
Important separators and parameterized
algorithms

Dániel Marx1

1Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

School on Parameterized Algorithms and Complexity
Będlewo, Poland
August 22, 2014 1

Definition: δ(R) is the set of edges with exactly one endpoint in R .
Definition: A set S of edges is a minimal (X ,Y)-cut if there is no
X −Y path in G \ S and no proper subset of S breaks every X −Y
path.
Observation: Every minimal (X ,Y)-cut S can be expressed as S =
δ(R) for some X ⊆ R and R ∩ Y = ∅.

R

δ(R)

Y
X

Important cuts 2

Definition
A minimal (X ,Y)-cut δ(R) is important if there is no (X ,Y)-cut
δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important
(δ(R) is important if R = Rmax).

R

δ(R)

Y
X

Important cuts 2

Definition
A minimal (X ,Y)-cut δ(R) is important if there is no (X ,Y)-cut
δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important
(δ(R) is important if R = Rmax).

R ′

δ(R)

R

δ(R ′)
X

Y

Important cuts 2

Definition
A minimal (X ,Y)-cut δ(R) is important if there is no (X ,Y)-cut
δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important
(δ(R) is important if R = Rmax).

R

δ(R)

X
Y

Important cuts 2

The number of important cuts can be exponentially large.

Example:

X

Y

1 2 k/2

This graph has 2k/2 important (X ,Y)-cuts of size at most k .

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Important cuts 3

The number of important cuts can be exponentially large.

Example:

X

Y

1 2 k/2

This graph has 2k/2 important (X ,Y)-cuts of size at most k .

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Important cuts 3

A new technique used by several results:
Multicut [M. and Razgon STOC 2011]

Clustering problems [Lokshtanov and M. ICALP 2011]

Directed Multiway Cut [Chitnis, Hajiaghayi, M. SODA
2012]

Directed Multicut in DAGs [Kratsch, Pilipczuk, Pilipczuk,
Wahlström ICALP 2012]

Directed Subset Feedback Vertex Set [Chitnis,
Cygan, Hajiaghayi, M. ICALP 2012]

Parity Multiway Cut [Lokshtanov, Ramanujan ICALP 2012]

List homomorphism removal problems [Chitnis, Egri, and M.
ESA 2013]

. . . more work in progress.

Randomized sampling of important cuts 4

We want to partition objects into clusters subject to certain
requirements (typically: related objects are clustered together,
bounds on the number or size of the clusters etc.)

(p, q)-clustering

Input: A graph G , integers p, q.

Find:

A partition (V1, . . . ,Vm) of V (G) such that for every i
|Vi | ≤ p and
δ(Vi) ≤ q.

δ(Vi): number of edges leaving Vi .

Theorem
(p, q)-clustering can be solved in time 2O(q) · nO(1).

Clustering 5

Good cluster: size at most p and at most q edges leaving it.

Necessary condition:
Every vertex is contained in a good cluster.

But surprisingly, this is also a sufficient condition!

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

A sufficient and necessary condition 6

Good cluster: size at most p and at most q edges leaving it.

Necessary condition:
Every vertex is contained in a good cluster.

But surprisingly, this is also a sufficient condition!

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

A sufficient and necessary condition 6

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X Y

δ(X) + δ(Y) ≥ δ(X \ Y) + δ(Y \ X)

(posimodularity)

A sufficient and necessary condition 7

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X Y

δ(X) + δ(Y) ≥ δ(X \ Y) + δ(Y \ X)

(posimodularity)

⇒ either δ(X) ≥ δ(X \ Y) or δ(Y) ≥ δ(Y \ X) holds.

A sufficient and necessary condition 7

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X \ Y Y

δ(X) + δ(Y) ≥ δ(X \ Y) + δ(Y \ X)

(posimodularity)

If δ(X) ≥ δ(X \ Y), replace X with X \ Y ,
strictly decreasing the total size of the clusters.

A sufficient and necessary condition 7

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X Y \ X

δ(X) + δ(Y) ≥ δ(X \ Y) + δ(Y \ X)

(posimodularity)

If δ(Y) ≥ δ(Y \ X), replace Y with Y \ X ,
strictly decreasing the total size of the clusters. QED �

A sufficient and necessary condition 7

We have seen:

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

All we have to do is to check if a given vertex v is in a good
cluster. Trivial to do in time nO(q).

We prove next:

Lemma
We can check in time 2O(q) · nO(1) if v is in a good cluster.

Finding a good cluster 8

We have seen:

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

All we have to do is to check if a given vertex v is in a good
cluster. Trivial to do in time nO(q).

We prove next:

Lemma
We can check in time 2O(q) · nO(1) if v is in a good cluster.

Finding a good cluster 8

Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and δ(X ′) ≤ δ(X).

v

Observation: X is an important set if and only if δ(X) is an
important (x , v)-cut for every x ∈ X .
Consequence: Every vertex is contained in at most 4k important
sets.

Important sets 9

Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and δ(X ′) ≤ δ(X).

v

Observation: X is an important set if and only if δ(X) is an
important (x , v)-cut for every x ∈ X .
Consequence: Every vertex is contained in at most 4k important
sets.

Important sets 9

Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and δ(X ′) ≤ δ(X).

v

Observation: X is an important set if and only if δ(X) is an
important (x , v)-cut for every x ∈ X .
Consequence: Every vertex is contained in at most 4k important
sets.

Important sets 9

Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and δ(X ′) ≤ δ(X).

v

Observation: X is an important set if and only if δ(X) is an
important (x , v)-cut for every x ∈ X .
Consequence: Every vertex is contained in at most 4k important
sets.

Important sets 9

Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and δ(X ′) ≤ δ(X).

v

Observation: X is an important set if and only if δ(X) is an
important (x , v)-cut for every x ∈ X .
Consequence: Every vertex is contained in at most 4k important
sets.

Important sets 9

Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and δ(X ′) ≤ δ(X).

v

Observation: X is an important set if and only if δ(X) is an
important (x , v)-cut for every x ∈ X .
Consequence: Every vertex is contained in at most 4k important
sets.

Important sets 9

Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G) (but there are nO(q) possibilities, we cannot try all of them).

Pushing argument 10

Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G) (but there are nO(q) possibilities, we cannot try all of them).

Pushing argument 10

Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G) (but there are nO(q) possibilities, we cannot try all of them).

Pushing argument 10

Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G) (but there are nO(q) possibilities, we cannot try all of them).

Pushing argument 10

Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G) (but there are nO(q) possibilities, we cannot try all of them).

Pushing argument 10

Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G) (but there are nO(q) possibilities, we cannot try all of them).

Pushing argument 10

Let X be the set of all important sets of boundary size at
most q in G .
Let X ′ ⊆ X contain each set with probability 1

2 independently.
Let Z =

⋃
X∈X ′ X .

Let B be the set of vertices in C with neighbors outside C .

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−2O(q)

, Z covers G \ C and is disjoint from B .

v

B

Random sampling 11

Let X be the set of all important sets of boundary size at
most q in G .
Let X ′ ⊆ X contain each set with probability 1

2 independently.
Let Z =

⋃
X∈X ′ X .

Let B be the set of vertices in C with neighbors outside C .

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−2O(q)

, Z covers G \ C and is disjoint from B .

v

B

Random sampling 11

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−2O(q)

, Z covers G \ C and is disjoint from B .

Two events:
(E1) Z covers G \ C .

Each of the at most q components is an important set
⇒ all of them are selected by probability at least 2−q.

(E2) Z is disjoint from B .
Each vertex of B is in at most 4q members of X
⇒ all of them are selected by probability at least 2−q4q

.
The two events are independent (involve different sets of X), thus
the claimed probability follows.

Random sampling 12

Let C be a good cluster of minimum size containing v and assume
G \ C is covered by Z , and
Z is disjoint from B (hence no edge going out of C is
contained in Z).

v

Z

G \ Z

Where is the good cluster C in the figure?

Finding good clusters 13

Let C be a good cluster of minimum size containing v and assume
G \ C is covered by Z , and
Z is disjoint from B (hence no edge going out of C is
contained in Z).

v

Z

G \ Z

Where is the good cluster C in the figure?

Observe: Components of Z are either fully in the cluster or fully
outside the cluster. What is this problem?

Finding good clusters 13

Let C be a good cluster of minimum size containing v and assume
G \ C is covered by Z , and
Z is disjoint from B (hence no edge going out of C is
contained in Z).

v

Z

G \ Z

KNAPSACK!

Finding good clusters 13

v

Z

G \ Z

We interpret the components V1, . . . , Vt of G [Z] as items:
Vi has value δ(Vi) and
Vi has weight |Vi |.

The goal is to select items with total value at least δ(Z) − q and
total weight at most p − |V (G) \ Z |.

Finding good clusters by Knapsack 14

v

Z

G \ Z

Standard DP solves it in polynomial time: let T [i , j] be the maximum
value of a subset of the first i items having total weight at most j .

Recurrence:

T [i , j] = max{T [i − 1, j],T [i − 1, j − |Vi |] + δ(Vi)}

Finding good clusters by Knapsack 14

(p, q)-clustering

Input: A graph G , integers p, q.

Find:

A partition (V1, . . . ,Vm) of V (G) such that for every i
|Vi | ≤ p and
δ(Vi) ≤ q.

It is sufficient to check for each vertex v if it is in a good
cluster.
Enumerate all the important sets.
Let Z be the union of random important sets.
The solution is obtained by extending G \ Z with some of the
components of G [Z].
Knapsack.

Summary of algorithm 15

Let X be the set of all important sets of boundary size at
most q in G .
Let X ′ ⊆ X contain each set X with probability 4−|δ(X)| .
Let Z =

⋃
X∈X ′ X .

Let B be the set of vertices in C with neighbors outside C .

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−O(q), Z covers G \ C and is disjoint from B .

v

B

Random sampling — better probability 16

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−O(q), Z covers G \ C and is disjoint from B .

We need to bound the probability of two independent events:
(E1) Z covers G \ C .
(E2) Z is disjoint from B .

Random sampling — better probability 17

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−O(q), Z covers G \ C and is disjoint from B .

We need to bound the probability of two independent events:
(E1) Z covers G \ C .
Probability of selecting every component K1, . . . , Kt of G \ C :

t∏
i=1

4−|δ(Ki)| = 4−
∑t

i=1 |δ(Ki)| = 4−|δ(C)| ≥ 4−q.

Random sampling — better probability 17

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−O(q), Z covers G \ C and is disjoint from B .

We need to bound the probability of two independent events:
(E2) Z is disjoint from B .
Recall:

∑
S∈S 4

−|S | holds for the set S of important cuts.
Probability that no important sets containing w ∈ B is selected:∏

X∈X
w∈X

(1− 4−|δ(X)|) ≈
∏
X∈X
w∈X

exp
(
−4−|δ(X)|) = exp

(
−
∑
X∈X
w∈X

4−|δ(X)|) ≥ 1/e.

Thus the probability that no vertex of B is covered is 2−O(|B|):∏
X∈X

X∩B 6=∅

(1− 4−|δ(X)|) ≥
∏
w∈B

∏
X∈X
w∈X

(1− 4−|δ(X)|) = 2−O(|B|) = 2−O(q).

Random sampling — better probability 17

Randomized 2O(q) · nO(1) time algorithm for
(p, q)-clustering.
Derandomization is possible using standard techniques, but
nontrivial to obtain 2O(q) running time.
Parameterization by p: we can get a 2O(p) · nO(1) time
algorithm.
Other variants: maximum degree in the cluster is at most p,
etc.

(p, q)-clustering 18

Let G be a graph and let F be a set of subgraphs in G .

Definition
F-transversal: a set of edges of vertices intersecting each
subgraph in F (i.e., “hitting” or “killing” every object in F).

Classical problems formulated as finding a minimum transversal:
s − t Cut:
F is the set of s − t paths.
Multiway Cut:
F is the set of paths between terminals.
(Directed) Feedback Vertex Set:
F is the set of (directed) cycles.
Delete edges/vertices to make the graph bipartite:
F is the set of odd cycles.
v is in a (p, q)-cluster:
F is the set of all connected graphs of size p + 1 containing v .

Transversal problems 19

Let F be a set of connected (not necessarily disjoint!) subgraphs,
each intersecting a set T of vertices.

t1 t2 t3 t4

S

shadow

The shadow of an F-transversal S is the set of vertices not
reachable from T in G \ S .

The setting 20

Let F be a set of connected (not necessarily disjoint!) subgraphs,
each intersecting a set T of vertices.

t1 t2 t3 t4

S

shadow

The shadow of an F-transversal S is the set of vertices not
reachable from T in G \ S .

The setting 20

Shadow: Set of vertices not reachable in G \ S .

Condition: every F ∈ F is connected and intersects T .

Theorem
In 2O(k) · nO(1) time, we can compute a set Z with the following
property. If there exists an F -transversal of at most k edges, then
with probability 2−O(k) there is a minimum F-transversal S with

the shadow of S is covered by Z and
no edge of S is contained in Z .

Note: The algorithm does not have to know F !

Proof idea: we can assume that every component of the shadow is
an important set (solution can be pushed towards T). Random
selection as in the clustering problem.

What is this good for?

The random sampling (undirected edge version) 21

Shadow: Set of vertices not reachable in G \ S .

Condition: every F ∈ F is connected and intersects T .

Theorem
In 2O(k) · nO(1) time, we can compute a set Z with the following
property. If there exists an F -transversal of at most k edges, then
with probability 2−O(k) there is a minimum F-transversal S with

the shadow of S is covered by Z and
no edge of S is contained in Z .

Note: The algorithm does not have to know F !

Proof idea: we can assume that every component of the shadow is
an important set (solution can be pushed towards T). Random
selection as in the clustering problem.

What is this good for?

The random sampling (undirected edge version) 21

F is the set of all connected
graphs of size p + 1 containing v .

v is in a (p, q)-cluster
m

F-transversal of q edges exists.
v

B

Theorem
In 2O(k) · nO(1) time, we can compute a set Z with the following
property. If there exists an F -transversal of at most k edges, then
with probability 2−O(k) there is a minimum F-transversal S with

the shadow of S is covered by Z and
no edge of S is contained in Z .

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−O(q), Z covers G \ C and is disjoint from B .

(p, q)-clusters as F -transversal 22

F is the set of all connected
graphs of size p + 1 containing v .

v is in a (p, q)-cluster
m

F-transversal of q edges exists.
v

B

Theorem
In 2O(k) · nO(1) time, we can compute a set Z with the following
property. If there exists an F -transversal of at most k edges, then
with probability 2−O(k) there is a minimum F-transversal S with

the shadow of S is covered by Z and
no edge of S is contained in Z .

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−O(q), Z covers G \ C and is disjoint from B .

(p, q)-clusters as F -transversal 22

F is the set of all connected
graphs of size p + 1 containing v .

v is in a (p, q)-cluster
m

F-transversal of q edges exists.
v

B

Theorem
In 2O(k) · nO(1) time, we can compute a set Z with the following
property. If there exists an F -transversal of at most k edges, then
with probability 2−O(k) there is a minimum F-transversal S with

the shadow of S is covered by Z and
no edge of S is contained in Z .

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−O(q), Z covers G \ C and is disjoint from B .

(p, q)-clusters as F -transversal 22

(Directed) Multiway Cut

Input: Graph G , set of vertices T , integer k

Find: A set S of at most k vertices such that G \ S has no
(directed) t1 − t2 path for any t1, t2 ∈ T

We have seen:

Theorem
Multiway cut can be solved in time 4k · nO(1).

Directed version:

Theorem
Directed Multiway Cut is FPT.

Can be formulated as minimum F-transversal, where F is the set
of directed paths between vertices of T .

Multiway cut 23

Shadow: those vertices of G \ S that cannot be reached from T
AND those vertices of G \ S from which T cannot be reached.

S

t1t2t3t1

Directed Multiway Cut 24

Shadow: those vertices of G \ S that cannot be reached from T
AND those vertices of G \ S from which T cannot be reached.
Condition: for every F ∈ F and every vertex v ∈ F , there is a
T → v and a v → T path in F .

Theorem
In f (k) · nO(1) time, we can compute a set Z with the following
property. If there exists an F -transversal of at most k vertices, then
with probability 2−O(k2) there is a minimum F-transversal S with

the shadow of S is covered by Z and
S ∩ Z = ∅.

Now:
T : terminals
F contains every directed path between two distinct terminals

The random sampling (directed vertex version) 25

We can assume that Z is disjoint from the solution, so we want to
get rid of Z .

Deleting Z is not a good idea: can make the problem easier.
To compensate deleting Z , if there is an a→ b path with
internal vertices in Z , add a direct a→ b edge.

t4t3t2t1

Z

Crucial observation:
S remains a solution (since Z is disjoint from S) and
S is a shadowless solution (since Z covers the shadow of S).

Shadow removal 26

We can assume that Z is disjoint from the solution, so we want to
get rid of Z .

Deleting Z is not a good idea: can make the problem easier.
To compensate deleting Z , if there is an a→ b path with
internal vertices in Z , add a direct a→ b edge.

t4t3t2t1

Z

a b

Crucial observation:
S remains a solution (since Z is disjoint from S) and
S is a shadowless solution (since Z covers the shadow of S).

Shadow removal 26

We can assume that Z is disjoint from the solution, so we want to
get rid of Z .

Deleting Z is not a good idea: can make the problem easier.
To compensate deleting Z , if there is an a→ b path with
internal vertices in Z , add a direct a→ b edge.

t4t3t2t1

Z

a b

Crucial observation:
S remains a solution (since Z is disjoint from S) and
S is a shadowless solution (since Z covers the shadow of S).

Shadow removal 26

We can assume that Z is disjoint from the solution, so we want to
get rid of Z .

Deleting Z is not a good idea: can make the problem easier.
To compensate deleting Z , if there is an a→ b path with
internal vertices in Z , add a direct a→ b edge.

t4t3t2t1

Z

a b

Crucial observation:
S remains a solution (since Z is disjoint from S) and
S is a shadowless solution (since Z covers the shadow of S).

Shadow removal 26

How does a shadowless solution look like?

S

t1t2t3t1

It is an undirected multiway cut in the underlying undirected graph!
⇒ Problem can be reduced to undirected multiway cut.

Shadowless solutions 27

How does a shadowless solution look like?

S

t1t2t3t1

It is an undirected multiway cut in the underlying undirected graph!
⇒ Problem can be reduced to undirected multiway cut.

Shadowless solutions 27

How does a shadowless solution look like?

S

t1t2t3t1

It is an undirected multiway cut in the underlying undirected graph!
⇒ Problem can be reduced to undirected multiway cut.

Shadowless solutions 27

A simple (but essentially tight) bound on the number of
important cuts.
Algorithmic results: FPT algorithms for

Multiway Cut in undirected graphs,
Skew Multicut in directed graphs,
Directed Feedback Vertex/Edge Set,
(p, q)-Clustering,
Directed Multiway Cut.

Summary 28

