithm for the corresponding decisionproblem, it follows that
ECSP(A,−) can only have a polynomial delay algorithm if the cores of thestructures
in A have bounded tree width. Unfortunately, there are examplesof classesA that
have cores of bounded tree width, but for whichECSP(A,−) has no polynomial delay
algorithm unless P= NP (see Example 1).

Our main algorithmic results show thatECSP(A,−) has a polynomial delay algo-
rithm if the cores of the structures inA have bounded tree width and if, in addition,
they can be reached in a sequence of “small steps.” Anendomorphismof a structure is
a homomorphism of a structure to itself. Aretraction is an endomorphism that is the
identity mapping on its image. Every structure has a retraction to its core. However,
in general, the only way to map a structure to its core may be bycollapsing the whole
structure at once. As an example, consider a path with a loop on both endpoints. The
core consists of a single vertex with a loop. (More precisely, the two cores are the two
endpoints with their loops.) The only endomorphism of this structure to a proper sub-
structure maps the whole structure to its core. Compare thiswith a path that only has
a loop on one endpoint. Again, the core is a single vertex witha loop, but now we can
reach the core by a sequence of retractions, mapping a path oflengthn to a subpath
of lengthn − 1 and then to a subpath of lengthn − 2 et cetera. We prove that ifA
is a class of structures whose cores have bounded tree width and can be reached by a
sequence of retractions each of which only moves a bounded number of vertices, then
ECSP(A,−) has a polynomial delay algorithm (Theorem 3).

We also consider more general sequences of retractions or endomorphism from a
structure to its core. We say that a sequence of endomorphisms from a structureA0

to a substructureA1 ⊂ A0, from A1 to a substructureA2, . . . , to a structureAn has
bounded widthif An and, for eachi ≤ n, the “difference betweenAi andAi−1” has
bounded tree width. We prove that if we are given a sequence ofendomorphisms of
bounded width together with the input structureA, then we can compute all solutions
by a polynomial delay algorithm. Unfortunately, in generalwe cannot compute such
a sequence of endomorphisms efficiently. We prove that even for width 1 it is NP-
complete to decide whether such a sequence exists (Theorem 2). We also show that the
existence of a sequence of bounded width endomorphisms is not a sufficient criterion
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for tractability if this sequence is not explicitly given (Proposition 1).
In the last section, we briefly discuss the problem of computing projections of solu-

tions of a CSP, which is equivalent to the problem of evaluating conjunctive queries in
relational databases. This problem is significantly harder, and we show that our criteria
for tractability beyond bounded tree width cannot be extended (Example 3).

Finally, we remark that our results are far from giving a complete classification
of the classesA for whichECSP(A,−) has a polynomial delay algorithm and those
classes for which it does not. Indeed, we show that it will be difficult to obtain such a
classification, because such a classification would imply a solution to the notoriously
openCSP dichotomy conjectureof Feder and Vardi [13] (see Section 3 for details).

2. Preliminaries

Relational structures. A vocabularyτ is a finite set ofrelation symbolsof specified
arities. Arelational structureA overτ consists of a finite setA called theuniverseof
A and for each relation symbolR ∈ τ , say, of arityr, anr-ary relationRA ⊆ Ar. Note
that we require vocabularies and structures to be finite. A structureA is asubstructure
of a structureB if A ⊆ B andRA ⊆ RB for all R ∈ τ . We writeA ⊆ B to denote that
A is a substructure ofB andA ⊂ B to denote thatA is apropersubstructure ofB, that
is, A ⊆ B andA 6= B. A substructureA ⊆ B is inducedif for all R ∈ τ , say, of arity
r, we haveRA = RB ∩ Ar. For a subsetA ⊆ B, we writeB[A] to denote the induced
substructure ofB with universeA.

Homomorphisms. We often abbreviate tuples(a1, . . . , ak) by a. If ϕ is a mapping
whose domain containsa1, . . . , ak we writeϕ(a) to abbreviate(ϕ(a1), . . . , ϕ(ak)). A
homomorphismfrom a relational structureA to a relational structureB is a mapping
ϕ : A → B such that for allR ∈ τ and all tuplesa ∈ RA we haveϕ(a) ∈ RB.
An endomorphismof A is a homomorphism fromA to A, and aretraction of A is
an endomorphismh such that for alla ∈ A it holds thath(h(a)) = h(a). A partial
homomorphismonC ⊆ A toB is a homomorphism ofA[C] toB. It is sometimes use-
ful when designing examples to exclude certain homomorphisms or endomorphisms.
The simplest way to do that is to use unary relations. For example, if R is a unary
relation and(a) ∈ RA we say thata has colorR. Now if b ∈ B does not have color
R then no homomorphism fromA to B mapsa to b. If A is a τ -structure andϕ is a
mapping withdom(ϕ) = A, thenϕ(A) is theτ -structure with universeϕ(A) and with
Rϕ(A) = {ϕ(a) | a ∈ RA}. Note that a mappingϕ : A→ B is a homomorphism from
A to B if and only if ϕ(A) is a substructure (not necessarily induced) ofB.

Two structuresA andB arehomomorphically equivalentif there is a homomor-
phism fromA to B and also a homomorphism fromB to A. Note that if structuresA
andA′ are homomorphically equivalent, then for every structureB there is a homo-
morphism fromA to B if and only if there is a homomorphism fromA′ to B; in other
words: the instances(A,B) and(A′,B) of the decision CSP are equivalent. However,
the two instances may have vastly different sizes, and the complexity of solving the
search and enumeration problems for them can also be quite different. Homomorphic
equivalence is closely related to the concept of the core of astructure: A structureA
is acore if there is no homomorphism fromA to a proper substructure ofA. A core
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of a structureA is a substructureA′ ⊆ A such that there is a homomorphism fromA
to A′ andA′ is a core. Equivalently, a core of a structure can be defined asa minimal
substructureA′ of A such that there is a homomorphism fromA to A′. Obviously,
every core of a structure is homomorphically equivalent to the structure. We observe
another basic fact about cores:

Observation 1. LetA andB be homomorphically equivalent structures, and letA′ and
B′ be cores ofA andB, respectively. ThenA′ andB′ are isomorphic. In particular, all
cores of a structureA are isomorphic. Therefore, we often speak ofthecore ofA.

Observation 2. It is easy to see that it is NP-hard to decide, given structuresA ⊆ B,
whetherA is isomorphic to the core ofB. (For an arbitrary graphG, letA be a triangle
andB the disjoint union ofG with A. ThenA is a core ofB if and only if G is 3-
colorable.) Hell and Nešetřil [17] proved that it is co-NP-complete to decide whether
a graph is a core.

Tree decompositions.A tree decompositionof a graphG is a pair(T,B), whereT is
a tree andB is a mapping that associates with every nodet ∈ V (T ) a setBt ⊆ V (G)
such that (1) for everyv ∈ V (G) the set{t ∈ V (T )|v ∈ Bt} is connected inT ,
and (2) for everye ∈ E(G) there is at ∈ V (T ) such thate ⊆ Bt. The setsBt, for
t ∈ V (T ), are called thebagsof the decomposition. It is sometimes convenient to have
the treeT in a tree decomposition rooted; we always assume it is. Thewidth of a tree
decomposition(T,B) is max{|Bt| | t ∈ V (T )} − 1. The tree widthof a graphG,
denoted by tw(G), is the minimum of the widths of all tree decompositions ofG.

We need to transfer some of the notions of graph theory to arbitrary relational
structures. TheGaifman graph(also known asprimal graph) of a relational structure
A over vocabularyτ is the graphG(A) with vertex setA and an edge betweena
and b if a 6= b and there is a relation symbolR ∈ τ , say, of arityr, and a tuple
(a1, . . . , ar) ∈ RA such thata, b ∈ {a1, . . . , ar}. We can now transfer graph-theoretic
notions to relational structures. In particular, a subsetB ⊆ A is connectedin a structure
A if it is connected inG(A). A tree decompositionof a structureA can simply be
defined to be a tree-decomposition ofG(A). Equivalently, a tree decomposition of
A can be defined directly by replacing the second condition in the definition of tree
decompositions of graphs by (2’) for everyR ∈ τ and(a1, . . . , ar) ∈ RA there is a
t ∈ V (T ) such that{a1, . . . , ar} ⊆ Bt. A classC of structures hasbounded tree width
if there is aw ∈ N such that tw(A) ≤ w for all A ∈ C. A classC of structures has
bounded tree width modulo homomorphic equivalenceif there is aw ∈ N such that
everyA ∈ C is homomorphically equivalent to a structure of tree width at most w.

Observation 3. A structureA is homomorphically equivalent to a structure of tree
width at mostw if and only if the core ofA has tree width at mostw.

The Constraint Satisfaction Problem. For two classesA andB of structures, the
Constraint Satisfaction Problem, CSP(A,B), is the following problem:

CSP(A,B)
Instance: A ∈ A, B ∈ B
Problem: Decide if there is a homomorphism from
A to B.
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The CSP is a decision problem. The variation of it we study in this paper is the
following enumeration problem:

ECSP(A,B)
Instance: A ∈ A, B ∈ B
Problem: Output all the homomorphisms fromA to
B.

We shall also refer to the search problem,SCSP(A,B), in which the goal is to find
one solution of a CSP-instance or output ‘no’ if a solution does not exist.

If one of the classesA, B is the class of all finite structures, then we denote the cor-
responding CSPs byCSP(A,−),CSP(−,B) (respectively,ECSP(A,−),ECSP(−,B),
SCSP(A,−), SCSP(−,B)).

The decision CSP has been intensely studied. In particular it has been shown, under
standard complexity-theoretic assumptions, that if a class C of structures has bounded
arity thenCSP(C,−) is solvable in polynomial time if and only ifC has bounded tree
width modulo homomorphic equivalence [16] whereas if the arity of C is not bounded
thenCSP(C,−) is fixed-parameter tractable if and only ifC has bounded submodular
width [23].

Problems of the formCSP(−, C) have been studied mostly in the case whenC
is 1-element. Problems of this type are sometimes referred to asnon-uniform. It is
conjectured that every non-uniform problem is either solvable in polynomial time or
NP-complete (the so-calledDichotomy Conjecture) [13]. Although this conjecture is
proved in several particular cases [18, 8, 9, 3], in its general form it is believed to be
very difficult.

A search CSP is clearly no easier than the corresponding decision problem. While
any non-uniform search problemSCSP(−, C) is polynomial time reducible to its deci-
sion versionCSP(−, C) [11], nothing is known about the complexity of search prob-
lemsSCSP(C,−) except the result we state in Section 3. Regarding enumeration of
CSPs, some initial results on the complexity of non-uniformenumerating problems
have been reported in [26]. Also, the question of enumerating solutions ”projected”
over a given set of variables has been investigated in [15].

3. Tractable structures for enumeration

Since even an easy CSP may have exponentially many solutions, the model of
choice for ‘easy’ enumeration problems is algorithms with polynomial delay [20]. An
algorithm Alg is said to solve a CSPwith polynomial delay(w.p.d. for short) if there
is a polynomialp(n) such that, for every instance of sizen, Alg outputs ‘no’ in a
time bounded byp(n) if there is no solution, otherwise it generates all solutions to the
instance such that no solution is output twice, the first solution is output after at most
p(n) steps after the computation starts, and time between outputting two consequent
solutions does not exceedp(n).

If a class of relational structuresC has bounded arity, the aforementioned result of
Grohe [16] imposes strong restrictions on enumeration problems solvable w.p.d.
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Observation 4. If a class of relational structuresC with bounded arity does not have
bounded tree width modulo homomorphic equivalence, thenECSP(C,−) is not solv-
able w.p.d., unless FPT=W [1].

Unlike for the decision version, the converse is not true. Indeed, the following
example shows that bounded tree width modulo homomorphic equivalence does not
imply enumerability w.p.d. This also has been noted in [25].

Example 1. LetAk be the disjoint union of ak-clique and a loop and letA = {Ak | k ≥
1}. Clearly, the core of each graph inA has bounded tree width (in fact, it is a sin-
gle element), henceCSP(A,−) is polynomial-time solvable. For an arbitrary graph
B without loops, letB′ be the disjoint union ofB and a loop. It is clear that there is
always a trivial homomorphism fromAk (for anyk ≥ 1) to B′ that maps everything
into the loop. There exist homomorphisms different from thetrivial one if and only
if B contains ak-clique. Thus if we are able to check in polynomial time whether
there is a second homomorphism, then we are able to test ifB has ak-clique. There-
fore, althoughCSP(A,−) andSCSP(A,−) are polynomial-time solvable, a w.p.d.
enumeration algorithm forECSP(A,−) would imply P= NP.

It is not difficult to show thatECSP(C,−) is enumerable w.p.d. ifC has bounded
tree width. Instead of giving a direct proof we shall derive this from a more general
result in Section 6.

Thus enumerability w.p.d. has a different tractability criterion than the decision
version, and this criterion lies somewhere between boundedtree width and bounded
tree width modulo homomorphic equivalence. Thus in order toensure that the solutions
can be enumerated w.p.d., we have to make further restrictions on the way the structure
can be mapped to its bounded tree width core. The main new definition of the paper
requires that the core is reached by “small steps”:

Definition 1. Let A be a relational structure with universeA. We say thatA has a
sequence of endomorphisms of widthk if there are subsetsA = A0 ⊃ A1 ⊃ . . . ⊃
An 6= ∅ and homomorphismsϕ1, . . . , ϕn such that

1. ϕi is a homomorphism fromA[Ai−1] to A[Ai],
2. ϕi(Ai−1) = Ai for 1 ≤ i ≤ n;
3. for every0 ≤ i < n, the tree width ofA[Ai \Ai+1] is at mostk;
4. A[An] has tree width at mostk.

If ϕ1, . . . , ϕn are retractions ofA[A0], . . . ,A[An−1], then we say thatA has a sequence
of retractions of widthk.

In Section 4, we show that enumeration for(A,B) can be done w.p.d. if a sequence
of bounded width endomorphisms forA is given in the input. Unfortunately, we cannot
claim thatECSP(A,−) can be done w.p.d. if every structure inA has such a sequence,
since we do not know how to find such sequences efficiently. In fact, as we show
in Section 5, it is hard to check if a width-1 sequence exists for a given structure.
Furthermore, we construct a classA where every structure has a width-2 sequence, but
ECSP(A,−) cannot be done w.p.d., unless P= NP. This means that it is not possible
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to get around the problem of not being able to find the sequences (for example, by
finding sequences with somewhat larger width or by constructing the sequence during
the enumeration). Thus having a bounded width sequence of endomorphisms is not
the right tractability criterion. We then investigate a more restrictive notion, where the
bound is not on the tree width of the difference of the layers but on the number of
elements in the differences and show that this yields enumeration w.p.d.

However, in the rest of the section, we give evidence that enumeration problems
solvable w.p.d. cannot be characterized in simple terms. Indeed, a description of enu-
meration problems solvable w.p.d. would imply a description of non-uniform decision
problems solvable in polynomial time. This is shown via an analogous result for the
search version of the problem, which might be of independentinterest. ByA ⊕ B we
denote the disjoint union of relational structuresA andB.

Lemma 1. LetB be a relational structure that is a core, and letCB be{A⊕ B | A →
B}. ThenCSP(−,B) is solvable in polynomial time if and only if so is the problem
SCSP(CB,−).

PROOF. If the decision problemCSP(−,B) is solvable in polynomial time we can
construct an algorithm that given an instance(A⊕ B,C) of SCSP(CB,−) computes a
solution in polynomial time. The algorithm starts by computing an homomorphismϕ
fromA⊕B toB. Such a homomorphism exists by the definition ofCB and can be com-
puted in polynomial time because, by the aforementioned result of [11], if CSP(−,B)
is solvable in polynomial time then so isSCSP(−,B). Then the algorithm decides by
brute force whether or not there exists a homomorphismϕ′ fromB toC (note that this
can be done in polynomial time becauseB is fixed). If such a homomorphism does not
exist then we can certainly guarantee that there is no homomorphism fromA⊕B toC.
Otherwise, the required homomorphism is obtained as the compositionϕ′ ◦ ϕ.

Conversely, assume that we have an algorithm Alg that finds a solution of any in-
stance ofCSP(CB,−) in polynomial time, say,p(n). We construct from it an algorithm
that solvesCSP(−,B). Given an instance(A,B) of CSP(−,B) we call algorithm Alg
with inputA⊕ B andB. Additionally we count the number of steps performed by Alg
in such a way that we stop if Alg has not finished inp(n) steps. If Alg produces a
correct answer then we have to be able to obtain from it a homomorphism fromA toB.
If Alg’s answer is not correct or the clock reachesp(n) steps we know that Alg failed.
The only possible reason for that is thatA ⊕ B does not belong toCB, which implies
thatA is not homomorphic toB. 2

In what follows we transfer this result to enumeration problems. LetA be a class
of relational structures. The classA′ consists of all structures built as follows: Take
A ∈ A and add to it|A| independent vertices.

Lemma 2. LetA be a class of relational structures. ThenSCSP(A,−) is solvable in
polynomial time if and only ifECSP(A′,−) is solvable w.p.d.

PROOF. If ECSP(A,−) is enumerable w.p.d., then for any structureA′ ∈ A′ it takes
time polynomial in|A′| to find the first solution. SinceA′ is only twice of the size of
the corresponding structureA, it takes only polynomial time to solveSCSP(A,−).

8



Conversely, given a structureA′ = A ∪ I ∈ A′, whereA ∈ A andI is the set of
independent elements, and any structureB. The first homomorphism fromA′ toB can
be found in polynomial time, sinceSCSP(A,−) is polynomial time solvable and the
independent vertices can be mapped arbitrarily. Let the restriction of this homomor-
phism ontoA beϕ. Then while enumerating all possible|B||A| extensions ofϕ we buy
enough time to enumerate all homomorphisms fromA toB using brute force. 2

4. Sequence of bounded width endomorphisms

In this section we show that for every fixedk, all the homomorphisms fromA to
B can be enumerated with polynomial delay if a sequence of width k endomorphisms
of A is given in the input. Throughout this section, we consider afixed sequence
A0, . . . , An andϕ1, . . . , ϕn as in the definition of a sequence of widthk endomor-
phisms (Definition 1). For brevity, we denoteA[Ai] byAi.

We will enumerate the homomorphisms fromA toB by first enumerating the homo-
morphisms fromAn, An−1, . . . to B and then transforming them to homomorphisms
fromA toB using the homomorphismsϕi. We obtain the homomorphisms fromAi by
extending the homomorphisms fromAi+1 to the setAi \Ai+1; Lemma 3 below will be
useful for this purpose. In order to avoid producing a homomorphism multiple times,
we need a delicate classification (see Definitions 2 and 3 for the notions elementary
homomorphisms and index of a homomorphism).

Lemma 3. Let A,B be relational structures andX1 ⊆ X2 ⊆ A subsets, and let
g0 be a homomorphism fromA[X1] to B. For every fixedk, there is a polynomial-
time algorithmHOMOMORPHISM-EXT(A,B, X1, X2, g0) that decides whetherg0 can
be extended to a homomorphism fromA[X2] to B, if the tree width of the induced
substructureA[X2 \X1] is at mostk.

PROOF. Let Y = X2 \ X1. We construct a structureY and an expansionB∗ of B in
such a way that Gaifman graph ofY equalsG(A[Y ]) and there is a homomorphism
fromY toB∗ if and only if there is one fromA[X2] toB extendingg0. SinceG(A[Y ])
has tree widthk, this can be checked in polynomial time.

For eachR ∈ τ , say,ℓ-ary, and eacha = (a1, . . . , aℓ) ∈ RA such that{a1, . . . , aℓ}∩
Y 6= ∅, we introduce a new relational symbolRa as follows. Let(ai1 , . . . , aim) be
the list of all elements from{a1, . . . , aℓ} ∩ Y wherei1 < . . . < im and for some
is 6= it it may happen thatais = ait . ThenRa is m-ary, it is interpreted onY as
RY

a
= {(ai1 , . . . , aim)}, and it is interpreted onB∗ as

RB
∗

a
= {(bi1 , . . . , bim) | (b1, . . . , bℓ) ∈ RB andbj = g0(aj) for aj ∈ X1}.

In a sense, relationsRa describe all possible restrictions that the fixed values forthe
elements fromX1 impose on possible values for elements fromY .

It is straightforward that a homomorphism fromY to B∗ exists if and only if there
exists a homomorphism fromA[X2] to B extendingg0. Indeed, the restriction of any
homomorphismA[X2] to B extendingg0 ontoY is a homomorphism fromY to B∗.
Conversely, ifϕ is a homomorphism fromY to B

∗ theng0 ∪ ϕ is a homomorphism of
A[X2] toB. Finally, the Gaifman graph ofY equalsG(A[Y ]). 2
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Definition 2. Theindexof a homomorphismϕ fromA toB is the largestt such thatϕ
can be written asϕ = ψ ◦ ϕt ◦ . . . ◦ ϕ1 for some homomorphismψ from At to B. In
particular, ifϕ cannot be written asϕ = ψ ◦ ϕ1, then the index ofϕ is 0.

Observe that if the index ofϕ is at leastt, then there is a uniqueψ such thatϕ =
ψ ◦ ϕt ◦ . . . ◦ ϕ1: This follows from the fact thatϕt ◦ . . . ◦ ϕ1 is a surjective mapping
fromA toAt, thus ifψ′ andψ′′ differ onAt, thenψ′◦ϕt◦ . . .◦ϕ1 andψ′′◦ϕt◦ . . .◦ϕ1

differ onA.

Definition 3. A homomorphismψ from At to B is elementary, if it cannot be written
asψ = ψ′ ◦ ϕt+1. A homomorphism isreducibleif it is not elementary.

Lemma 4. If a homomorphismψ fromAt toB is elementary, thenϕ = ψ◦ϕt◦ . . .◦ϕ1

has index exactlyt. Conversely, if homomorphismϕ fromA toB has indext and can be
written asϕ = ψ ◦ϕt ◦ . . .◦ϕ1, then the homomorphismψ fromAt toB is elementary.

PROOF. By definition,ϕ = ψ ◦ ϕt ◦ . . . ◦ ϕ1 has index at leastt. If ϕ has index at
leastt + 1, thenϕ = ψ′ ◦ ϕt+1 ◦ ϕt ◦ . . . ◦ ϕ1. By the uniqueness of theψ, we have
ψ = ψ′ ◦ ϕt+1, contradicting the fact thatψ is elementary. Thus the index ofϕ is
exactlyt.

For the second part, suppose thatψ is not elementary, i.e.,ψ = ψ′ ◦ ϕt+1 for some
homomorphismψ′ fromAt+1 toB. Nowϕ = ψ′ ◦ϕt+1 ◦ϕt ◦ . . . ◦ϕ1, thus the index
of ϕ is at leastt+ 1. 2

Lemma 4 suggests a way of enumerating all the homomorphisms fromA toB with-
out repetitions: fort = 0, . . . , n, we enumerate all the elementary homomorphisms
fromAt toB, and for each such homomorphismψ, we computeϕ = ψ ◦ϕt ◦ . . . ◦ϕ1.
To this end, we need the following characterization of elementary homomorphisms:

Lemma 5. A homomorphismψ fromAt toB is reducible if and only if

(1) ψ(x) = ψ(y) for everyx, y ∈ At with ϕt+1(x) = ϕt+1(y), i.e., for every
z ∈ At+1, ψ(x) has the same valuebz for everyx ∈ ϕ−1

t+1(z), and
(2) the mapping defined byψ′(z) := bz is a homomorphism fromAt+1 toB.

PROOF. Suppose first that both conditions hold. Thenψ = ψ′ ◦ ϕt+1 (whereψ′ is as
defined in the second condition). Sinceψ′ is a homomorphism fromAt+1 to B, this
means thatψ reducible.

Next we show that ifψ reducible, then both conditions hold. Suppose thatψ =
ψ′′ ◦ ϕt+1, whereψ′′ is a homomorphism fromAt+1 to B. If there are two elements
x, y such thatϕt+1(x) = ϕt+1(y) andψ(x) 6= ψ(y), then we have a contradiction
asψ(x) = ψ′(ϕt+1(x)) = ψ′(ϕt+1(y)) = ψ(y). Sinceϕt+1 is ontoAt+1, the map-
pingψ′′ is the same as the mappingψ′ defined in the second condition. Thusψ′ is a
homomorphism fromAt+1 toB. 2

Lemma 5 gives a way of testing in polynomial time whether a given homomor-
phismψ is elementary: we have to test whether one of the two conditions are violated.
We state this in a more general form: we can test in polynomialtime whether a partial
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mappingg0 can be extended to an elementary homomorphismψ, if the structure in-
duced by the elements whereg0 is not defined has bounded tree width (see Lemma 7).
We fix values every possible way in which the conditions of Lemma 5 can be violated
and use HOMOMORPHISM-EXT to check whether there is an extension compatible
with this choice. That is, we fix values every possible way that forces a violation of
one of the two conditions in Lemma 5 and then we check whetherg0 can be extended
in a way compatible with these fixed values. For example, to enforce the violation of
(1) in Lemma 5, we need choosex andy with ϕt+1(x) = ϕt+1(y) and fix different
values forψ(x) andψ(y). To enforce the violation of condition (2), the obvious thing
to do is to select a relationRAt+1 of At+1, a tuplea ∈ RAt+1 , a tupleb 6∈ RB, and
fix values such thatψ′ mapsa to b. However, this would require going through all
tuplesb not appearingin a relationRB. We follow a somewhat different approach to
enumerate the possible violations more efficiently. We needthe following definition:

Definition 4. Given a relationRB of arity r, abad prefixis a tuple(b1, . . . , bs) ∈ Bs

with s ≤ r such that

1. there is no tuple(b1, . . . , bs, bs+1, . . . , br) ∈ RB for anybs+1, . . . , br ∈ B, and
2. there is a tuple(b1, . . . , bs−1, cs, cs+1, . . . , cr) ∈ RB for somecs, . . . , cr ∈ B.

If (b1, . . . , br) 6∈ RB, then there is a unique1 ≤ s ≤ r such that the tuple
(b1, . . . , bs) is a bad prefix: there has to be ans such that(b1, . . . , bs) cannot be ex-
tended to a tuple ofRB, but(b1, . . . , bs−1) can.

Lemma 6. The relationRB has at most|RB| · (|B| − 1) · r bad prefixes, wherer is the
arity of the relation.

PROOF. By definition, for every bad prefix(b1, . . . , bs), there is a tuple

(b1, . . . , bs−1, cs, cs+1, . . . , cr) ∈ RB.

Fix such a tuple for each bad prefix. Let us count how many bad prefixes are assigned
to a tuple inRB. At most |B| − 1 bad prefixes of lengths can be associated with
a tuple: the bad prefix has to agree on the firsts − 1 coordinates, and it has to be
different on thes-th coordinate. Therefore, the total number of bad prefixes is at most
|RB| · (|B| − 1) · r. 2

Lemma 7. LetX be a subset ofAt and letg0 be a mapping fromX toB. For every
fixedk, there is a polynomial-time algorithmELEMENTARY-EXT(t,X, g0) that decides
whetherg0 can be extended to an elementary homomorphism fromAt toB, if the tree
width of the structure induced byAt −X is at mostk.

PROOF. We try to find a homomorphism that violates one of the conditions in Lemma 5.
In order to do so, we try every possible way in which the conditions can be violated.
First, we enumerate every possible way condition (1) can be violated. For this pur-
pose, we enumerate every quadruple(x1, x2, b1, b2) with x1, x2 ∈ At, ϕt+1(x1) =
ϕt+1(x2), b1, b2 ∈ B, andb1 6= b2. We try to find an extension ofg0 with g0(x1) = b1
andg0(x2) = b2; it is clear that if such an extension exists, then it is an elementary

11



homomorphism fromAt to B. If x1 ∈ X andg0(x1) 6= b1, then such an extension
does not exist (and similarly forx2). Otherwise we can setX ′ = X ∪ {x1, x2} and
extendg0 by definingg0(x1) = b1 andg0(x2) = b2 (if it is not already defined so).
Now we can apply Algorithm HOMOMORPHISM-EXT(A,B, X ′, At, g0) to check ifg0
can be extended fromX ′ toAt.

Next we try to find an extension that satisfies the first condition of Lemma 5 but
violates the second. Ifψ′ is not a homomorphism, then there is a relationR ∈ τ and
a tuplea = (z1, , . . . , , zr) ∈ RA with z1, . . . , zr ∈ At+1 such thatψ′(a) 6∈ RB. We
enumerate everyR ∈ τ , tuplea ∈ RA∩Ar

t+1, and every bad prefix(b1, . . . , bs) ofRB.
Let xi be an arbitrary element ofAt with ϕt+1(xi) = zi. We extendg0 by defining
g0(xi) = bi for every1 ≤ i ≤ s. If g0(xi) was already defined to have a different
value, then we skip to the next bad prefix. Otherwise we get an extension ofg0 to
X ′ = X ∪ {x1, . . . , xs}. We show that ifg0 can be further extended fromX ′ to a
homomorphismψ fromAt to B (which can be checked by calling HOMOMORPHISM-
EXT(A,B, X ′, At, g0)), then this homomorphismψ is an elementary homomorphism.
Suppose thatψ does not violate (1) of Lemma 5 and letψ′ be as defined by the second
condition. Sinceψ(xi) = zi, we have thatψ′(zi) = ψ(xi) = bi for 1 ≤ i ≤ s.
Thus(ψ′(zi), . . . , ψ

′(zr)) 6∈ RB (since(b1, , . . . , bs) is a bad prefix), which means that
ψ′ is not a homomorphism and the second condition is violated. Therefore, ifg0 has
an elementary extension that satisfies the first condition and violates the second, then
our algorithm finds an elementary extension when the appropriate relationR, tuple
a, and bad prefix(b1, , . . . , bs) are considered. Thus we can conclude that algorithm
ELEMENTARY-EXT(t,X ′, g0) finds an elementary extension ofg0 if it exists. 2

We enumerate the elementary homomorphisms in a specific order defined by the
following precedence relation.

Definition 5. Let ϕ be an elementary homomorphism fromAi to B and letψ be an
elementary homomorphism fromAj to B for somej > i. Homomorphismψ is the
parentofϕ (ϕ is achild of ψ) if ϕ restricted toAi+1 can be written asψ◦ϕj◦. . .◦ϕi+2.
Ancestoranddescendantrelations are defined as the reflexive transitive closure of the
parent and child relations, respectively.

Note that an elementary homomorphism fromAi to B has exactly one parent for
i < n and a homomorphism fromAn to B has no parent. Fix an arbitrary ordering
of the elements ofA. For 0 ≤ i ≤ n and0 ≤ j ≤ |Ai \ Ai+1|, let Ai,j be the
union ofAi+1 and the firstj elements ofAi \ Ai+1. Note thatAi,0 = Ai+1 and
Ai,|Ai\Ai+1| = Ai.

Lemma 8. Let ψ be a mapping fromAi,j to B that can be extended to an elemen-
tary homomorphism fromAi to B. Assume that a sequence of widthk endomorphisms
is given forA. For every fixedk, there is a polynomial-delay, polynomial-space al-
gorithm ELEMENTARY-ENUM(i, j, ψ) that enumerates all the elementary homomor-
phisms fromAi to B that extendsψ and all the descendants of these homomorphisms.

PROOF. If j < |Ai \Ai+1|, then we enumerate every elementb ofB, and extendψ by
definingψ′(ai,j+1) = b andψ′(x) = ψ(x) for everyx ∈ Ai,j . For every suchψ′, we
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Input: Integers0 ≤ i ≤ n, 0 ≤ j ≤ |Ai \Ai+1|, mappingψ fromAi,j to B.

Output:Every elementary homomorphism fromAi to B that extendsψ and all
descendants of these homomorphisms.

Step 1 if j < |Ai \Ai+1| then do
Step 1.1 for all b ∈ B do
Step 1.1.1 extendψ toψ′ with ψ′(ai,j+1) = b

Step 1.1.2 if ELEMENTARY-EXT(i, Ai,j+1, ψ
′) = truedo

Step 1.1.2.1 ELEMENTARY-ENUM(i, j + 1, ψ′)
Step 2 if j = |Ai \Ai+1|
Step 2.1 output ψ
Step 2.2 for k := 1 to i− 1 then do
Step 2.2.1 ψk := ψ ◦ ϕi ◦ . . . ◦ ϕk+2

Step 2.2.2 if ELEMENTARY-EXT(k,Ak+1, ψk) = truethen do
Step 2.2.2.1 ELEMENTARY-ENUM(k, 0, ψk)

Figure 1: Algorithm ELEMENTARY-ENUM(i,j, ψ)

use Algorithm ELEMENTARY-EXT(i, Ai,j+1, ψ
′) of Lemma 7 to check whether this

extensionψ′ can be further extended to an elementary homomorphism fromAi to B.
If so, then we recursively call ELEMENTARY-ENUM(i, j + 1, ψ′). Note that by the
assumption thatψ has an extension to an elementary homomorphism fromAi to B, at
least one choice ofb ∈ B results in a recursive call.

If j = |Ai\Ai+1| (which means thatAi,j = Ai), thenψ is an elementary homomor-
phismAi fromB, which we output. For every1 ≤ k ≤ i−1, letψk = ψ◦ϕi◦. . .◦ϕk+2

be a mapping fromAk+1 (i.e., Ak,0) to B. It is clear from the definition that if an
elementary homomorphismϕ of Ak is a child ofψ, thenϕ extendsψk. For every
1 ≤ k ≤ i − 1, we call ELEMENTARY-EXT(k, 0, ψk) of Lemma 7 to check ifψk

can be extended to an elementary homomorphism fromAk to B, and if so, then we
make a recursive call ELEMENTARY-ENUM(k, 0, ψk). It is clear that these recursive
calls enumerate every child (and therefore every descendant) of ψ. Furthermore, as the
different recursive calls enumerate different children (sincek is different in each call),
each descendant is enumerated exactly once.

Observe that the recursion depth isO(|A|), the time spent at each node of the
recursion tree is polynomial and we output an elementary homomorphism at every leaf
node (a leaf node is possible only ifj = |Ai \ Ai+1|). Thus the delay between two
outputs is polynomial and the space requirement is also polynomial. 2

By calling ELEMENTARY-ENUM(n, 0, g0) (whereg0 is a trivial mapping from∅
to B), we can enumerate all the elementary homomorphisms. By theobservation in
Lemma 4, this means that we can enumerate all the homomorphisms fromA toB.

Theorem 1. For every fixedk, there is a polynomial-delay, polynomial-space algo-
rithm that, given structuresA, B, and a sequence of widthk endomorphisms ofA,
enumerates all the homomorphisms fromA toB.
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The following example shows that Theorem 1 does not provide acomplete descrip-
tion of classes of structures solvable w.p.d.

Example 2. Let A be the class of structures that are the disjoint union of a loop and a
core. Obviously,SCSP(A,−) is polynomial time solvable. Recall that we denoted by
A′ the class of all structures built by taking aA ∈ A and adding to it|A| independent
vertices. By Lemma 2,ECSP(A′,−) is solvable with polynomial delay. However, it
is not hard to see thatA′ does not have a sequence of endomorphisms of bounded tree
width.

Furthermore, as we will see in the next section it is hard, in general, to find a
sequence of bounded width endomorphims. Still, we can find a sequence of endomor-
phisms for a structureA if we impose additional restrictions on the sequence. This is
done in Section 6.

5. Hardness results

The first result of this section shows that finding a sequence of endomorphisms of
bounded width can be difficult even in the simplest cases.

Theorem 2. It is NP-complete to decide if a structure has a sequence of 1-width en-
domorphisms or a sequence of 1-width retractions to the core.

PROOF. The proof is by reduction from 3SAT. Letψ be a CNF formula withn vari-
ables andm clauses. We construct a relational structureA (a colored graph) whose
core has tree width 1. We show thatA has a sequence of endomorphisms to the core if
and only ifA has a sequence of retractions if and only ifψ is satisfiable.

Construction. The core ofA has 6 nodes calledr, t, f, 1, 2, 3 (see Figure 2). Vertexr
has a self-loop and is connected to every other vertex of the core. Using distinct colors
on the vertices of the core, we can ensure that this structureis indeed a core (in fact
that the identity is its only endomorphism) and that the coreis unique.

r

t f

1 2 3

r′

v1 vn

x1 x1 xn xn

c1

c1,1 c1,2 c1,3

cm

cm,1 cm,2 cm,3

Figure 2: The structureA constructed in the reduction.

Let us build a treeT the following way. There is a distinguished vertex named
r′ that will be called the root of the tree. This node is connected with n nodesvi
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(i = 1, . . . , n) andm nodescj (j = 1, . . . ,m). Each nodevi (i = 1, . . . , n) is
connected to two descendantsxi andx̄i. Also we add for every nodecj (j = 1, . . . ,m)
three new nodescj,ℓ (ℓ = 1, 2, 3) to which it is connected. We add colors to the nodes
in T so that every node can only be mapped either to itself or to thecore. This enforces
that every endomorphism ofA is also a retraction. Also, by adding appropriately colors
we can place some restrictions on to which element of the corea given element ofT
can be mapped. In particular, nodesvi, i = 1, . . . , n can only be mapped tot or f ,
nodescj , j = 1, . . . ,m can only be mapped to1, 2 or 3, and the rest of nodes ofT can
only be mapped tor.

We add some additional edges connecting the leaves ofT , thusT will no longer be
a tree. These edges encode the structure of the formulaψ: if the ℓ-th literal of thej-th
clause is the literalxi (resp.,̄xi), then connectcj,ℓ with x̄i (resp.,xi).

To complete the description of the structure, we define the connections between
the core andT . Vertexf is connected with eachxi (i = 1, . . . , n) whereas vertext is
connected with each̄xi (i = 1, . . . , n). Each vertexcj,ℓ (ℓ = 1, 2, 3) is connected with
exactly two of vertices1, 2, 3 of the core: in particular it is not connected to vertexℓ
but connected to the other two. Finally,r is connected to eachxi, x̄i (i = 1, . . . , n),
cj,ℓ (j = 1, . . . ,m, ℓ = 1, 2, 3).

Endomorphisms⇒ assignment ofψ. Assume thatA has a sequence of1-width en-
domorphisms to the core. Letϕ be the first endomorphism, which, as we observed
before, must be a retraction.

Assume thatϕ maps some vertexv of T to the core. Notice that if a vertexv of
T is mapped to the core, then the parent ofv is also mapped to the core: this follows
from the fact that verticesv1, . . . , vn, c1, . . . , cm, r′ have no connections to the core.
Therefore, we can assume that the root vertexr′ of T is mapped to the core, in particular
to r. As every descendant ofr′ is not connected tor, it follows that it must be mapped
to the core. Hence every nodevi(i = 1, . . . , n) is mapped either tot or f and every
cj(j = 1, . . . ,m) is mapped to either1, 2 or 3.

Define an assignment ofψ by setting variablexi to true if and only ifvi is mapped
to t. We claim that this is a satisfying assignment. For everyj = 1, . . . ,m, let ℓ be
the node in the core to whichcj is mapped. We claim that theℓ-th literal of thej-th
clause is true in the assignment and hence the clause is satisfied. Assume first that the
ℓ-th literal is the positive literalxi. If xi was assigned the value false, then this means
vi is mapped tof . As f is not connected tōxi, necessarilȳxi is mapped to the core.
Similarly, if cj is mapped toℓ it follows that cj,ℓ is mapped tor. By construction̄xi
andcj,ℓ are connected, which creates the following cycle in the vertices mapped to the
core: r′, vi, x̄i, cj,ℓ, cj , contradicting the assumption that the vertices mapped to the
core induce a graph with tree width1. In a similar way, if theℓ-th literal is x̄i, then
vertexxi is mapped to the core, again creating a cycle.

Assignment ofψ ⇒ retractions. Assume thatψ has a satisfying assignment. We
construct a retractionϕ1 as follows. Ifxi is true (resp., false) in the assignment, then
we map vertexxi (resp.,̄xi) to r and we map its ancestorvi to t (resp.,f ). For everyj,
there is an1 ≤ ℓ ≤ 3 such that theℓ-th literal of thej-th clause is true. For every such
j andℓ, vertexcj,ℓ is mapped tor and vertexcj is mapped toℓ. Furthermore vertex
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r′ is mapped tor. From the fact that the assignment is satisfying, it followsthat the
leaves ofT that are mapped to the core are independent. This means that the vertices
in A− ϕ1(A) induce a graph with tree width 1.

After applying retractionϕ1, the vertices outside the core are of the formxi, x̄i,
or cj,ℓ. These vertices induce a set of stars and independent vertices (since the degree
of every vertexcj,ℓ is at most 1), thus they induce a graph with tree width at most 1.
Therefore, we can map these vertices tor by a single retraction. 2

The second result shows thatECSP(A,−) can be hard even if every structure inA
has a sequence of width-2 endomorphisms. Note that this result is incomparable with
Theorem 2, since an enumeration algorithm (in theory) does not necessarily have to
compute a sequence of endomorphisms. We need the following lemma:

Lemma 9. If G is a planar graph, then it is possible to find a partition(V1, V2) of its
vertices in polynomial time such thatG[V1] andG[V2] have tree width at most2.

PROOF. A planar embedding ofG can be found in polynomial time [19]; let us fix a
planar embedding ofG. Define thelevelof a vertex as follows: vertices of the outer
face have level 1, and a vertex is on levelℓ for someℓ > 1 if it is on the outer face after
deleting every vertex of level less thanℓ. Observe that the level numbers of adjacent
vertices differ by at most 1. LetV1 (resp.,V2) be the vertices with odd (resp., even)
level number. A connected component ofG[V1] contains vertices with the same level
number, which means that this component is outerplanar: theembedding ofG gives an
embedding ofG[V1] where every vertex is on the infinite face of the embedding. Thus
G[V1] (and similarly,G[V2]) is outerplanar, and it is well known that every outerplanar
graph has tree width at most 2 (cf. [5]). 2

Proposition 1. There is a classA of relational structures such that every structure
fromA has a sequence of width 2 endomorphisms to the core, and such that the problem
ECSP(A,−) is not solvable w.p.d., unlessP = NP .

PROOF. Let A be a class of graphs built in the following way. Take a 3-colorable
planar graphG and its partition(V1, V2) according to Lemma 9. Using colorings we
can ensure thatG is a core. Then we take a disjoint union of this graph with a triangle
T having all the colors and a copyG1 of G[V1]. LetA denote the resulting structure.

CLAIM 1. A has a sequence of width-2 endomorphisms.

Let ψ be a 3-coloring ofG that is a homomorphism into the triangle, andψ′ the
bijective mapping fromG1 toG[V1]. Thenϕ1 is defined to act asψ onG, asψ′ onG′

1

and identically onT . Endomorphismϕ2 is just the 3-coloring ofG ∪ G1 induced by
ψ. The images ofϕ1 andϕ2 areT ∪ G[V1] andT , respectively, so all the conditions
on a sequence of width-2 homomorphisms are easily checkable.

CLAIM 2. The PLANAR GRAPH 3-COLORING PROBLEMis polynomial-time Tur-
ing reducible toECSP(A,−).

Given a planar graphGwe find its partition(V1, V2) and create a structureA, as de-
scribed above. Then we apply an algorithm that enumerates solutions toECSP(A,−)
We may assume that such an algorithm stops with some time bound regardless whether
G is 3-colorable or not. If the algorithm succeeds we can now produce a 3-coloring of
G. 2
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6. Finite extensions

We can find a sequence of endomorphisms for a structureA if we impose two more
restrictions on such a sequence.

A retractionϕ of a structureA is called ak-retraction if at mostk nodes change
their value according toϕ. A structure is ak-coreif the onlyk-retraction is the identity.
A k-core of a structure is anyk-core obtained by a sequence ofk-retractions.

Let A be a structure and letB,B′ ⊆ A. We say thatB andB′ areA-identical if
there exists endomorphismsϕ, ϕ′ of A such thatϕ(B) = B′ andϕ′(B′) = B. Notice
that the definition implies thatA[B] andA[B′] are isomorphic.

Lemma 10. Let A be a structure, letϕ be ak-retraction, and letψ be a retraction
(not necessarily ak-retraction) such that its imageψ(A) = B is ak-core. ThenB and
ϕ(B) areA-identical.

PROOF. Let B′ be the substructure ofB containing allb ∈ B such thatϕ(b) = b.
Observe that there are at mostk elements inB−B′. Now consider the mappingψ ◦ϕ.
This mapping acts as the identity onB′. Furthermore, it sends every element ofB−B

′

to some element ofB. Consequently the restrictionχ of ψ◦ϕ toB is an endomorphism
of B which acts as the identity onB′. Indeed,χ has to be an automorphism. To see
it, notice that otherwise we could find a power ofχ, χn = χ ◦ · · ·χ, that would be a
proper retraction and sinceχn must act as the identity on any element ofB′ it would
contradict the fact thatB is ak-core. Consequently,ϕ andψ certify thatB andϕ(B)
areA-identical. 2

Lemma 11. All k-cores of a structureA are isomorphic.

PROOF. Let B andC be two k-cores obtained following different sequences ofk-
retractions. Letϕ1, . . . , ϕn be the sequence ofk-retractions that producesC. and for
i = 1, . . . , n defineϕ′

i to beϕi ◦ . . . ◦ ϕ1. We prove by induction that

(*) ϕ′
i(B) andB areA-identical.

The casei = 1 can be solved just by assuming thatϕ1 is the identity mapping.
For the inductive step we need to prove thatϕ′

i+1(B) andϕ′
i(B) areA-identical. In

order to do this we apply Lemma 10. We just need to find a retraction of A whose
image isϕ′

i(B). By inductive hypothesis there exists endomorphismsχ andχ′ of A
such thatχ(B) = ϕ′

i(B) andχ′(ϕ′
i(B)) = B. Consider the mappingχ ◦ ψ ◦ χ′

whereψ is the retraction with imageB given by the hypothesis of the Lemma. We
haveχ ◦ ψ ◦ χ′(A) = χ ◦ ψ ◦ χ′(ϕ′

i(B)) = ϕ′
i(B). Consequently, some power of this

mapping gives the desired retraction. This finishes the proof of (*).
We have just seen thatC has a substructureϕ′

n(B) which is isomorphic toB. By a
symmetric argument we conclude thatB contains as a substructure an isomorphic copy
of C. HenceB andC are isomorphic. 2

The following result follows from Lemma 11 and Theorem 1.
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Theorem 3. Let k > 0 be a positive integer and letC be a class of structures such
that thek-core of every structure inC has tree width at mostk. Then, the enumeration
problemECSP(C,−) is solvable w.p.d.

PROOF. From Lemma 11 it follows that given an instance(A,B) of ECSP(C,−) it
is possible to compute by greedy search thek-core ofA along with the sequence of
k-retractions leading to it. Since every sequence ofk-retractions is also a sequence of
width k endomorphisms it follows from Theorem 1 that one can enumerate in polyno-
mial time all homomorphisms fromA toB.

2

Corollary 1. If C is a class of structures of bounded tree width thenECSP(C,−) is
solvable w.p.d.

7. Conjunctive queries

When making a query to a database the user usually needs to obtain values of only
those variables (attributes) (s)he is interested in. In terms of homomorphisms this can
be translated as follows: For relational structuresA, B, and a subsetY ⊆ A, we aim to
list those mappings fromY toB which can be extended to a full homomorphism from
A to B. In other words, we would like to enumerate all the mappings from Y to B
that arise as the restriction of some homomorphism fromA toB. Clearly, this problem
significantly differs from the regular enumeration problem. A mapping fromY to
B can be extendible to a homomorphism in many ways, possibly superpolynomially
many, and an enumeration algorithm would list all of them. Inthe worst case scenario
it would list them before turning to the next partial mapping. If this happens it may
destroy polynomiality of the delay between outputting consecutive solutions.

In this section we treat the CONJUNCTIVE QUERY EVALUATION PROBLEM as
follows.

CQE(A,B)
Instance: A ∈ A, B ∈ B, Y ⊆ A

Problem: Output all partial mappings fromY toB
extendible to a homomorphism fromA to B.

It follows from [16] that if a classA of bounded arity does not have bounded tree
width modulo homomorphic equivalence thenCQE(A,−) is not solvable w.p.d., un-
less FPT= W [1]. We present two new results about computing the solutions w.p.d.
The first one shows that the problemCQE(A,−) is solvable w.p.d. ifA is a class
of structures of bounded tree width. The second one claims that, modulo some com-
plexity assumptions, in contrast to enumeration problems this cannot be generalized to
structures withk-cores of bounded tree width fork ≥ 2.

Theorem 4. If A is a class of structures of bounded width thenCQE(A,−) is solvable
w.p.d.
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PROOF. Let (A,B, Y ) be an instance ofCQE(A,−). Fix arbitrary orderings onY and
B, which induce a natural lexicographic ordering on the partial mappings fromY toB.
More precisely, letϕ andφ be any partial mappings fromY toB which we consider as
mappings fromY toB ∪ {⊥} by setting every undefined element to⊥. Then we say
thatϕ precedes lexicographicallyψ if there exists somey ∈ Y , such thatϕ(y) < ψ(y)
andϕ(y′) = ψ(y′) for everyy′ ∈ Y with y′ < y where⊥ < b for everyb ∈ B.

It can be easily derived, from Lemma 3, a polynomial-time algorithm that com-
putes, given a partial mappingϕ fromY toB, the next partial partial mappingψ in the
lexicographical order that extends to an homomomorphism fromA toB or reports that
such a partial mapping does not exist. To achieve this it is only necessary to compute
the largesty ∈ Y and smallestb ∈ B with b > ϕ(y) such thatϕy,b can be extended to
an homomorphism fromA to B whereϕy,b is the partial mapping defined as

ϕy,b(y
′) =







ϕ(y′) if y′ < y

b if y′ = y

⊥ if y′ > y

This can be achieved in polynomial time by Lemma 3 since the number of choices for
(y, b) is polynomial.

Clearly, if suchy and b exist then we can setψ to ϕy,b whereas otherwise we
can conclude that no partial mapping larger thanϕ in the lexicographical order can be
extended. Using this procedure one can derive an algorithm CQE-BOUNDED-WIDTH

(in Figure 3) that outputs all solutions w.p.d. In a nutshell, algorithm CQE-BOUNDED-
WIDTH computes in lexicographical order all partial mappings fromY toB that extend
to an homomorphism fromA to B and outputs only those that are defined over the
wholeY . 2

Figure 3: Algorithm CQE-BOUNDED-WIDTH

Input: Relational structuresA, B, andY = {y1, . . . , yℓ} ⊆ A

Output:A list of mappingsϕ : Y → B extendible to a homomorphism fromA toB

Step 1 setm = 0, ϕ = ∅, Si = B, i ∈ [ℓ], complete:=false
Step 2 while not completedo
Step 2.1 if m < ℓ then do
Step 2.1.1 searchSm+1 until a b ∈ Sm+1 is found such that there exists a homomorphism extending

ϕ ∪ {ym+1 → b} andremoveall members ofSm+1 precedingb inclusive
Step 2.1.2 if such ab existsthen setϕ := ϕ ∪ {ym+1 → b}, m := m+ 1
Step 2.1.3 else
Step 2.1.3.1 if m 6= 0 then setϕ = ϕ|{y1,...,ym−1} andSm+1 := B, m := m− 1
Step 2.1.3.2 else setcomplete:=true
Step 2.2 else then do
Step 2.2.1 output ϕ
Step 2.2.2 setϕ := ϕ|{y1,...,ym−1}}, m := ℓ− 1

endwhile

Theorem 4 does not generalize to classes of structures whosek-cores have bounded
width.
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Example 3. Recall that the MULTICOLORED CLIQUE problem (cf. [14]) is formulated
as follows: Given a numberk and a vertexk-colored graph, decide if the graph contains
a k-clique all vertices of which are colored different colors.This problem isW [1]-
complete, i.e., has no timef(k)nc algorithm for any functionf and constantc, unless
FPT=W [1]. We reduce this problem toCQE(A,−) whereA is the class of structures
whose 2-cores are 2-element described below.

Let us consider relational structures with two binary and two unary relations. This
structure can be thought of as a graph whose vertices and edges have one of the two
colors, say, red and blue, accordingly to which of the two binary/unary relations they
belong to. LetAk be the relational structure with universe{a1, . . . , ak, y1, . . . , yk},
wherea1, . . . , ak are red whiley1, . . . , yk are blue. Then{a1, . . . , ak} induces a red
clique, that is everyai, aj (i, j are not necessarily different) are connected with a red
edge, and eachyi is connected toai with a blue edge. It is not hard to see that every pair
of a red and blue vertices induces a 2-core of this structure.SetA = {Ak | k ∈ N}.

The reduction of the MULTICOLORED CLIQUE problem toCQE(A,−) goes as
follows. LetG = (V,E) bek-colored graph whose coloring induces a partition ofV

into classesB1, . . . , Bk. Then we define structuresA,B and a setY ⊆ A. We set
A = Ak, Y = {y1, . . . , yk}. Then letB = V ∪ {b1, . . . , bk}, the elements ofV are
colored red and the induced substructureB[V ] is the graphG (without coloring) whose
edges are colored also red and in which we add a red loop to every node. Finally,
b1, . . . , bk are made blue and eachbi is connected with a blue edge with every vertex
fromBi.

It is not hard to see that any homomorphism maps{a1, . . . , ak} to V andY to
{b1, . . . , bk}, and that the number of homomorphisms that do not agree onY does not
exceedkk. Moreover,G contains ak-colored clique if and only if there is a homo-
morphism fromA to B that mapsY onto{b1, . . . , bk}. If there existed an algorithm
solvingCQE(A,−) w.p.d., say, time needed to compute the first and every consequent
solution is bounded by a polynomialp(n), then time needed to list all solutions is at
mostkkp(n). This means that MULTICOLORED CLIQUE is FPT, a contradiction.
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