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Definition: δ(R) is the set of edges with exactly one endpoint in R .
Definition: A set S of edges is a minimal (X ,Y )-cut if there is no
X −Y path in G \ S and no proper subset of S breaks every X −Y
path.
Observation: Every minimal (X ,Y )-cut S can be expressed as S =
δ(R) for some X ⊆ R and R ∩ Y = ∅.
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Definition
A minimal (X ,Y )-cut δ(R) is important if there is no (X ,Y )-cut
δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important
(δ(R) is important if R = Rmax).
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The number of important cuts can be exponentially large.

Example:

X

Y

1 2 k/2

This graph has 2k/2 important (X ,Y )-cuts of size at most k .

Theorem
There are at most 4k important (X ,Y )-cuts of size at most k .
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A new technique used by several results:
Multicut [M. and Razgon STOC 2011]

Clustering problems [Lokshtanov and M. ICALP 2011]

Directed Multiway Cut [Chitnis, Hajiaghayi, M. SODA
2012]

Directed Multicut in DAGs [Kratsch, Pilipczuk, Pilipczuk,
Wahlström ICALP 2012]

Directed Subset Feedback Vertex Set [Chitnis,
Cygan, Hajiaghayi, M. ICALP 2012]

Parity Multiway Cut [Lokshtanov, Ramanujan ICALP 2012]

List homomorphism removal problems [Chitnis, Egri, and M.
ESA 2013]

. . . more work in progress.

Randomized sampling of important cuts 4



We want to partition objects into clusters subject to certain
requirements (typically: related objects are clustered together,
bounds on the number or size of the clusters etc.)

(p, q)-clustering

Input: A graph G , integers p, q.

Find:

A partition (V1, . . . ,Vm) of V (G ) such that for every i
|Vi | ≤ p and
δ(Vi ) ≤ q.

δ(Vi ): number of edges leaving Vi .

Theorem
(p, q)-clustering can be solved in time 2O(q) · nO(1).

Clustering 5



Good cluster: size at most p and at most q edges leaving it.

Necessary condition:
Every vertex is contained in a good cluster.

But surprisingly, this is also a sufficient condition!

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.
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Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X Y

δ(X ) + δ(Y ) ≥ δ(X \ Y ) + δ(Y \ X )

(posimodularity)
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Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X \ Y Y

δ(X ) + δ(Y ) ≥ δ(X \ Y ) + δ(Y \ X )

(posimodularity)

If δ(X ) ≥ δ(X \ Y ), replace X with X \ Y ,
strictly decreasing the total size of the clusters.
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Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X Y \ X

δ(X ) + δ(Y ) ≥ δ(X \ Y ) + δ(Y \ X )

(posimodularity)

If δ(Y ) ≥ δ(Y \ X ), replace Y with Y \ X ,
strictly decreasing the total size of the clusters. QED �

A sufficient and necessary condition 7



We have seen:

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

All we have to do is to check if a given vertex v is in a good
cluster. Trivial to do in time nO(q).

We prove next:

Lemma
We can check in time 2O(q) · nO(1) if v is in a good cluster.

Finding a good cluster 8
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Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G ) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and δ(X ′) ≤ δ(X ).

v

Observation: X is an important set if and only if δ(X ) is an
important (x , v)-cut for every x ∈ X .
Consequence: Every vertex is contained in at most 4k important
sets.

Important sets 9
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Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G ) (but there are nO(q) possibilities, we cannot try all of them).

Pushing argument 10
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Let X be the set of all important sets of boundary size at
most q in G .
Let X ′ ⊆ X contain each set with probability 1

2 independently.
Let Z =

⋃
X∈X ′ X .

Let B be the set of vertices in C with neighbors outside C .

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−2O(q)

, Z covers G \ C and is disjoint from B .

v

B

Random sampling 11
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Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−2O(q)

, Z covers G \ C and is disjoint from B .

Two events:
(E1) Z covers G \ C .

Each of the at most q components is an important set
⇒ all of them are selected by probability at least 2−q.

(E2) Z is disjoint from B .
Each vertex of B is in at most 4q members of X
⇒ all of them are selected by probability at least 2−q4q

.
The two events are independent (involve different sets of X ), thus
the claimed probability follows.

Random sampling 12



Let C be a good cluster of minimum size containing v and assume
G \ C is covered by Z , and
Z is disjoint from B (hence no edge going out of C is
contained in Z ).

v

Z

G \ Z

Where is the good cluster C in the figure?

Finding good clusters 13



Let C be a good cluster of minimum size containing v and assume
G \ C is covered by Z , and
Z is disjoint from B (hence no edge going out of C is
contained in Z ).

v

Z

G \ Z

Where is the good cluster C in the figure?

Observe: Components of Z are either fully in the cluster or fully
outside the cluster. What is this problem?

Finding good clusters 13



Let C be a good cluster of minimum size containing v and assume
G \ C is covered by Z , and
Z is disjoint from B (hence no edge going out of C is
contained in Z ).

v

Z

G \ Z

KNAPSACK!

Finding good clusters 13



v

Z

G \ Z

We interpret the components V1, . . . , Vt of G [Z ] as items:
Vi has value δ(Vi ) and
Vi has weight |Vi |.

The goal is to select items with total value at least δ(Z ) − q and
total weight at most p − |V (G ) \ Z |.

Finding good clusters by Knapsack 14



v

Z

G \ Z

Standard DP solves it in polynomial time: let T [i , j ] be the maximum
value of a subset of the first i items having total weight at most j .

Recurrence:

T [i , j ] = max{T [i − 1, j ],T [i − 1, j − |Vi |] + δ(Vi )}

Finding good clusters by Knapsack 14



(p, q)-clustering

Input: A graph G , integers p, q.

Find:

A partition (V1, . . . ,Vm) of V (G ) such that for every i
|Vi | ≤ p and
δ(Vi ) ≤ q.

It is sufficient to check for each vertex v if it is in a good
cluster.
Enumerate all the important sets.
Let Z be the union of random important sets.
The solution is obtained by extending G \ Z with some of the
components of G [Z ].
Knapsack.

Summary of algorithm 15



Let X be the set of all important sets of boundary size at
most q in G .
Let X ′ ⊆ X contain each set X with probability 4−|δ(X )| .
Let Z =

⋃
X∈X ′ X .

Let B be the set of vertices in C with neighbors outside C .

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−O(q), Z covers G \ C and is disjoint from B .

v

B

Random sampling — better probability 16



Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−O(q), Z covers G \ C and is disjoint from B .

We need to bound the probability of two independent events:
(E1) Z covers G \ C .
(E2) Z is disjoint from B .

Random sampling — better probability 17



Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−O(q), Z covers G \ C and is disjoint from B .

We need to bound the probability of two independent events:
(E1) Z covers G \ C .
Probability of selecting every component K1, . . . , Kt of G \ C :

t∏
i=1

4−|δ(Ki )| = 4−
∑t

i=1 |δ(Ki )| = 4−|δ(C)| ≥ 4−q.
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Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−O(q), Z covers G \ C and is disjoint from B .

We need to bound the probability of two independent events:
(E2) Z is disjoint from B .
Recall:

∑
S∈S 4

−|S | holds for the set S of important cuts.
Probability that no important sets containing w ∈ B is selected:∏

X∈X
w∈X

(1− 4−|δ(X )|) ≈
∏
X∈X
w∈X

exp
(
−4−|δ(X )|) = exp

(
−
∑
X∈X
w∈X

4−|δ(X )|) ≥ 1/e.

Thus the probability that no vertex of B is covered is 2−O(|B|):∏
X∈X

X∩B 6=∅

(1− 4−|δ(X )|) ≥
∏
w∈B

∏
X∈X
w∈X

(1− 4−|δ(X )|) = 2−O(|B|) = 2−O(q).

Random sampling — better probability 17



Randomized 2O(q) · nO(1) time algorithm for
(p, q)-clustering.
Derandomization is possible using standard techniques, but
nontrivial to obtain 2O(q) running time.
Parameterization by p: we can get a 2O(p) · nO(1) time
algorithm.
Other variants: maximum degree in the cluster is at most p,
etc.

(p, q)-clustering 18



Let G be a graph and let F be a set of subgraphs in G .

Definition
F-transversal: a set of edges of vertices intersecting each
subgraph in F (i.e., “hitting” or “killing” every object in F).

Classical problems formulated as finding a minimum transversal:
s − t Cut:
F is the set of s − t paths.
Multiway Cut:
F is the set of paths between terminals.
(Directed) Feedback Vertex Set:
F is the set of (directed) cycles.
Delete edges/vertices to make the graph bipartite:
F is the set of odd cycles.
v is in a (p, q)-cluster:
F is the set of all connected graphs of size p + 1 containing v .

Transversal problems 19



Let F be a set of connected (not necessarily disjoint!) subgraphs,
each intersecting a set T of vertices.

t1 t2 t3 t4

S

shadow

The shadow of an F-transversal S is the set of vertices not
reachable from T in G \ S .

The setting 20
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Shadow: Set of vertices not reachable in G \ S .

Condition: every F ∈ F is connected and intersects T .

Theorem
In 2O(k) · nO(1) time, we can compute a set Z with the following
property. If there exists an F -transversal of at most k edges, then
with probability 2−O(k) there is a minimum F-transversal S with

the shadow of S is covered by Z and
no edge of S is contained in Z .

Note: The algorithm does not have to know F !

Proof idea: we can assume that every component of the shadow is
an important set (solution can be pushed towards T ). Random
selection as in the clustering problem.

What is this good for?

The random sampling (undirected edge version) 21
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F is the set of all connected
graphs of size p + 1 containing v .

v is in a (p, q)-cluster
m

F-transversal of q edges exists.
v

B

Theorem
In 2O(k) · nO(1) time, we can compute a set Z with the following
property. If there exists an F -transversal of at most k edges, then
with probability 2−O(k) there is a minimum F-transversal S with

the shadow of S is covered by Z and
no edge of S is contained in Z .

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−O(q), Z covers G \ C and is disjoint from B .

(p, q)-clusters as F -transversal 22
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(Directed) Multiway Cut

Input: Graph G , set of vertices T , integer k

Find: A set S of at most k vertices such that G \ S has no
(directed) t1 − t2 path for any t1, t2 ∈ T

We have seen:

Theorem
Multiway cut can be solved in time 4k · nO(1).

Directed version:

Theorem
Directed Multiway Cut is FPT.

Can be formulated as minimum F-transversal, where F is the set
of directed paths between vertices of T .

Multiway cut 23



Shadow: those vertices of G \ S that cannot be reached from T
AND those vertices of G \ S from which T cannot be reached.

S

t1t2t3t1

Directed Multiway Cut 24



Shadow: those vertices of G \ S that cannot be reached from T
AND those vertices of G \ S from which T cannot be reached.
Condition: for every F ∈ F and every vertex v ∈ F , there is a
T → v and a v → T path in F .

Theorem
In f (k) · nO(1) time, we can compute a set Z with the following
property. If there exists an F -transversal of at most k vertices, then
with probability 2−O(k2) there is a minimum F-transversal S with

the shadow of S is covered by Z and
S ∩ Z = ∅.

Now:
T : terminals
F contains every directed path between two distinct terminals

The random sampling (directed vertex version) 25



We can assume that Z is disjoint from the solution, so we want to
get rid of Z .

Deleting Z is not a good idea: can make the problem easier.
To compensate deleting Z , if there is an a→ b path with
internal vertices in Z , add a direct a→ b edge.

t4t3t2t1

Z

Crucial observation:
S remains a solution (since Z is disjoint from S) and
S is a shadowless solution (since Z covers the shadow of S).

Shadow removal 26
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How does a shadowless solution look like?

S

t1t2t3t1

It is an undirected multiway cut in the underlying undirected graph!
⇒ Problem can be reduced to undirected multiway cut.

Shadowless solutions 27
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A simple (but essentially tight) bound on the number of
important cuts.
Algorithmic results: FPT algorithms for

Multiway Cut in undirected graphs,
Skew Multicut in directed graphs,
Directed Feedback Vertex/Edge Set,
(p, q)-Clustering,
Directed Multiway Cut.
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