
Approximation Schemes for Steiner Forest on
Planar Graphs and Graphs of Bounded Treewidth

MOHAMMADHOSSEIN BATENI

Princeton University

MOHAMMADTAGHI HAJIAGHAYI

University of Maryland at College Park
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1. INTRODUCTION

One of the most fundamental problems in combinatorial optimization and network
design with both practical and theoretical significance is the Steiner forest prob-
lem, in which given a weighted graph G = (V,E) and a set consisting of pairs of
terminals, called demands, D = {(s1, t1), (s2, t2), . . . , (sk, tk)}, the goal is to find a
minimum-length forest F of G such that every pair of terminals in D is connected
by a path in F . The first and the best approximation factor for this problem is 2 due
to Agrawal, Klein and Ravi [1995] (see also Goemans and Williamson [1995]). Since
the conference version of the Agrawal, Klein and Ravi [1991] appeared, there have
been no improved approximation algorithms invented for Steiner forest. Recently
Borradaile, Klein and Mathieu [2008] obtain a Polynomial Time Approximation
Scheme (PTAS) for Euclidean Steiner forest where the terminals are in the Eu-
clidean plane. They pose obtaining a PTAS for Steiner forest in planar graphs, the
natural generalization of Euclidean Steiner forest, as the main open problem. We
note that in network design, planarity is a natural restriction since in practical sce-
narios of physical networking, with cable or fiber embedded in the ground, crossings
are rare or nonexistent. In this paper, we settle this open problem by obtaining a
PTAS for planar graphs (and more generally, for bounded genus graphs) via a novel
technique of prize-collecting clustering with potential use to obtain other PTASes
in planar graphs—we mention some of the follow-up works, especially those using
this technique, at the end of this section.

The special case of the Steiner forest problem when all pairs have a common
terminal is the classical Steiner tree problem, one of the first problems shown NP-
hard by Karp [1975]. The problem remains hard even on planar graphs [Garey and
Johnson 1977]. In contrast to Steiner forest, a long sequence of papers give approx-
imation factors better than 2 for this problem [Zelikovsky 1992; 1993; Berman and
Ramaiyer 1992; Zelikovsky 1996; Prömel and Steger 1997; Karpinski and Zelikovsky
1997; Hougardy and Prömel 1999; Robins and Zelikovsky 2005; Byrka et al. 2010];
the current best approximation ratio is 1.39 [Byrka et al. 2010]. Since the problem
is APX-hard in general graphs [Bern and Plassmann 1989; Thimm 2003], we do
not expect to obtain a PTAS for this problem in general graphs. However, for
the Euclidean Steiner tree problem, the classic works of Arora [1998] and Mitchell
[1999] present a PTAS. Obtaining a PTAS for Steiner tree on planar graphs, the
natural generalization of Euclidean Steiner tree, remained a major open problem
since the conference version of Arora [1996]. Only in 2007, Borradaile et al. [2009]
settle this problem with a nice technique of constructing light spanners for Steiner
trees in planar graphs. In this paper, we also generalize this result to obtain light
spanners for Steiner forests.

Most approximation schemes for planar graph problems use (implicitly or explic-
itly) the fact that the problem is easy to solve on bounded-treewidth graphs—in
fact, the ideas in [Baker 1994] and the reformulations in [Demaine et al. 2007; Klein
2008] provide a general method of reducing many optimization problems on planar
(and bounded-genus) graphs to bounded-treewidth graphs. In particular, a key-
stone blackbox in the algorithm of Borradaile et al. [2009] for Steiner tree is the
result that, for every fixed value of k, the problem is polynomial-time solvable on
graphs having treewidth at most k. There is a vast literature on algorithms for
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bounded-treewidth graphs and in most cases polynomial-time (or even linear-time)
solvability follows from the well-understood standard technique of dynamic pro-
gramming on tree decompositions. However, for Steiner forest, the obvious way of
using dynamic programming does not give a polynomial-time algorithm. The diffi-
culty is that, unlike in Steiner tree, a solution of Steiner forest induces a partition
on the set of terminals and a dynamic programming algorithm needs to keep track
of exponentially many such partitions. In fact, this approach seems to fail even for
series-parallel graphs (that have treewidth at most 2); the complexity of the prob-
lem for series-parallel graphs was stated as an open question by Richey and Parker
[1986]. We resolve this question by giving a polynomial-time algorithm for Steiner
forest on series-parallel graphs. The main idea is that even though algorithms based
on dynamic programming have to evaluate subproblems corresponding to exponen-
tially many partitions, the function describing these exponentially many values turn
out to be submodular and it can be represented in a compact way by the cut func-
tion of a directed graph. On the other hand, Steiner forest becomes NP-hard on
graphs of treewidth at most 3 [Gassner 2009]. Thus perhaps this is the first example
when the complexity of a natural problem changes as treewidth increases from 2 to
3. In light of this hardness result, we investigate the approximability of the problem
on bounded-treewidth graphs and show that, for every fixed k, Steiner forest admits
a PTAS on graphs of treewidth at most k. The main idea of the PTAS is that if
the dynamic programming algorithm considers only an appropriately constructed
polynomial-size subset of the set of all partitions, then this produces a solution
close to the optimum. Very roughly, the partitions in this subset are constructed
by choosing a set of center points and classifying the terminals according to the
distance to the center points. Our PTAS for planar graphs (and more generally,
for bounded-genus graphs) uses this PTAS for bounded-treewidth graphs. This
completes our thorough study of Steiner forest in the range of bounded-treewidth
graphs, planar graphs and bounded-genus graphs.

1.1 Our results and techniques

Our main result in this paper is a PTAS for the planar Steiner forest problem.

Theorem 1.1. For any constant ε̄ > 0, there is a polynomial-time (1 + ε̄)-
approximation algorithm for the Steiner forest problem on planar graphs and, more
generally, on graphs of bounded genus.

To this end, we build a Steiner forest spanner for the input graph and the set
of demands; this is done in two steps. Roughly speaking, a Steiner forest spanner
is a subgraph of the given graph whose length is no more than a constant factor
times the length of the optimal Steiner forest, and furthermore, it contains a nearly
optimal Steiner forest. Denote by OPTD(G) the minimum length of a Steiner forest
of G satisfying (connecting) all the demands in D. We sometimes use OPT instead
of OPTD(G) when D and G are easily inferred from the context. A subgraph H of
G is a Steiner forest spanner with respect to demand set D if it has the following
two properties:

Spanning Property: There is a forest in H that connects all demands in D and
has length at most (1 + ε)OPTD(G), namely, OPTD(H) ≤ (1 + ε)OPTD(G).
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Shortness Property: The total length of H is not more than f(ε) ·OPTD(G).

Theorem 1.2. Given any fixed ε > 0, a bounded-genus graph Gin(Vin, Ein) and
demand pairs D, we can compute in polynomial time a Steiner forest spanner H
for Gin with respect to demand set D.

The algorithm that we propose achieves this in time O(n2 log n). The entire algo-
rithm for Steiner forest runs in polynomial time but the exponent of the polynomial
depends on ε and the genus of the input graph.

The proof of Theorem 1.2 heavily relies on a novel clustering method presented in
Theorem 1.3 that allows us to (almost) separately build the spanners for smaller and
far apart sets of demands. The rest of the spanner construction—done separately
for each of the sets—uses ideas of Borradaile et al. [2009], although there are still
several technical differences. The clustering technique works for general graphs as
opposed to the rest of the construction which requires the graphs to have bounded
genus.

Theorem 1.3. Given an ε > 0, a graph Gin(Vin, Ein), and a set D of pairs
of vertices, we can compute in polynomial time a set of trees {T1, . . . , Tk}, and a
partition of demands {D1, . . . ,Dk}, with the following properties.

(1 ) All the demands are covered, i.e., D =
⋃k
i=1Di.

(2 ) All the terminals in Di are spanned by the tree Ti.

(3 ) The sum of the lengths of all the trees Ti is no more than ( 4
ε + 2)OPTD(Gin).

(4 ) The sum of the lengths of minimum Steiner forests of all demand sets Di is
no more than 1 + ε times the length of a minimum Steiner forest of Gin; i.e.,∑
i OPTDi

(Gin) ≤ (1 + ε)OPTD(Gin).

The last condition implies that (up to a small factor) it is possible to solve the
demands Di separately. Notice that this may lead to paying for portions of the
solution more than once.

We will prove Theorem 1.3 in Section 3. Roughly speaking, the algorithm here
first identifies some connected components by running a 2-approximation Steiner
forest algorithm. Clearly, this construction satisfies all but the last condition of
the theorem. However, at this point, these connected components might not be
sufficiently far from each other so that we can consider them separately. To fix
this, we contract each connected component into a “super vertex” to which we
assign a prize (potential) that is proportional to the sum of the edge weights of the
corresponding component. Then we run an algorithm that we call prize-collecting
clustering. The algorithm as well as some parts of its analysis bears similarities to
a primal-dual method due to [Agrawal et al. 1991; Goemans and Williamson 1995].
Indeed our analysis strengthens these previous approaches by proving certain local
guarantees (instead of the global guarantee provided in these algorithms). In some
sense, this clustering algorithm can also be seen as a generalization of an implicit
clustering algorithm of Archer, Bateni, Hajiaghayi, and Karloff [2009] who improve
the best approximation factor for prize-collecting Steiner tree to 2 − ε, for some
constant ε > 0. In this clustering, we consider a topological structure of the graph
in which each edge is a curve connecting its endpoints whose length is equal to its
weight. We paint (portions of) edges by different colors each corresponding to a
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super vertex. These colors form a laminar family and the “depth” of each color
is at most the prize given to its corresponding super vertex. Using this coloring
scheme we further connect some of the super vertices to each other with a length
proportional to the sum of their prizes. At the end, we show that now we can
consider these combined connected components as separate clusters and, roughly
speaking, an optimal solution need not connect two different clusters because of the
concept of depth. We believe the prize-collecting clustering presented in this paper
might have applications for other problems (especially to obtain PTASes).

To obtain a PTAS as promised in Theorem 1.1, we first construct a spanner
Steiner forest based on Theorem 1.2. On this spanner, we utilize a technique due
to [Klein 2008; Demaine et al. 2007] that reduces the problem of obtaining a PTAS
in a planar (and more generally, bounded-genus) graph whose total edge length is
within a constant factor of the optimal solution to that of finding an optimal solution
in a graph of bounded treewidth. (See the proof of Theorem 1.1 in Section 5 for
more details.) However, there are no known polynomial-time algorithms in the
literature for Steiner forest on bounded-treewidth graphs, so we cannot plug in
such an algorithm to complete our PTAS. Therefore, we need to investigate Steiner
forest on bounded-treewidth graphs, too.

Resolving an open question of Richey and Parker [1986], we design a polynomial-
time algorithm for Steiner forest on series-parallel graphs. Very recently, using
completely different techniques, a polynomial-time algorithm was presented for the
special case of outerplanar graphs [Gassner 2009].

Theorem 1.4. The Steiner forest problem can be solved in polynomial time for
subgraphs of series-parallel graphs (i.e., graphs of treewidth at most 2).

A series-parallel graph can be built form elementary blocks using two opera-
tions: parallel connection and series connection. The algorithm of Theorem 1.4
uses dynamic programming on the construction of the series-parallel graph. For
each subgraph arising in the construction, we find a minimum weight forest that
connects some of the terminal pairs, connects a subset of the terminals to the “left
exit point” of the subgraph, and connects the remaining terminals to the “right
exit point” of the subgraph. The minimum weight depends on the subset of ter-
minals connected to the left exit point, thus it seems that we need to determine
exponentially many values (one for each subset). Fortunately, it turns out that the
minimum weight is a submodular function of the subset. Furthermore, we show
that this function can be represented by the cut function of a directed graph and
this directed graph can be easily constructed if the directed graphs corresponding
to the building blocks of the series-parallel subgraph are available. Thus, following
the construction of the series-parallel graph, we can build all these directed graphs
and determine the value of the optimal solution by the computation of a minimum
cut.

Surprisingly, it turns out that the problem becomes NP-hard on graphs of treewidth
at most 3 [Gassner 2009]. For completeness, in Section 8 we give a (different) NP-
hardness proof, that highlights how submodularity (and hence the approach of
Theorem 1.4) breaks if treewidth is 3. There exist a few known problems that are
polynomial-time solvable for trees but NP-hard for graphs of treewidth 2 [Zhou
and Nishizeki 1998; Marx 2005; 2009; Richey and Parker 1986; Bateni et al. 2011],
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but to our knowledge, this is the first natural example where there is a complexity
difference between treewidth 2 and 3.

Not being able to solve Steiner forest optimally on bounded-treewidth graphs is
not an unavoidable obstacle for obtaining a PTAS on planar graphs: the technique
of [Klein 2008; Demaine et al. 2007] can still be applied when we have a PTAS for
graphs of bounded treewidth. In Section 6, we demonstrate such a PTAS.

Theorem 1.5. For every fixed w ≥ 1 and ε > 0, there is a polynomial-time
(1+ε)-approximation algorithm for Steiner Forest on graphs with treewidth at most
w.

Note that the exponent of the polynomial in Theorem 1.5 depends on both ε and
w; it remains an interesting question for future research whether this dependence
can be removed.

The main idea of the PTAS of Theorem 1.5 is to reduce the set of partitions
considered in the dynamic programming algorithm to a polynomially bounded sub-
set, in a way that an (1 + ε)-approximate solution using only these partitions is
guaranteed to exist. The implementation of this idea consists of three components.
First, we have to define which partitions belong to the polynomially bounded sub-
set. These partitions are defined by choosing a bounded number of center points
and a radius for each center. A terminal is classified into a class of the partition
based on which center points cover it. Second, we need an algorithm that finds
the best solution using only the allowed subset of partitions. This can be done
following the standard dynamic programming paradigm, but the technical details
are somewhat tedious. Third, we have to argue that there is a (1 + ε)-approximate
solution using only the allowed partitions. We show this by proving that if there
is a solution that uses partitions that are not allowed, then it can be modified,
incurring only a small increase in the length, such that it uses only allowed parti-
tions. The main argument here is that for each partition appearing in the solution,
we try to select suitable center points. If these center points do not generate the
required partition, then this means that a terminal is misclassified, which is only
possible if the terminal is close to a center point. In this case, we observe that two
components of the solution are close to each other and we can join them with only
a small increase in the length. The crucial point of the proof is a delicate charging
argument, making use of the structure of bounded-treewidth graphs, which shows
that repeated applications of this step results in a total increase that is not too
large.

1.2 Follow-up work

The prize-collecting clustering technique was first implicitly used in Archer et al.
[2009] for obtaining an approximation ratio of prize-collecting Steiner tree and
prize-collecting traveling salesman problems to a constant below two. The tech-
nique was then formalized in the conference version of the current work and led
to a PTAS for planar Steiner forest. Bateni, Chekuri, Ene, Hajiaghayi, Korula,
and Marx [2011] subsequently generalized the technique and provided reductions
from planar graphs to bounded-treewidth graphs for a large class of prize-collecting
Steiner network problems. This resulted in PTASes for prize-collecting Steiner tree,
prize-collecting TSP and prize-collecting stroll on planar graphs. In another work,
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the technique has found application in presenting a PTAS for the planar multiway
cut problem [Bateni, Hajiaghayi, Klein, and Mathieu 2011].

2. BASIC DEFINITIONS

Let G(V,E) be a graph. As is customary, let δ(V ′) denote the set of edges having
one endpoint in a subset V ′ ⊆ V of vertices. For a subset of vertices V ′ ⊆ V , the
subgraph of G induced by V ′ is denoted by G[V ′]. With slight abuse of notation, we
sometimes use the edge set to refer to the graph itself. Hence, the above-mentioned
subgraph may also be referred to by E[V ′] for simplicity. We denote the length
of a shortest x-to-y path in G as distG(x, y). For an edge set E, we denote by
`(E) :=

∑
e∈E `(e) the total length of edges in E, where `(e) denotes the length of

edge e in G.
A collection S is said to be laminar if and only if for any two sets C1, C2 ∈ S,

we have C1 ⊆ C2, C2 ⊆ C1, or C1 ∩ C2 = ∅. Suppose C is a partition of a ground
set V . Then, C(v) denotes for each v ∈ V the set C ∈ C that contains v.

Given an edge e = (u, v) in a graph G, the contraction of e in G denoted by
G/e is the result of unifying vertices u and v in G, and removing all loops and all
but the shortest among parallel edges. More formally, the contracted graph G/e is
formed by the replacement of u and v with a single vertex such that edges incident
to the new vertex are the edges other than e that were incident with u or v. To
obtain a simple graph, we first remove all self-loops in the resulting graph. In case
of multiple edges, we only keep the shortest edge and remove all the rest. The
contraction G/E′ is defined as the result of iteratively contracting all the edges
of E′ in G, i.e., G/E′ := G/e1/e2/ . . . /ek if E′ = {e1, e2, . . . , ek}. Clearly, the
planarity of G is preserved after the contraction. Similarly, contracting edges does
not increase the length of an optimal Steiner forest.

The boundary of a face of a planar embedded graph is the set of edges adjacent
to the face; it does not always form a simple cycle. The boundary ∂H of a planar
embedded graph H is the set of edges bounding the infinite face. An edge is strictly
enclosed by the boundary of H if the edge belongs to H but not to ∂H.

Now we define the basic notion of treewidth, as introduced by [Robertson and
Seymour 1986]. To define this notion, we consider representing a graph by a tree
structure, called a tree decomposition. More precisely, a tree decomposition of a
graph G(V,E) is a pair (T,B) in which T (I, F ) is a tree and B = {Bi | i ∈ I} is a
family of subsets of V (G) such that

(1)
⋃
i∈I Bi = V ;

(2) for each edge e = (u, v) ∈ E, there exists an i ∈ I such that both u and v
belong to Bi; and

(3) the set of nodes {i ∈ I |v ∈ Bi} forms a connected subtree of T for every v ∈ V .

To distinguish between vertices of the original graph G and vertices of T in the
tree decomposition, we call vertices of T nodes and their corresponding Bi’s bags.
The width of the tree decomposition is the maximum size of a bag in B minus 1.
The treewidth of a graph G, denoted tw(G), is the minimum width over all possible
tree decompositions of G.

For algorithmic purposes, it is convenient to define a restricted form of tree
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decomposition. We say that a tree decomposition (T,B) is nice if the tree T is a
rooted tree such that for every i ∈ I either

(1) i has no children (i is a leaf node),

(2) i has exactly two children i1, i2 and Bi = Bi1 = Bi2 holds (i is a join node),

(3) i has a single child i′ and Bi = Bi′ ∪ {v} for some v ∈ V (i is an introduce
node), or

(4) i has a single child i′ and Bi = Bi′ \ {v} for some v ∈ V (i is a forget node).

It is well-known that every tree decomposition can be transformed into a nice tree
decomposition of the same width in polynomial time. Furthermore, we can assume
that the root bag contains only a single vertex.

We will use the following lemma to obtain a nice tree decomposition with some
further properties (a related trick was used in [Marx 2007], the proof is similar):

Lemma 2.1. Let G be a graph having no adjacent degree 1 vertices. G has a nice
tree decomposition of polynomial size having the following two additional properties:

(1 ) No introduce node introduces a degree 1 vertex.

(2 ) The vertices in a join node have degree greater than 1.

Proof. Consider a nice tree decomposition of graph G. First, if v is a vertex of
degree 1, then we can assume that v appears only in one bag: if w is the unique
neighbor of v, then it is sufficient that v appears in any one of the bags that
contain w. Let Bv = {v, x1, . . . , xt} be this bag where x1 = w. We modify the
tree decomposition as follows. We replace Bv with B′v = Bv \ {v}, insert a bag
B′′v = Bv \ {v} between B′v and its parent, and create a new bag Bt = Bv \ {v}
that is the other child of B′′v (thus B′′v is a join node). For i = 1, . . . , t − 1, let
Bi = {x1, . . . , xi}, and let Bi be the child of Bi+1. Finally, let Bw = {w, v} be
the child of B1 and let B = {v} be the child of Bw. Observe that Bi (2 ≤ i ≤ t),
Bw are introduce nodes, B1 is a forget node, and B is a leaf node. This operation
ensures that vertex v appears only in a leaf node. It is clear that after repeating
this operation for every vertex of degree 1, the two required properties will hold.

We also need a basic notion of embedding; see, e.g., [Robertson and Seymour
1994; Cabello and Mohar 2005]. In this paper, an embedding refers to a 2-cell
embedding, i.e., a drawing of the vertices and edges of the graph as points and arcs in
a surface such that every face (connected component obtained after removing edges
and vertices of the embedded graph) is homeomorphic to an open disk. We use basic
terminology and notions about embeddings as introduced in [Mohar and Thomassen
2001]. We only consider compact surfaces without boundary. Occasionally, we refer
to embeddings in the plane, when we actually mean embeddings in the 2-sphere.
If S is a surface, then for a graph G that is (2-cell) embedded in S with f facial
walks, the number g = 2 − |V (G)| + |E(G)| − f is independent of G and is called
the Euler genus of S. The Euler genus coincides with the crosscap number if S is
non-orientable, and equals twice the usual genus if the surface S is orientable.

3. PRIZE-COLLECTING CLUSTERING

The goal of this section is to prove Theorem 1.3, that allows us to break up the input
Steiner forest instance into simpler ones. The proof relies on the prize-collecting
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clustering technique, that produces a partition of graph vertices corresponding to
potential values assigned to them. Roughly speaking, vertices close to each other
(relative to their potentials) are placed in one cluster, and those far from each other
will be part of different clusters.

It is more instructive to state the prize-collecting theorem in abstract terms,
and then use it to prove the particular theorem needed for Steiner forest. This
abstraction cleans up the proofs.

Theorem 3.1 (prize-collecting clustering). Let G(V,E) be a graph with
a nonnegative edge length `(e) for each edge e and a potential φv for each vertex v.
In polynomial time, we can find a subgraph Z such that

(1 ) the length of Z is at most 2
∑
v∈V φv, and

(2 ) for any subgraph L of G, there is a set Q of vertices such that
(a)

∑
v∈Q φv is at most the length of L, and

(b) if two vertices v1, v2 6∈ Q are connected by L, then they are in the same
component of Z.

The theorem is proved by presenting and analyzing a procedure, PC-Clustering,
which takes as input G, `, φ, and outputs Z; however, this procedure does not
compute Q since such a computation requires the knowledge of L. In fact, Q need
not even be computable (in polynomial time) from L—although it is possible—
and the very guarantee that a suitable Q exists for each L is sufficient for the
applications of the theorem.

Before giving the proof of Theorem 3.1 in Section 3.1, we argue that it implies
Theorem 1.3. The procedure for doing so is shown in Algorithm 1 (PC-Partition).

Algorithm 1 PC-Partition

Input: graph Gin(Vin, Ein), and demands D.
Output: set of trees Ti with associated Di.

1: Use the algorithm of [Goemans and Williamson 1995] to find a 2-approximate
Steiner forest F ∗ of D, consisting of tree components T ∗1 , . . . , T

∗
k .

2: Contract each tree T ∗i to build a new graph G(V,E).
3: For any v ∈ V , let φv be 1

ε times the length of the tree T ∗i corresponding to v,
and zero if there is no such tree.

4: Let F2 be the output of PC-Clustering invoked on G and φv.
5: Construct F from F2 by uncontracting all the trees T ∗i .
6: Let F consist of tree components Ti.
7: Output the set of trees {Ti}, along with Di := {(s, t) ∈ D : s, t ∈ V (Ti)}.

Proof of Theorem 1.3. We start with a 2-approximate solution F ∗ satisfying
all the demands in D (such a solution can be found via Goemans-Williamson’s
Steiner forest algorithm, for instance). In the following, we extend F ∗ by connecting
some of its components to make the trees Ti. It is easy to see that this construction
guarantees the first two conditions of Theorem 1.3. We work on a graph G(V,E)
formed from Gin by contracting each tree component of F ∗. A potential φv is
associated with each vertex v ofG, which is 1

ε times the length of the tree component
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of F ∗ corresponding to v in case v is the contraction of a tree component, and zero
otherwise.

Let Z be the subgraph of G given by Theorem 3.1. Let Zin be the subgraph of
Gin obtained from Z by uncontracting the components of F ∗ and adding F ∗ to
Zin; as F ∗ is a solution, Zin is a solution as well. Let T1, . . . , Tk be spanning trees
of the components of Zin and let D1, . . . , Dk be the set of demands spanned by
these trees. It is clear that the first two conditions of the theorem hold. The length
of Zin is the length of F ∗ (which is at most 2OPT) plus the length of Z (which is
at most 2

∑
v∈V φv ≤

4
εOPT), giving the third condition.

Let OPT be an optimal solution and let L be the corresponding subgraph of G
(obtained by contracting the components of F ∗). Let Q be the set of vertices of
G given by the second condition of Theorem 3.1. For every node in Q, there is a
corresponding component of F ∗; let Qin be the forest of Gin composed from all
these components. From the way the potential φv was defined, we have `(Qin) =
ε
∑
v∈Q φv ≤ ε`(L) ≤ ε`(OPT), where in the second inequality, we used condition

2(a) of Theorem 3.1.

To show that the last condition holds, for every Di we construct a subgraph Hi

that satisfies the demands in Di. For every demand in Di, if the component K of F ∗

satisfying the demand belongs to Qin, then we put K into Hi; otherwise, we put the
component of OPT satisfying the demand into Hi. Observe that each component of
Qin is used in at most one of the Hi’s: as Qin is a subgraph of Zin, all the demands
satisfied by a component K of Qin belong to the same Di. Furthermore, we claim
that each component of OPT is used in at most one of the Hi’s. Suppose that a
component K of OPT was used in both Hi and Hj , i.e., K satisfies a demand in
Di and a demand in Dj . The components of F ∗ satisfying these two demands are
not in Qin (otherwise we would have put these components into Hi or Hj instead
of K), thus they correspond to nodes v1, v2 6∈ Q in the contracted graph G. Thus
L, the contracted version of OPT, connects two nodes v1, v2 6∈ Q. Condition 2(b)
of Theorem 3.1 implies that v1 and v2 are in the same component of Z and hence
the two demands are satisfied by the same component of Zin. This contradicts that
the two demands are in two different sets Di and Dj .

Since every component of Qin and every component of OPT is used by at most
one of the Hi’s, we have

∑k
i=1 `(Hi) ≤ `(OPT ) + `(Qin) ≤ (1 + ε)`(OPT ). This

establishes the last condition of the theorem.

3.1 Proof of Theorem 3.1

In this section, we describe an algorithm PC-Clustering that is used to prove
Theorem 3.1. The algorithm as well as its analysis bears similarities to the primal-
dual method due to [Agrawal et al. 1995; Goemans and Williamson 1995]. It uses
a technique that we call prize-collecting clustering and our analysis strengthens
the previous approaches by proving some local guarantees (instead of the global
guarantee provided in previous algorithms).

The following system of linear equations is central to our algorithm. The variable
yS,v is defined for every v and S with v ∈ S ⊆ V , and `(e) denotes the length of
the edge e.
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S:e∈δ(S)

∑
v∈S

yS,v ≤ `(e) ∀e ∈ E, (1)

∑
S3v

yS,v ≤ φv ∀v ∈ V, (2)

yS,v ≥ 0 ∀v ∈ S ⊆ V. (3)

These constraints are quite similar to the dual LP for the prize-collecting Steiner
tree problem when φv are thought of as penalty values corresponding to the vertices.
In the standard linear program for the prize-collecting Steiner tree problem, there
is a special root vertex to which all the terminals are to be connected. Then, no
set containing the root appears in the formulation.

Although there are exponentially many variables here, only a polynomial number
of them will take nonzero values during the algorithm, and the algorithm runs in
polynomial time.

The solution is built up in two stages. First we perform an unrooted growth to
find a forest F1 and a corresponding vector y. (During the process, we maintain a
vector y satisfying all these constraints, and at the end, all the constraints (2) hold
with equality.) In the second stage, we prune some of the edges of F1 to get another
forest F2. Below we describe the two phases of Algorithm 2 (PC-Clustering).

Growth. We begin with a zero vector y, and an empty set F1. We maintain a
partition C of vertices V into clusters; it initially consists of singleton sets. Each
cluster is either active or inactive; the cluster C ∈ C is active if and only if∑
C′⊆C

∑
v∈C′ yC′,v <

∑
v∈C φv. A vertex v is live if and only if

∑
C3v yC,v < φv.

Equivalently, a cluster C ∈ C is active if and only if there is a live vertex v ∈ C. We
simultaneously grow all the active clusters by η. In particular, if there are κ(C) > 0
live vertices in an active cluster C, we increase yC,v by η/κ(C) for each live vertex
v ∈ C. Hence, yC defined as

∑
v∈C yC,v is increased by η for an active cluster C.

We pick the largest value for η that does not violate any of the constraints in (1)
or (2). Obviously, η is finite in each iteration because the values of these variables
cannot be larger than

∑
v φv. Hence, at least one such constraint goes tight after

the growth step. If this happens for an edge constraint for e = (u, v), then there
are two clusters Cu 3 u and Cv 3 v in C; at least one of the two is growing. We
merge the two clusters into C = Cu ∪ Cv by adding the edge e to F1, remove the
old clusters and add the new one to C. Nothing needs to be done if a constraint
(2) becomes tight. The number of iterations is at most 2|V | because at each event
either a vertex dies, or the size of C decreases.

We can think of the growth stage as a process that paints portions of the edges
of the graph. This gives a better intuition to the algorithm, and makes several of
the following lemmas intuitively simple. Consider a topological structure in which
vertices of the graph are represented by points, and each edge is a curve connecting
its endpoints whose length is equal to the weight of the edge. Suppose a cluster C
is growing by an amount η. This is distributed among all the live vertices v ∈ C,
where yC,v is increased by η′ := η/κ(C). As a result, we paint by color v a connected
portion with length η′ of all the edges in δ(C). Finally, each edge e gets exactly∑
C:e∈δ(C) yC,v units of color v. We can perform a clean-up process, such that all
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1 2

3

4 5 6

7

8
9

Fig. 1. PC-Clustering paints the graph with different colors (corresponding to potentials of
vertices), and each part of an edge may get a different color. Solid edges represent edges bought

by PC-Clustering, whose result gives rise to five connected components, namely K1 = {1},K2 =

{2},K3 = {3, 4, 5, 7, 8},K4 = {6} and K5 = {9}. (The final pruning step may erase some of
the edges and break up certain components, but for simplicity of presentation in this figure, we

assume these are the actual components.) The dashed edges correspond to another solution, say

the optimum. The “length” of two components connected by such a solution can be charged to the
length of this solution. For instance, the path from 1 to 3 passes through the colors corresponding

to 1 and 3, and, since both nodes are exhausted, the length of the path is at least the sum of the

potentials of the two nodes—in general, at least one of the involved nodes is exhausted by the
solution whenever it connects two separate components of PC-Clustering. Thus, we can leave

these two nodes out of consideration, and continue this process. As a result, we can solve demands

in each of the remaining components separately, and only pay a small additional length (due to
charging).

the portions of color v are consecutive on an edge.1 Hence, as a cluster expands, it
colors its boundary by the amount of growth. At the time when two clusters merge,
their colors barely touch each other. At each point in time, the colors associated
with the vertices of a cluster form a connected region.

Pruning. Let S contain every set that is a cluster at some point during the
execution of the growth step. It can be easily observed that the clusters S are
laminar and the maximal clusters are the clusters of C. In addition, notice that
F1[C] is connected for each C ∈ S.

Let B ⊆ S be the set of all such clusters that are tight, namely, for each S ∈ B, we
have

∑
S′⊆S

∑
v∈S′ yS′,v =

∑
v∈S φv. In the pruning stage, we iteratively remove

some edges from F1 to obtain F2. More specifically, we first initialize F2 with F1.

1We can do without the clean-up if we perform the coloring in a lazy manner. That is, we do
not do the actual color assignment until the edge goes tight or the algorithm terminates. At this
point, we go about putting colors on the edges, and we make sure the color corresponding to any

pair (S, v) forms a consecutive portion of the edge. This property is not needed as part of our
algorithm, though, and is merely for the sake of having a nice coloring which is of independent

interest.
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Then, as long as there is a cluster S ∈ B such that F2 ∩ δ(S) = {e}, we remove the
edge e from F2.

A cluster C is called a pruned cluster if it is pruned in the second stage in which
case, δ(C) ∩ F2 = ∅. We argue that a pruned cluster cannot have non-empty and
proper intersection with a connected component of F2. Notice that, at the time the
cluster C is pruned, the single remaining edge of F2∩δ(C) is removed from F2, thus
the final F2 cannot have any edge of δ(C). Therefore, no connected component of
F2 can have two vertices such that one is inside C and the other is not.

Before, we can give the algorithm, we need to define C(v) as the cluster currently
containing the vertex v ∈ V ′, i.e., C(v) := C for any v ∈ C ∈ C.

Algorithm 2 PC-Clustering

Input: graph G(V,E), and potentials φv ≥ 0.
Output: forest F2.

1: Let F1 ← ∅.
2: Let yS,v ← 0 for any v ∈ S ⊆ V .
3: Let S ← C ← {{v} : v ∈ V }.
4: while there is a live vertex do
5: Let η be the largest possible value such that simultaneously increasing yC by

η for all active clusters C does not violate Constraints (1)-(3).
6: Let yC(v),v ← yC(v),v + η

κ(C(v)) for all live vertices v.

7: if ∃e ∈ E that is tight and connects two clusters then
8: Pick one such edge e = (u, v).
9: Let F1 ← F1 ∪ {e}.

10: Let C ← C(u) ∪ C(v).
11: Let C ← C ∪ {C} \ {C(u), C(v)}.
12: Let S ← S ∪ {C}.
13: Let F2 ← F1.
14: Let B ← {S ∈ S|

∑
S′⊆S

∑
v∈S′ yS′,v =

∑
v∈S φv}.

15: while ∃S ∈ B such that F2 ∩ δ(S) = {e} for an edge e do
16: Let F2 ← F2 \ {e}.
17: Output F2.

Notice that Line 4 of PC-Clustering ensures that, at the end of the algorithm,
all budgets are exhausted because no vertex is alive.

Observation 3.2. When PC-Clustering terminates, Inequalities (2) hold with
equality.

We first bound the length of the forest F2. The following lemma is similar to
the analysis of the algorithm in [Goemans and Williamson 1995]. However, we do
not have a primal LP to give a bound on the dual. Rather, the upper bound for
the length is the sum of all the potential values

∑
v φv. In addition, we bound the

length of a forest F2 that may have more than one connected component, whereas
the prize-collecting Steiner tree algorithm of [Goemans and Williamson 1995] finds
a connected graph at the end.
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Lemma 3.3. The length of F2 is at most 2
∑
v∈V φv.

PC-Clustering has a notion of time, and the algorithm is defined by how the
forest F1, F2 and dual variables yS,v grow over time. Conceptually, it is helpful to
think of PC-Clustering as progressing continuously over time, although the actual
computation is confined to a sequence of discrete event points. Time begins at
0 and unfolds in epochs, which are the intervals of time between two consecutive
event points (possibly an empty interval, if two event points occur simultaneously).
There are two types of event points, tight edge and cluster death events, which we
described previously. Notice that, during each epoch, each cluster is either active or
inactive, and each active cluster C increases its yC value at rate 1 for the duration
of the epoch, while all other duals remain unchanged. At time 0, the (singleton)
clusters with strictly positive penalty are active.

Proof of Lemma 3.3. The strategy is to prove that the length of the forest F2

is at most 2
∑
v∈S⊆V yS,v ≤ 2

∑
v∈V φv. The inequality follows from Equation (2).

Recall that the growth phase has several events corresponding to an edge or set
constraint going tight. We first break apart y variables by epoch. Let tj be the time
at which the jth event point occurs in the growth phase (0 = t0 ≤ t1 ≤ t2 ≤ · · · ),
so the jth epoch is the interval of time from tj−1 to tj . For each cluster C, let y

(j)
C

be the amount by which yC :=
∑
v∈C yC,v grew during epoch j, which is tj− tj−1 if

it was active during this epoch, and zero otherwise. Thus, yC =
∑
j y

(j)
C . Because

each edge e of F2 was added at some point by the growth stage when its edge packing
constraint (1) became tight, we can exactly apportion the length `(e) amongst the
collection of clusters {C : e ∈ δ(C)} whose variables “pay for” the edge, and can

divide this up further by epoch. In other words, `(e) =
∑
j

∑
C:e∈δ(C) y

(j)
C . We will

now prove that the total edge length from F2 that is apportioned to epoch j is at

most 2
∑
C y

(j)
C . In other words, during each epoch, the total rate at which edges of

F2 are paid for by all active clusters is at most twice the number of active clusters.
Summing over the epochs yields the desired conclusion.

We now analyze an arbitrary epoch j. Let Cj denote the set of clusters that
existed during epoch j. Consider the graph F2, and then collapse each cluster
C ∈ Cj into a supernode. Call the resulting graph H. Although the nodes of H
are identified with clusters in Cj , we will continue to refer to them as clusters, in
order to avoid confusion with the nodes of the original graph. Some of the clusters
are active and some may be inactive. Let us denote the active and inactive clusters
in Cj by Cact and Cdead, respectively. The edges of F2 that are being partially
paid for during epoch j are exactly those edges of H that are incident to an active
cluster, and the total amount of these edges that is paid off during epoch j is
(tj − tj−1)

∑
C∈Cact

degH(C). Since every active cluster grows by exactly tj − tj−1
in epoch j, we have ∑

C

y
(j)
C ≥

∑
C∈Cj

y
(j)
C = (tj − tj−1)|Cact|.

Thus, it suffices to show that
∑
C∈Cact

degH(C) ≤ 2|Cact|.
First we must make some simple observations about H. Since F2 is a subset of

the edges in F1, and each cluster represents a disjoint induced connected subtree of
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F1, the contraction to H introduces no cycles. Thus, H is a forest. All the leaves
of H must be alive because otherwise the corresponding cluster C would be in B
and hence would have been pruned away.

With this information about H, it is easy to bound
∑
C∈Cact

degH(C). The total
degree in H is at most 2(|Cact|+ |Cdead|). Noticing that the degree of dead clusters
is at least two, we get

∑
C∈Cact

degH(C) ≤ 2(|Cact|+ |Cdead|)− 2|Cdead| = 2|Cact| as
desired.

The following lemma gives a sufficient condition for two vertices that end up in the
same component of F2. This is a corollary of our pruning rule which has a major
difference from other pruning rules. Unlike the previous work, we do not prune
the entire subgraph; rather, we only remove some edges, increasing the number of
connected components.

Lemma 3.4. Two vertices u and v of V are connected via F2 if there exist sets
S, S′ both containing u, v such that yS,v > 0 and yS′,u > 0.

Proof. The growth stage connects u and v since yS,v > 0 and u, v ∈ S. Consider
the path p connecting u and v in F1. All the vertices of p are in S and S′. For
the sake of reaching a contradiction, suppose some edges of p are pruned. Let
e be the first edge being pruned on the path p. Thus, there must be a cluster
C ∈ B cutting e; furthermore, δ(C) ∩ p = {e} since e is the first edge pruned from
p. As C cuts e, it only has one endpoint of the edge. Then, the laminarity of
the clusters S gives C ⊂ S, S′. In addition, we show that C contains exactly one
endpoint of the path p (as opposed to exactly one endpoint of the edge e). This
holds because, if C contained neither or both endpoints of p, the cluster C could
not cut p at exactly one edge. Call the endpoint of p in this cluster v. We then
have

∑
C′⊆C yC′,v = φv because C is tight. However, as C is a proper subset of S,

this contradicts with yS,v > 0, proving the supposition is false. The case when C
contains u is symmetric.

Consider a pair (v, S) with yS,v > 0. If subgraph G′ of G has an edge that goes
through the cut (S, S̄), at least a portion of length yS,v of G′ is painted with the
color v due to the set S. Thus, if G′ cuts all the sets S for which yS,v > 0, we
can charge part of the length of G′ to the potential of v. Later in Lemma 3.6, we
are going to use potentials as a lower bound on the length of a graph. (When it
is invoked in Theorem 1.3, this serves as a lower bound on the optimum.) More
formally, we say a graph G′(V,E′) exhausts a color u if and only if E′ ∩ δ(S) 6= ∅
for any S with yS,u > 0.

Lemma 3.5. If a subgraph H(V,E′) of G connects two vertices u, v from different
components of F2, then H exhausts the color corresponding to at least one of u and
v.

Proof. Suppose that H exhausts neither u nor v: there is a set S containing u
and a set S′ containing v such that yS,v, yS′,u > 0 and E′ ∩ δ(S) = E′ ∩ δ(S′) = ∅.
Since H connects u and v, this is only possible if u and v are both in S and S′. By
Lemma 3.4, this implies that F2 connects u and v, a contradiction.

We can relate the length of a subgraph to the potential value of the colors it
exhausts.
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Lemma 3.6. Let Q be the set of colors exhausted by subgraph G′ of G. The
length of G′(V,E′) is at least

∑
v∈Q φv.

This is quite intuitive. Recall that the y variables color the edges of the graph.
Consider a segment on edges corresponding to cluster S with color v. At least one
edge of G′ passes through the cut (S, S̄). Thus, a portion of the length of G′ can
be charged to yS,v. Hence, the total length of the graph G′ is at least as large as
the total amount of colors paid for by Q. We now provide a formal proof.

Proof. The length of G′(V,E) is∑
e∈E′

`(e) ≥
∑
e∈E′

∑
S:e∈δ(S)

yS by (1)

=
∑
S

|E′ ∩ δ(S)|yS

≥
∑

S:E′∩δ(S) 6=∅

yS

=
∑

S:E′∩δ(S) 6=∅

∑
v∈S

yS,v

=
∑
v

∑
S3v:E′∩δ(S) 6=∅

yS,v

≥
∑
v∈Q

∑
S3v:E′∩δ(S)6=∅

yS,v

=
∑
v∈Q

∑
S3v

yS,v,

because yS,v = 0 if v ∈ Q and E′ ∩ δ(S) = ∅,

=
∑
v∈Q

φv by Observation 3.2.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. The subgraph Z is the forest F2. Condition 1 is given
by Lemma 3.3. For condition 2, let Q be the set of vertices exhausted by L. Now
conditions 2(a) and 2(b) are proved by Lemma 3.6 and Lemma 3.5, respectively.

4. CONSTRUCTING THE SPANNER

The goal of this section is to prove Theorem 1.2. Recall that we are given a graph
Gin(Vin, Ein), and a set of demands D. From Theorem 1.3, we obtain a set of trees
{T1, . . . , Tk} associated with a partition of demands {D1, . . . ,Dk}: tree Ti connects
all terminals Qi in demand set Di, and the total length of trees Ti is O(OPT).
The construction goes along the same lines as those of [Borradaile, Demaine, and
Tazari 2009; Borradaile, Klein, and Mathieu 2009], yet there are certain differences
in the analysis. The construction is carried out in three steps. We separately build
a graph Hi for each Ti, and finally let H be the union of all graphs Hi.

Borradaile, Klein and Mathieu [2007; 2009] developed a PTAS for the Steiner
tree problem in planar graphs; this technique was later extended to bounded-genus
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graphs [Borradaile et al. 2009]. The method involves finding a grid-like subgraph
called the mortar graph that spans the input terminals and has length O(OPT).
Each face of the mortar graph corresponds to a subgraph of the original graph,
called a brick. The set of feasible Steiner trees is restricted to those that cross brick
boundaries only at a small number (per brick) of predesignated vertices called
portals. A Structure Theorem guarantees the existence of a nearly optimal solution
(one that has length at most (1 + ε)OPT) in this set.

4.1 The construction

In this work we do not give the details of the constructions due to [Borradaile et al.
2009; Borradaile et al. 2009]. We only mention some of the definitions in order to
facilitate the presentation and proof.

The following steps are performed separately for each demand set. When working
on Di to build Hi, the set of terminals Q = Qi will include all the vertices appearing
in the demand pairs of Di.

Step 1. Building a mortar graph: The mortar graph2 (of a bounded-genus
graph G) with respect to a subset Q of vertices, called terminals, is a subgraph GM
of G with the following properties, among others:

(1) `(GM ) ≤ γ(ε, g) span(Q), where γ(ε, g) = 2(8g + 2)(ε−1 + 1)2 and span(Q)
denotes the minimum length of a Steiner tree spanning terminals Q.

(2) A face B of GM with all edges and vertices of G embedded inside it is called a
brick. Every brick is planar.

(3) The boundary of each brick B consists of four sides W,N,E, S in clockwise
order. The total length of all W - and E-boundaries (called supercolumns) is at
most ε2 · span(Q).

(4) All terminals Q fall on N - or S-boundaries.

Borradaile et al. [2009] show how to construct the mortal graph of a bounded-
genus graph in O(n log n) time.

Step 2. Designating portals: For some θ that polynomially depends on ε−1 and
g, at most θ vertices on the boundary of each brick B are designated as portals such
that the distance between any two consecutive portals is no more than `(∂B)/2θ.
(This can be done using a greedy algorithm: start with an arbitrary vertex as a
portal, and then moving clockwise around the brick, iteratively find the farthest
vertex on the boundary whose distance to the previously selected portal is within the
prescribed limit.) The goal is to focus on portal-respecting solutions, i.e., those in
which the solution crosses brick boundaries only at portals. To reduce the patching
cost (of connecting the original solution’s crossing points to portals), we pick θ to
be large compared to the number of crossings a solution may have. In particular,
Theorem 10.7 of [Borradaile et al. 2009] bounds the number of crossings by α which
is a polynomial in g and ε−1.

Lemma 4.1. For any forest F in a brick B, there exists a forest F ′ such that

2The reader can refer to Definition 3.1 of [Borradaile et al. 2009] for a complete definition of the

mortar graph.
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(1 ) `(F ′) ≤ (1 + ε)`(F ),

(2 ) F ′ crosses3 the boundary of B at most α times, and

(3 ) any two vertices on N - or S-boundaries of B connected by F are also connected
by F ′.

Step 3. Adding Steiner trees: All edges of GM belong to Hi. For each brick
B and any selection of its portals Π′ ⊆ Π, we add to Hi the optimal Steiner tree
(not forest) spanning Π′ and only using the boundary or the inside of B, assuming
that the W - and E-boundaries of B have length zero. This can be done in time
polynomial in θ using the algorithm of [Erickson et al. 1987] since all these terminals
lie on the infinite face of a planar graph.

Notice that for fixed ε and g, there are at most a constant number of portals,
hence constant number of such Steiner trees, and the length of each is at most the
length of the boundary of the brick.

4.2 The analysis

Next we prove two properties of the spanner: a bound on its length in Lemma 4.2
and its spanning property in Lemma 4.3. The following lemma is the main piece
in proving the shortness property.

Lemma 4.2. The length of Hi is at most f(ε, g)`(Ti) for a universal certain
function f(ε, g).

Proof. Hi is made up of the mortar graph GM and the Steiner trees added in
Step 3. We have `(GM ) ≤ γ(ε, g) span(Qi) ≤ γ(ε, g)`(Ti). For a brick B in Step 3
we add at most 2θ Steiner trees each of which has length no more than `(∂(B)).
Since an edge of GM may appear in the boundary of two bricks, the total addition
due to these trees is at most 2θ+1`(GM ). Therefore, `(Hi) ≤ (2θ+1 + 1)`(GM ) ≤
(2θ+1 + 1)γ(ε, g)`(Ti) = f(ε, g)`(Ti).

Finally we prove the spanning property of H. Recall that H is formed by the
union of the graphs Hi constructed above.

Lemma 4.3. OPTD(H) ≤ (1 + c′ε)OPTD(Gin) for a universal constant c′ > 0.

Proof. Take the optimal solution OPT. Find forests OPTi satisfying demands
Di, i.e., `(OPTi) = OPTDi(Gin). We can apply Theorem 1.3 to get

∑
i `(OPTi) ≤

(1 + ε)OPT.
Consider one OPTi that serves the respective set of demands Di. Add the set

of all supercolumns of Hi to OPTi to get OPT1
i . Recall the total length of these

supercolumns is at most ε2 · span(Qi) ≤ ε2`(Ti). Next, use Lemma 4.1 to replace
the intersection of OPT1

i and each brick with another forest having the properties
of the lemma. Let OPT2

i be the new forest. The length of the solution increases
to no more than a 1 + ε factor. Furthermore, as a result, OPT2

i crosses each brick
at most α times. We claim, provided that θ is sufficiently large compared to α, we

3The actual proof bounds the number of “joining vertices” in a brick, however, the number of
crossings is no more than the number of joining vertices, and the number of crossings is indeed

what is required for making the solution portal-respecting.
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can ensure that moving these intersection points to the portals introduces no more
than an ε factor in the length.

Consider a brick B with boundaries W,N,E, S. Connect each intersection point
of the brick to its closest portal. Each connection on a brick B moves by at most
`(∂(B))/θ. The total movement of each brick is at most α`(∂(B))/θ which is no
more than ε2`(∂(B))/γ(ε, g) if θ ≥ αε−2γ(ε, g). Hence, the total additional length
for all bricks of Hi is bounded by 2ε2`(Ti).

Finally, we replace the forests inside each brick B by the Steiner trees provisioned
in the last step of our spanner construction. Take a brick B with the set of portals Π.
Let K1,K2, . . . be the connected components of OPT2

i inside B. Each intersection
point is connected to a portal of B. Replace each Kj by the optimal Steiner tree
corresponding to this subset of portals. This procedure does not increase the length
and produces a graph OPT3

i .
Clearly, OPT3

i satisfies all the demands in Di. Thus, the union of all forests
OPT3

i , henceforth referred to as OPT∗, gives a solution for the given Steiner forest
instance. It only remains to bound the length of OPT∗. We have

`(OPT∗) ≤
∑
i

`(OPT3
i ), (4)

which may be strict due to the presence of common edges between different OPT3
i

forests. Replacing the Steiner trees by the optimal Steiner trees between portals
cannot increase the length, so, the only length increase comes from connections to
portals. Thus, we get

`(OPT∗) ≤
∑
i

[
`(OPT2

i ) + 2ε2`(Ti)
]
. (5)

From the above discussion,

`(OPT2
i ) ≤ (1 + ε)`(OPT1

i ), by Lemma 4.1, and (6)

`(OPT1
i ) ≤ `(OPTi) + ε2`(Ti) due to supercolumns’ length. (7)

Hence, the length of OPT∗ is

`(OPT∗) ≤
∑
i

[
(1 + ε)`(OPTi) + ε2(3 + ε)`(Ti)

]
by (5), (6) and (7)

=
∑
i

[(1 + ε)`(OPTi)] +
∑
i

[
ε2(3 + ε)`(Ti)

]
≤ (1 + ε)2OPT + ε2(3 + ε)

∑
i

`(Ti) by Theorem 1.3

≤ (1 + ε)2OPT + ε2(3 + ε)(4/ε+ 2)OPT by Theorem 1.3

=
[
1 + 14ε+ 11ε2 + 2ε3

]
OPT

≤ (1 + c′ε)OPT,

if we pick c′ = 27 and assume ε ≤ 1.

Notice that the construction will produce a subset of the original graph, hence
the bound on genus carries over.

Journal of the ACM, Vol. V, No. N, MM 20YY.



20 · Bateni, Hajiaghayi, and Marx

4.3 Running time

The spanner can be constructed in time O(n2 log n), where the dominant term
comes from PC-Clustering. Borradaile et al. [2009] show how to construct the
mortar graph in time O(n log n). The rest of the spanner construction can be done
in O(n log n) time [Borradaile et al. 2009].

5. THE PTAS FOR BOUNDED-GENUS STEINER FOREST

Having proved the spanner result, we can present our main PTAS for Steiner forest
on planar graphs in this section. We first mention two main ingredients of the
algorithm. We invoke the following result due to [Demaine et al. 2007].

Theorem 5.1 ([Demaine et al. 2007]). For a fixed genus g, and any inte-
ger k ≥ 2, and for every graph G of Euler genus at most g, the edges of G can
be partitioned into k sets such that contracting any one of the sets results in a
graph of treewidth at most O(g2k). Furthermore, such a partition can be found in
O(g5/2n3/2 log n) time.

As a corollary, this holds for a planar graph (which has genus zero). According to
[Borradaile, Demaine, and Tazari 2009], the running time of the above procedure
can be improved to O(n log n) using the techniques in [Cabello and Chambers 2007]
(assuming constant g).

We can now prove the main theorem of this work. Algorithm 3 (SF-PTAS) shows
the steps of the PTAS.

Algorithm 3 SF-PTAS

Input: bounded-genus graph Gin(Vin, Ein), and set of demands D.
Output: Steiner forest F satisfying D.

1: Construct the Steiner forest spanner H.
2: Let k ← 2f(ε)/ε̄.
3: Let ε← min(1, ε̄/6).
4: Using Theorem 5.1, partition the edges of H into E1, . . . , Ek.
5: Let i∗ ← arg mini `(Ei).
6: Find a (1 + ε)-approximate Steiner forest F ∗ of D in H/Ei∗ via Theorem 1.5.
7: Output F ∗ ∪ Ei∗ .

Proof of Theorem 1.1. Given are bounded-genus graph Gin, and the set of
demand pairs D. We build a Steiner forest spanner H using Theorem 1.2. For a
suitable value of k whose precise value will be fixed below, we apply Theorem 5.1
to partition the edges of H into E1, E2, . . . , Ek. Let Ei∗ be the set having the least
total length. The total length of edges in Ei∗ is at most `(H)/k. Contracting Ei∗

produces a graph H∗ of treewidth O(g2k).
Theorem 1.5 allows us to find a solution OPT∗ corresponding to H∗. Adding

the edge set Ei∗ clearly produces a solution for H whose length is at most (1 +
ε)OPTD(H) + `(H)/k. Letting ε = min(1, ε̄/6) and k = 2f(ε)/ε̄ guarantees that
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the length of this solution is

≤ (1 + ε)2OPTD(Gin) + `(H)/k by Theorem 1.2

≤ (1 + ε)2OPTD(Gin) +
ε̄

2
OPTD(Gin) by Theorem 1.2 and choice of k

(1 + ε̄)OPTD(Gin) by the choice of ε.

The running time of the algorithm excluding the bounded-treewidth PTAS is
bounded by O(n2 log n). The parameter k above has a singly exponential depen-
dence on ε. Yet, the running time of the current procedure for solving bounded-
treewidth instances is not bounded by a low-degree polynomial; rather, k and ε
appear in the exponent of the polynomial. Were we able to improve the running
time of this procedure, we would obtain a PTAS that runs in time O(n2 log n).

6. PTAS FOR GRAPHS OF BOUNDED TREEWIDTH

The purpose of this section is to prove Theorem 1.5 by presenting a PTAS for
Steiner forest on graphs of bounded treewidth.

6.1 Groups

We define a notion of group that will be crucial in the description of the algorithm.
A group is defined by a set S of center vertices, a set X of “interesting” vertices,
and a maximum distance r; the group GG(X,S, r) contains S and those vertices of
X that are at distance at most r from some vertex in S.

Lemma 6.1. Let T be a Steiner tree of X ⊆ V (G) with length W . For every
ε > 0, there is a set S ⊆ X of O(1 + 1/ε) vertices such that X = GG(X,S, εW ).

Proof. Let us select vertices s1, s2, . . . from X as long as possible, with the
requirement that the distance of si is more than εW from every sj , 1 ≤ j < i.
Suppose that st is the last vertex selected this way. We claim that t ≤ 1 + 2/ε.
Consider a shortest closed tour inG that visits the vertices s1, . . . , st (not necessarily
in the order of their indices). As the distance between any two such vertices is more
than εW , the total length of the tour is more than tεW (assuming that t > 1). On
the other hand, all these vertices are on the tree T and it is well known that there
is a closed tour that visits every vertex of the tree in such a way that every edge of
the tree is traversed exactly twice and no other edge of the graph is used. Hence
the shortest tour has length at most 2W and t ≤ 2/ε follows.

The following consequence of the definition of group is easy to see.

Proposition 6.2. If S1, S2, X1, X2 are subsets of vertices of G and r1, r2 are
real numbers, then

GG(X1, S1, r1) ∪ GG(X2, S2, r2) ⊆ GG(X1 ∪X2, S1 ∪ S2,max{r1, r2}).

6.2 Conforming solutions

Let (T,B) be a rooted nice tree decomposition of width k, let I be the nodes of T ,
and let B = {Bi | i ∈ I} be the bags of the decomposition. For every i ∈ I, let
Vi be the set of vertices appearing in Bi or in the bag of a descendant of Bi. Let
Ai be the set of active vertices at bag Bi: those vertices v ∈ Vi for which there is
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K4K3

K2

K1

Ai

Vi

Bi

Fig. 2. The 4 components K1, K2, K3, K3 of F partition Ai into 4 classes. Note that the

restriction of F to Vi has 6 components.

a demand {v, w} ∈ D with w 6∈ Vi. Let Gi := G[Vi]. A Steiner forest F induces
a partition πi(F ) of Ai for every i ∈ I: let two vertices of Ai be in the same class
of πi(F ) if and only if they are in the same component of F . Note that if F is
restricted to Gi, then a component of F can be split into up to k + 1 components,
thus πi(F ) is a coarser partition than the partition defined by the components of
the restriction of F to Gi. See Figure 4 for an example.

Let Π = (Πi)i∈I be a collection such that Πi is a set of partitions of Ai. If some
Steiner forest F satisfies πi(F ) ∈ Πi for every i ∈ I, then we say that F conforms to
Π. The aim of this subsection is to give an algorithm for bounded treewidth graphs
that finds a minimum-length solution conforming to a given Π. For fixed k, the
running time is polynomial in the size of the graph and the size of the collection Π
on a graph with treewidth at most k. In Section 6.3, we construct a polynomial-size
collection Π such that there is a (1 + ε)-approximate solution that conforms to Π.
Putting together these two results, we get a PTAS for the Steiner forest problem
on bounded treewidth graphs.

Lemma 6.3. For every fixed k, there is a polynomial time algorithm that, given
a graph G with treewidth at most k and a collection Π, finds the minimum-length
Steiner forest conforming to Π.

The proof of Lemma 6.3 follows the standard dynamic programming approach,
but it is not completely trivial. First, we use a technical trick that makes the
presentation of the dynamic programming algorithm simpler. We can assume that
every terminal vertex v has degree 1: otherwise, moving the terminal to a new
degree 1 vertex v′ attached to v with an edge vv′ having length 0 does not change
the problem and does not increase treewidth. Thus by Lemma 2.1, it can be
assumed that we have a nice tree decomposition (T,B) of width at most k where
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F2F1

α2α1

S

α1 ∨ α2

Fig. 3. Forest F1 induces partition α1 on S, forest F2 induces partition α2, the union of the two
forests induces the partition α1 ∨ α2.

no terminal vertex is introduced and the join nodes contain no terminal vertices;
this assumption simplifies the presentation. For the rest of the section, we fix such
a tree decomposition and notation Vi, Ai, etc. refer to this fixed decomposition.

Let us introduce terminology and notation concerning partitions. A partition α
of a set S can be considered as an equivalence relation on S. Hence we use notation
(x, y) ∈ α to say that x and y are in the same class of α. We denote by xα the class
of α that contains element x.

If F is a subgraph of G and S ⊆ V (G), then F induces a partition α of S:
(x, y) ∈ α if and only if x and y are in the same component of F (and every
x ∈ S \V (F ) forms its own class). We say that partition α is finer than partition β
if (x, y) ∈ α implies (x, y) ∈ β; in this case, β is coarser than α. If α = β, then α is
both finer and coarser than β. We denote by α1 ∨ α2 the unique finest partition α
coarser than both α1 and α2. This definition is very useful in the following situation.
Let F1, F2 be subgraphs of G, and suppose that F1 and F2 induce partitions α1

and α2 of a set S ⊆ V (G), respectively. If F1 and F2 intersect only in S, then the
partition induced by the union of F1 and F2 is exactly α1 ∨ α2 (see Figure 3). Let
βi be a partition of Bi for some i ∈ I and let Fi be a subgraph of G[Vi]. Then we
denote by Fi + βi the graph obtained from Fi by adding a new edge xy for every
(x, y) ∈ βi. Note that Fi + βi is not necessarily a subgraph of G[Vi].

Following the usual method of designing algorithms for bounded-treewidth graphs,
we define several subproblems for each node i ∈ I. A subproblem at node i cor-
responds to finding a subgraph Fi in Gi satisfying certain properties: informally
speaking, Fi is supposed to be the restriction of a Steiner forest F to Vi. The prop-
erties defining a subproblem prescribe how Fi should look from the “outside world”
(i.e., from the part of G outside Vi) and they contain all the information necessary
for deciding whether Fi can be extended, by edges outside Vi, to a conforming so-
lution. Let us discuss briefly and informally what information these prescriptions
should contain. Clearly, the edges of Fi in Bi and the way Fi connects the vertices
of Bi (i.e., the partition α of Bi induced by Fi) is part of this information. Further-
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more, the way Fi partitions Ai should also be part of this information. However,
there is a subtle detail that makes the description of our algorithm significantly
more technical. The definition of πi(F ) = π means that the components of F
partition Ai in a certain way. But the restriction Fi of F to Vi might induce a
finer partition of Ai than π: it is possible that two components of Fi are in the
same component of F (see Figure 4). This means that we cannot require that the
partition of Ai induced by Fi belongs to Π. We avoid this problem by “imagining”
the partition β of Bi induced by the full solution F , and require that Fi partition
Ai according to π if each class of β becomes connected somehow. In other words,
instead of requiring that Fi itself partitions Ai in a certain way, we require that
Fi + β induce a certain partition.

Formally, each subproblem P is defined by a tuple (i,H, π, α, β, µ), where

(S1) i ∈ I is a node of T ,

(S2) H is a spanning subgraph of G[Bi] (i.e., contains all vertices of G[Bi]),

(S3) π ∈ Πi is a partition of Ai,

(S4) α, β are partitions of Bi, β is coarser than α, and α is coarser than the partition
induced by the components of H, and

(S5) µ is an injective mapping from the classes of π to the classes of β.

The solution c(i,H, π, α, β, µ) of a subproblem P is the minimum length of a sub-
graph Fi of G[Vi] satisfying all of the following requirements:

(C1) Fi[Bi] = H (which implies Bi ⊆ V (Fi)).

(C2) α is the partition of Bi induced by Fi.

(C3) The partition of Ai induced by Fi + β is π.

(C4) For every descendant d of i (including d = i), the partition of Ad induced by
Fi + β belongs to Πd.

(C5) If there is a terminal pair (x1, x2) with x1, x2 ∈ Vi, then they are connected in
Fi + β.

(C6) Every x ∈ Ai is in the component of Fi + β containing µ(xπ).

We solve these subproblems by bottom-up dynamic programming. Let us discuss
how to solve a subproblem depending on the type of i.
Leaf nodes i. If i is a leaf node, then the value of the solution is trivially 0.
Join node i having children i1, i2. Note that Ai1 and Ai2 are disjoint: the

vertices of a join node are not terminal vertices. The set Ai is a subset of Ai1 ∪Ai2
and it may be a proper subset: if there is a pair (x, y) with x ∈ Ai1 , y ∈ Ai2 , then
x or y might not be in Ai.

We show that the value of the subproblem is

c(i,H, π, α, β, µ) =

min
(J1),(J2),(J3),(J4)

(c(i1, H, π
1, α1, β, µ1) + c(i2, H, π

2, α2, β, µ2)− `(H)), (8)

where the minimum is taken over all tuples satisfying, for p = 1, 2, all of the
following conditions:

(J1) α1 ∨ α2 = α.
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(J2) π and πp are the same on Aip ∩Ai.
(J3) For every v ∈ Aip ∩ Ai, µ(vπ) = µp(vπ

p

) (note that the classes of β are the
domain of both µ and µp).

(J4) If there is a terminal pair (x1, x2) with x1 ∈ A1 and x2 ∈ A2, then µ1(xπ
1

1 ) =

µ2(xπ
2

2 ).

We will use the following observation repeatedly. Let F be a subgraph of Gi
and let F p = F [Vip ]. Suppose that F induces partition α on Bi and β is a coarser
partition than α. Then two vertices of Vip are connected in F +β if and only if they
are connected in F p+β. Indeed, F 3−p does not provide any additional connectivity
compared to F p + β: as β is coarser than α3−p, if two vertices of Bi are connected
by a path in F 3−p, then they are already adjacent in F p + β.

Proof of (8) left ≤ (8) right:

Let P1 = (i1, H, π
1, α1, β, µ1) and P2 = (i2, H, π

2, α2, β, µ2) be subproblems min-
imizing the right-hand side of (8), and let F 1 and F 2 be optimal solutions of P1

and P2, respectively. Let F be the union of subgraphs F 1 and F 2. It is clear that
the length of F is exactly the right-hand side of (8): the common edges of F 1 and
F 2 are exactly the edges of H. We show that F is a solution of P , i.e., F satisfies
requirements (C1)–(C6).

(C1): Follows from F 1[Bi] = F 2[Bi] = F [Bi] = H.

(C2): Follows from (J1) and from the fact that F 1 and F 2 intersect only in Bi.

(C3): First consider two vertices x, y ∈ Aip ∩ Ai. Vertices x and y are connected
in F + β if and only if they are connected in F p + β. By (C3) for F p, this
is equivalent to (x, y) ∈ πp, which is further equivalent to (x, y) ∈ π by (J2).
Now suppose that x ∈ Ai1 ∩ Ai and y ∈ Ai2 ∩ Ai. In this case, x and y are
connected in F + β if and only if there is a vertex of Bi reachable from x in
F 1 + β and from y in F 2 + β, or in other words, µ1(xπ

1

) = µ2(yπ
2

). By (J3),
this is equivalent to µ(xπ) = µ(yπ), or (x, y) ∈ π (as µ is injective).

(C4): If d is a descendant of ip, then the statement follows using that (C4) holds for
solution F p of P p and the fact that for every descendant d of ip, Fi + β and
F + β induce the same partition of Ad. For d = i, the statement follows from
the previous paragraph, i.e., from the fact that F + β induces partition π ∈ Πi

on Ai.

(C5): Consider a pair (x1, x2). If x1, x2 ∈ Vi1 or x1, x2 ∈ Vi2 , then the statement
follows from (C5) on F 1 or F 2. Suppose now that x1 ∈ Vi1 and x2 ∈ Vi2 ;
in this case, we have x1 ∈ Ai1 and x2 ∈ Ai2 . By (C6) on F 1 and F 2, xp is

connected to µp(xπ
p

p ) in F p+β. By (J4), we have µ1(xπ
1

1 ) = µ2(xπ
2

2 ), hence x1
and x2 are connected to the same class of β in F + β.

(C6): Consider an x ∈ Ai that is in Aip . By condition (C6) on F p, we have that x is

connected in F p + β (and hence in F + β) to µp(vπ
p

), which equals µ(vπ) by
(J3).

Proof of (8) left ≥ (8) right:

Let F be a solution of subproblem (i,H, π, α, β, µ) and let F p be the subgraph
of F induced by Vip . To prove the inequality, we need to show three things. First,
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we have to define two tuples (i1, H, π
1, α1, β, µ1) and (i2, H, π

2, α2, β, µ2) that are
subproblems, i.e., they satisfy (S1)–(S5). Second, we show that (J1)–(J4) hold
for these subproblems. Third, we show that F 1 and F 2 are solutions for these
subproblems (i.e., (C1)–(C6)), hence they can be used to give an upper bound on
the right-hand side that matches the length of F .

Let αp be the partition of Bi induced by the components of F p; as F 1 and F 2

intersect only in Bi, we have α = α1 ∨α2, ensuring (J1). Since β is coarser than α,
it is coarser than both α1 and α2. Let πp be the partition of Aip defined by F + β;
we have πp ∈ Πip by (C4) for F . Furthermore, by (C3) for F , π is the partition of
Ai induced by F + β, hence it is clear that π and πp are the same on Aip ∩ Ai, so
(J2) holds. This also means that F +β (or equivalently, F p+β) connects a class of
πp to exactly one class of β; let µp be the corresponding mapping from the classes
of πp to β. Now (J4) is immediate. It is clear that the tuple (ip, H, π

p, αp, β, µp)
satisfies (S1)–(S5).

We show that F p is a solution of subproblem (ip, H, π
p, αp, β, µp). As the edges

of H are shared by F 1 and F 2, it will follow that the right-hand side of (8) is not
greater than the left-hand side.

(C1): Obvious from the definition of F 1 and F 2.

(C2): Follows from the way αp is defined.

(C3): Follows from the definition of πp, and from the fact that F + β and F p + β
induce the same partition on Aip .

(C4): Follows from (C4) on F and from the fact that F + β and F p + β induces the
same partition on Ad.

(C5): Suppose that x1, x2 ∈ Vip . Then by (C5) for F , x1 and x2 are connected in
F + β, hence they are connected in Fi + β as well.

(C6): Follows from the definition of µp.

Introduce node i of vertex v. Let j be the child of i. Since v is not a terminal
vertex, we have Aj = Ai. Let F ′ be a subgraph of G[Vj ] and let FS be obtained from
F ′ by adding vertex v to F ′ and making v adjacent to S ⊆ Bj . If α′ is the partition
of Bj induced by the components of F ′, then we define the partition α′[v, S] of Bi
to be the partition obtained by joining all the classes of α′ that intersect S and
adding v to this new class (if S = ∅, then {v} is a class of α′[v, S]). It is clear that
α′[S, v] is the partition of Bi induced by FS .

We show that the value of a subproblem is given by

c(i,H, π, α, β, µ) = min
(I1),(I2),(I3)

c(j,H[Bj ], π, α
′, β′, µ′) +

∑
xv∈E(H)

`(xv), (9)

where the minimum is taken over all tuples satisfying all of the following:

(I1) α = α′[v, S], where S is the set of neighbors of v in H.

(I2) β′ is β restricted to Bj .

(I3) For every x ∈ Ai, µ(xπ) is the class of β containing µ′(xπ).

Proof of (9) left ≤ (9) right:

Let F ′ be an optimal solution of subproblem P ′ = (j,H[Bj ], π, α
′, β′, µ′). Let F

be the graph obtained from F ′ by adding to it the edges of H incident to v; it is
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clear that the length of F is exactly the right-hand side of (9). Let us verify that
(C1)–(C6) hold for F .

(C1): Immediate.

(C2): Holds because of (I1) and the way α′[v, S] was defined.

(C3)–(C5): Observe that F + β connects two vertices of Vj if and only if F ′ + β′ does.
Indeed, if a path in F + β connects two vertices via vertex v, then the two
neighbors x, y of v on the path are in the same class of β as v (using that α and
β are coarser than the partition induced by H), hence (I2) implies that x, y are
in the same class of β′ as well. In particular, for every descendant d of i, the
components of F + β and the components of F ′ + β give the same partition of
Ad.

(C6): Follows from (C6) for F ′ and from (I3).

Proof of (9) left ≥ (9) right:

Let F be a solution of subproblem (i,H, π, α, β, µ) and let F ′ be the subgraph
of F induced by Vj . We define a tuple (j,H[Bj ], π, α

′, β′, µ′) that is a subproblem,
show that it satisfies (I1)–(I3), and that F ′ is a solution of this subproblem.

Let α′ be the partition of Vj induced by F ′ and let β′ be the restriction of β
on Bj ; these definitions ensure that (I1) and (I2) hold. Let µ′(xπ) = µ(xπ) \ {v},
which is a class of β′; clearly, this ensures (I3). Note that this is well defined, as it
is not possible that µ(xπ) is a class of β consisting of only v: by (C6) for F , this
would mean that v is the only vertex of Bi reachable from x in F . Since v is not a
terminal vertex, v 6= x, thus if v is reachable from x, then at least one neighbor of
v has to be reachable from x as well.

Let us verify that (S1)–(S5) hold for the tuple (j,H[Bj ], π, α
′, β′, µ′). (S1) and

(S2) clearly hold. (S3) follows from the fact that (C4) holds for F and Ai = Aj .
To see that (S4) holds, observe that (x, y) ∈ α′ implies (x, y) ∈ α, which implies
(x, y) ∈ β, which implies (x, y) ∈ β′. (S5) is clear from the definition of µ′.

The difference between the length of F and the length of F ′ is exactly
∑
xv∈E(H) `(xv).

Thus to show that the left-hand side of (9) is at most the right-hand side of (9), it
is sufficient to show that F ′ is a solution of subproblem (j,H[Bj ], π, α

′, β′, µ′).

(C1)–(C2): Obvious.

(C3)–(C5): As in the other direction, follow from the fact that F ′ + β′ induces the same
partition of Vj as F + β.

(C6): By the definition of µ′, it is clear that µ′(xπ) is exactly the subset of Bj that
is reachable from x in F + β and hence in F ′ + β′.

Forget node i of vertex v. Let j be the child of i. We have Vi = Vj and hence
Ai = Aj . We show that the value of a subproblem is given by

c(i,H, π, α, β, µ) = min
(F1),(F2),(F3),(F4)

c(j,H ′, π, α′, β′, µ′), (10)

where the minimum is taken over all tuples satisfying all of the following:

(F1) H ′[Bi] = H.

(F2) α is the restriction of α′ to Bi.
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(F3) β is the restriction of β′ to Bi and (x, v) ∈ β′ if and only if (x, v) ∈ α′.
(F4) For every x ∈ Ai, µ(xπ) is the (nonempty) set µ′(xπ) \ {v} (which implies that

µ′(xπ) contains at least one vertex of Bi).

Proof of (10) left ≤ (10) right:

Let F be a solution of (j,H ′, π, α′, β′, µ′). We show that F is a solution of
(j,H, π, α, β, µ) as well.

(C1): Clear because of (F1).

(C2): Clear because of (F2).

(C3)–(C5): We only need to observe that F + β and F + β′ have the same components:
since by (F3), (x, v) ∈ β′ implies (x, v) ∈ α′, the neighbors of v in F + β′

are reachable from v in F , thus F + β′ does not add any further connectivity
compared to F + β.

(C6): Observe that if µ′(xπ) are the vertices of Bj reachable from x in F + β′, then
µ(xπ) = µ′(xπ) \ {v} are the vertices of Bi reachable from x in F + β′. We
have already seen that F + β and F + β′ have the same components, thus
the nonempty set µ(xπ) is indeed the subset of Bi reachable from x in F + β.
Furthermore, by (F3), β is the restriction of β′ on Bi, thus if µ′(xπ) is a class
of β′, then µ(xπ) is a class of β.

Proof of (10) left ≥ (10) right:

Let F be a solution of (j,H, π, α, β, µ). We define a tuple (j,H ′, π, α′, β′, µ′) that
is a subproblem, we show that (F1)–(F3) hold, and that F is a solution of this
subproblem.

Let us define H ′ = F [Bj ] and let α′ be the partition of Bj induced by the
components of F ; these definitions ensure that (F1) and (F2) hold. We define β′

as the partition obtained by extending β to Bj such that v belongs to the class of
β that contains a vertex x ∈ Bi with (x, v) ∈ α′ (as β is coarser than the partition
induced by H, there is at most one such class; if there is no such class, then we
let {v} be a class of β′). It is clear that (F3) holds for this β′. Let us note that
F + β and F + β′ have the same connected components: if (x, v) ∈ β′, then x and
v are connected in F . Let µ′(xπ) be the subset of Bj reachable from x in F + β′

(or equivalently, in F + β). It is clear that µ(xπ) = µ′(xπ) \ {v′} holds, hence (F4)
is satisfied.

Let us verify first that (S1)–(S5) hold for (j,H ′, π, α′, β′, µ′). (S1) and (S2) clearly
holds. (S3) follows from the fact that (S3) holds for (i,H, π, α, β, µ) and Ai = Aj .
To see that (S4) holds, observe that if x, y ∈ Bi, then (x, y) ∈ α′ implies (x, y) ∈ α,
which implies (x, y) ∈ β, which implies (x, y) ∈ β′. Furthermore, if (x, v) ∈ α′, then
(x, v) ∈ β′ by the definition of β. (S5) is clear from the definition of µ′.

We show that F is a solution of (j,H ′, π, α′, β′, µ′).

(C1): Clear from the definition of H ′.

(C2): Clear from the definition of α′.

(C3)–(C5): Follow from the fact that F+β and F+β′ have the same connected components.

(C6): Follows from the definition of µ′.
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6.3 Constructing the partitions

Recall that the collection Π = (Πi)i∈I contains a set of partitions Πi for each i ∈ I.
We construct these sets Πi in the following way. Each partition in Πi is defined
by a sequence ((S1, r1), . . . , (Sp, rp)) of at most k + 1 pairs and a partition ρ of
{1, . . . , p}. The pair (Sj , rj) consists of a set Sj of O((k+1)(1+1/ε)) vertices of Gi
and a nonnegative real number rj , which equals the distance between two vertices
of G. This means that there are at most |V (G)|O((k+1)(1+1/ε)) · |V (G)|2 possible

pairs (Sj , rj) and hence at most |V (G)|O((k+1)2(1+1/ε)) different sequences. The
number of possible partitions ρ is O(kk). Thus if we construct Πi by considering
all possible sequences constructed from every possible choice of (Sj , rj), the size of
Πi is polynomial in |V (G)| for every fixed k and ε.

We construct the partition π corresponding to a particular sequence and ρ the
following way. Each pair (Sj , rj) can be used to define a group Rj = GG(Ai, Sj , rj)
of Ai. Roughly speaking, for each class P of ρ, there is a corresponding class of π
that contains the union of Rj for every j ∈ P . However, the actual definition is
somewhat more complicated. We want π to be a partition, which means that the
subsets of Ai corresponding to the different classes of ρ should be disjoint. In order
to ensure disjointness, we define R′j := Rj \

⋃j−1
j′=1Rj′ . The partition π of Ai is

constructed as follows: for each class P of ρ, we let
⋃
j∈P R

′
j be a class of π. Note

that these classes are disjoint by construction. If these classes fully cover Ai, then
we put the resulting partition π into Πi; otherwise, the sequence does not define a
partition. This finishes the construction of Πi.

Before showing that there is a near-optimal solution conforming to the collection
Π defined above, we need a further definition. For two vertices u and v, we denote
by u < v the fact that the topmost bag containing u is a proper descendant of the
topmost bag containing v. Note that each bag is the topmost bag of at most one
vertex in a nice tree decomposition (recall that we can assume that the root bag
contains only a single vertex). Thus if u and v appear in the same bag, then u < v
or v < u holds, i.e., this relation defines a total ordering of the vertices in a bag. We
can extend this relation to connected subsets of vertices: for two disjoint connected
sets K1, K2, K1 < K2 means that K2 has a vertex v such that u < v for every
vertex u ∈ K1, or in other words, K1 < K2 means that the topmost bag where
vertices from K1 appear is a proper descendant of the topmost bag where vertices
from K2 appear. If there is a bag containing vertices from both K1 and K2, then
either K1 < K2 or K2 < K1 holds. The reason for this is that the bags containing
vertices from K1 ∪K2 form a connected subtree of the tree decomposition, and if
the topmost bag in this subtree contains vertex v ∈ K1 ∪K2, then u < v for every
other vertex u in K1 ∪K2.

Lemma 6.4. There is a (1 + kε)-approximate solution conforming to Π.

Proof. Let F be a minimum-length Steiner forest. We describe a procedure
that adds further edges to F to transform it into a Steiner forest F ′ that conforms
to Π and has length at most (1+kε)`(F ). We need a delicate charging argument to
show that the total increase of the length is at most kε · `(F ) during the procedure.
In each step, we charge the increase of the length to an ordered pair (K1,K2) of
components of F . We are charging only to pairs (K1,K2) having the property that
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a-components

b-components

c-components

Vi

Bi

Fig. 4. The original solution F (plain and strong edges) consists of 4 b-components. Restricting

F to Vi yields 6 c-components (strong edges). Forest F ′, which is obtained from F by adding the

two dotted edges, has two a-components.

K1 < K2 and there is a bag containing vertices from both K1 and K2. Observe that
if Bi is the topmost bag where vertices from K1 appear, then these properties imply
that a vertex of K2 appears in this bag as well. Otherwise, if every bag containing
vertices of K2 appears above Bi, then there is no bag containing vertices from
both K1 and K2; if every bag containing vertices from K2 appears below Bi, then
K1 < K2 is not possible. Thus a component K1 can be the first component of at
most k such pairs (K1,K2): since the components are disjoint, the topmost bag
containing vertices from K1 can intersect at most k other components. We will
charge a length increase of at most ε · `(K1) on the pair (K1,K2), thus the total
increase is at most kε · `(F ). It is a crucial point of the proof that we charge on
(pairs of) components of the original solution F , even after several modification
steps, when the components of F ′ can be larger than the original components of F .
Actually, in the proof to follow, we will refer to three different types of components:

(a) Components of the current solution F ′.

(b) Each component of F ′ contains one or more components of F .

(c) If a component of F is restricted to the subset Vi, then it can split into up to
k + 1 components.

To emphasize the different meanings, and be clear as well, we use the terms a-
component, b-component, and c-component.
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Initially, we set F ′ := F and it will be always true that F ′ is a supergraph of
F , thus F ′ defines a partition of the b-components of F . Suppose that there is
a bag Bi such that the partition πi(F

′) of Ai induced by F ′ is not in Πi. Let
K1 < K2 < · · · < Kp be the b-components of F intersecting Bi, ordered by the
relation <. Some of these b-components might be in the same a-component of F ′;
let ρ be the partition of {1, . . . , p} defined by F ′ on these b-components.

Let Ai,j be the subset of Ai contained in Kj . The intersection of b-component
Kj with Vi gives rise to at most k+ 1 c-components, each of length at most `(Kj).
Thus by Lemma 6.1 and Proposition 6.2, there is a set Sj ⊆ V (Kj) of at most
O((k+1)(1+1/ε)) vertices such that Ai,j = GGi(Ai,j , Sj , rj) for some rj ≤ ε ·`(Kj).
If the sequence (S1, r1), . . . , (Sp, rp) and the partition ρ give rise to the partition
πi(F

′), then πi(F
′) ∈ Πi. Otherwise, let us investigate the reason why this sequence

and ρ do not define the partition πi(F
′). Let Rj , R

′
j be defined as in the definition

of Πi, i.e., Rj = GG(Ai, Sj , rj) and R′j := Rj \
⋃j−1
j′=1Rj′ . It is clear that Ai,j ⊆ Rj .

Therefore, every vertex of Ai is contained in some Rj and hence in some R′j . Thus
the sequence does define a partition π, but maybe a partition different from πi(F

′).
Let ρ(j) be the class of ρ containing j. If for every 1 ≤ j ≤ p, every vertex of Ai,j
is contained in

⋃
j′∈ρ(j)R

′
j′ , then π and πi(F

′) are the same. So suppose that some

vertex v ∈ Ai,j is not in
⋃
j′∈ρ(j)R

′
j′ . As v ∈ Rj , this means that v ∈ Rj∗ for some

j∗ < j and j∗ 6∈ ρ(j). The fact that Rj∗ = GGi
(Ai, Sj∗ , rj∗) contains v ∈ Ai,j means

that there is a vertex u ∈ Sj∗ such that dGi
(u, v) ≤ rj∗ ≤ ε · `(Kj∗). Note that

u is a vertex of b-component Kj∗ (as u ∈ Sj∗ and by definition Sj∗ is a subset of
V (Kj∗)) and v is a vertex of b-component Kj . We modify F ′ by adding a shortest
path that connects u and v. Clearly, this increases the length of F ′ by at most
ε · `(Kj∗), which we charge on the pair (Kj∗ ,Kj) of b-components. Note that Kj

and Kj∗ both intersect the bag Bi and Kj∗ < Kj , as required in the beginning of
the proof. Furthermore, Kj and Kj∗ are in the same a-component of F ′ after the
modification, but not before. Thus we charge at most once on the pair (Kj∗ ,Kj).

Since the modification always extends F ′, the procedure described above termi-
nates after a finite number of steps. At this point, every partition πi(F

′) belongs
to the corresponding set Πi, that is, the solution F ′ conforms to Π.

7. ALGORITHM FOR SERIES-PARALLEL GRAPHS

A series-parallel graph is a graph that can be built using series and parallel com-
position. Formally, a series-parallel graph G(x, y) with distinguished vertices x, y
is an undirected graph that can be constructed using the following rules:

(1) An edge xy is a series-parallel graph.

(2) If G1(x1, y1) and G2(x2, y2) are series-parallel graphs, then the graph G(x, y)
obtained by identifying x1 with x2 and y1 with y2 is a series-parallel graph with
distinguished vertices x := x1 = x2 and y := y1 = y2 (parallel connection).

(3) If G1(x1, y1) and G2(x2, y2) are series-parallel graphs, then the graph G(x, y)
obtained by identifying y1 with x2 is a series-parallel graph with distinguished
vertices x := x1 and y := y2 (series connection).

We prove Theorem 1.4 in this section by constructing a polynomial-time algo-
rithm to solve Steiner forest on series-parallel graphs. It is well-known that the
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treewidth of a graph is at most 2 if and only if it is a subgraph of a series parallel
graph [Bodlaender 1998]. Since setting the length of an edge to∞ is essentially the
same as deleting the edge, it follows that Steiner forest can be solved in polynomial
time on graphs with treewidth at most 2.

Let (G,D) be an instance of Steiner forest where G is a series parallel graph.
For i = 1, . . . ,m, denote by Gi(xi, yi) all the intermediary graphs appearing in
the series-parallel construction of G. We assume that these graphs are ordered
such that G = Gm and if Gi is obtained from Gj1 and Gj2 , then j1, j2 < i. Let
Di ⊆ D contain those pairs {u, v} where both vertices are in V (Gi). Let Ai be
those vertices v ∈ V (Gi) for which there exists a pair {v, u} ∈ D with u 6∈ V (Gi)
(note that Am = ∅ and Dm = D). For every Gi, we define two integer values ai, bi
and a function fi as follows.

(1) Let ai be the minimum length of a solution F of the instance (Gi,Di) with the
additional requirements that xi and yi are connected in F and every vertex in
Ai is in the same component as xi and yi.

(2) Let G′i be the graph obtained from Gi by identifying vertices xi and yi. Let
bi be the minimum length of a solution F of the instance (G′i,Di) with the
additional requirement that every vertex of Ai is in the same component as
xi = yi.

(3) For every S ⊆ Ai, let fi(S) be the minimum length of a solution F of the
instance (Gi,Di) with the additional requirements that xi and yi are not con-
nected, every v ∈ S is in the same component as xi, and every v ∈ Ai \ S is in
the same component as yi. (If there is no such F , then fi(S) =∞.)

The main combinatorial property that allows us to solve the problem in polynomial
time is that the functions fi are submodular. We prove something stronger: the
functions fi can be represented in a compact way as the cut functions of certain
directed graphs.

If D is a directed graph with lengths on the edges and X ⊆ V (D), then δD(X)
denotes the total length of the edges leaving X. For X,Y ⊆ V (D), we denote by
λD(A,B) the minimum length of a directed cut that separates A from B, i.e., the
minimum of δD(X), taken over all A ⊆ X ⊆ V (D)\B (if A∩B 6= ∅, then λD(A,B)
is defined to be ∞).

Definition 7.1. Let Di be a directed graph with nonnegative edge lengths. Let
si and ti be two distinguished vertices and let Ai be a subset of vertices of Di. We
say that (Di, si, ti, Ai) represents fi if fi(S) = λDi

(S ∪ {si}, (Ai \ S) ∪ {ti}) for
every S ⊆ Ai. If si, ti, Ai are clear from the context, then we simply say that Di

represents fi.

A function f defined on the subsets of a ground set U is submodular if f(X) +
f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) holds for every X,Y ⊆ U . For example, it is well
known that δG(X) is a submodular function on the subsets of V (G). Submodular-
ity is a powerful unifying concept of combinatorial optimization: classical results
on flows, cuts, matchings, and matroids can be considered as consequences of sub-
modularity. The following (quite standard) proposition shows that if a function can
be represented in the sense of Definition 7.1, then the function is submodular. In
the proof of Theorem 1.4, we show that every function fi can be represented by a
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directed graph, thus it follows that every fi is submodular. Although we do not use
this observation directly in the paper, it explains in some sense why the problem is
polynomial-time solvable.

Proposition 7.2. If a function f : 2A → R+ can be represented by (D, s, t, A)
(in the sense of Definition 7.1), then f is submodular.

Proof of Theorem 1.4. We assume that in the given instance of Steiner forest
each vertex appears only in at most one pair of D. To achieve this, if a vertex v
appears in k > 1 pairs, then we subdivide an arbitrary edge incident to v by k − 1
new vertices such that the length of each of the k− 1 edges on the path formed by
v and the new vertices is 0. Replacing vertex v in each pair involving it by one of
the new vertices does not change the problem, and achieves the said property.

For every i = 1, . . . ,m, we compute the values ai, and bi, as well as a represen-
tation Di of fi. In the optimal solution F for the instance (Gm,D), vertices xm
and ym are either connected or not. Thus the length of the optimal solution is the
minimum of am and fm(∅) (recall that Am = ∅). The value of fm(∅) can be easily
determined by computing the minimum-length sm-tm cut in Dm.

If Gi is a single edge e, then ai and bi are trivial to determine: ai is the length
of e and bi = 0. The directed graph Di representing fi can be obtained from Gi by
renaming xi to si, renaming yi to ti, and either removing the edge e (if Di = ∅) or

replacing e with a directed edge
−→
siti of length ∞ (if {xi, yi} ∈ Di).

If Gi is not a single edge, then it is constructed from some Gj1 and Gj2 by either
series or parallel connection. Suppose that ajp , bjp , and Djp for p = 1, 2 are already
known. We show how to compute ai, bi, and Di in this case.
Parallel connection. Suppose that Gi is obtained from Gj1 and Gj2 by parallel

connection. It is easy to see that ai = min{aj1 + bj2 , bj1 + aj2} and bi = bj1 + bj2 .
To obtain Di, we join Dj1 and Dj2 by identifying sj1 with sj2 (call it si) and by
identifying tj1 with tj2 (call it ti). Furthermore, for every {u, v} ∈ Di \{Dj1 ∪Dj2},
we add directed edges −→uv and −→vu with length ∞.

To see that Di represents fi, suppose that F is the subgraph that realizes the
value fi(S) for some S ⊆ Ai. We first show that there is an appropriate X ⊆
V (Di) certifying λDi

(S ∪ {s}, (Ai \ S) ∪ {t}) ≤ `(F ). The graph F is the edge
disjoint union of two graphs F1 ⊆ Gj1 and F2 ⊆ Gj2 . For p = 1, 2, let Sp ⊆ Ajp
be the set of those vertices that are connected to xjp in Fp, it is clear that Fp
connects Ajp \ Sp to yjp . Since Fp does not connect xi and yi, we have that
`(Fp) ≥ fjp(Sp). Since Djp represents fjp , there is a set Xp of vertices in Djp with
Sp ∪ {sjp} ⊆ Xp ⊆ V (Di) \ ((Ajp \ Sp) ∪ {tjp}), and δDjp

(Xp) = fjp(Sp). We
show that δDi

(X1 ∪X2) = δDj1
(X1) + δDj2

(X2). Since Di is obtained from joining
Dj1 and Dj2 , the only thing that has to be verified is that the edges with infinite
length added after the join cannot leave X1 ∪ X2. Suppose that there is such an
edge −→uv; assume without loss of generality that u ∈ X1 and v ∈ V (Dj2) \X2. This
means that u ∈ S1 and v 6∈ S2. Thus F connects u with xi and v with yi, implying
that F does not connect u and v. However {u, v} ∈ Di by the definition of Di,
contradicting the assumption that F is a realization of fi(S). Therefore, for the set
X := X1 ∪X2, we have

δDi
(X) = δDj1

(X1)+δDj2
(X2) = fj1(S1)+fj2(S2) ≤ `(F1)+`(F2) = `(F ) = fi(S),
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proving the existence of the required X.
Suppose now that for some S ⊆ Ai, there is a set X with S ∪ {si} ⊆ X ⊆

V (Di) \ ((Ai \ S) ∪ {ti}). We have to show that δDi
(X) ≥ fi(S). If δDi

(X) = ∞,
then this is trivially true, thus we assume that δDi(X) is finite. For p = 1, 2, let
Xp = X ∩V (Djp) and Sp = Ajp ∩Xp. As δDi(X) is finite, the infinite edges added
in the construction of Di do not appear on the boundary of X, hence δDi

(X) =
δDj1

(X1) + δDj2
(X2). Since Djp represents fjp , we know that δDjp

(Xp) ≥ fjp(Sp).
Let Fp be a subgraph of Gjp realizing fjp(Sp). Let F = F1 ∪ F2; we show that
`(F ) ≥ fi(S) holds by verifying that F satisfies all the requirements in the definition
of fi(S). It is clear that F does not connect xi and yi. Consider a pair {u, v} ∈ Di.
If {u, v} ∈ Djp , then F connects u and v. Otherwise, let {u, v} ∈ Di \ {Dj1 ∪ Dj2}
for some u ∈ V (Gj1) and v ∈ V (Gj2). Clearly, this means that u ∈ Aj1 and
v ∈ Aj2 . Suppose that F does not connect u and v, and, without loss of generality,
assume that u ∈ S1 and v 6∈ S2. By definition of S1 and S2, it follows that
u ∈ X1 and v 6∈ X2. This means that there is an edge −→uv of length ∞ in Di,
yielding δDi(X) = ∞, which contradicts our earlier assumption. Thus we can
indeed assume `(F ) ≥ fi(S) and it follows that

δDi(X) = δDj1
(X1)+δDj2

(X2) ≥ fj1(S1)+fj2(S2) = `(F1)+`(F2) = `(F ) ≥ fi(S).

This completes the argument for the parallel connection.
Series connection. Suppose that Gi is obtained from Gj1 and Gj2 by series

connection and let µ := yj1 = xj2 be the middle vertex. It is easy to see that
ai = aj1 + aj2 (i.e., vertex µ has to be connected to both xi and yi). To compute
bi, we argue as follows. Denote by GRj2 the graph obtained from Gj2 by swapping
the names of distinguished vertices xj2 and yj2 . Observe that the graph G′i in the
definition of bi arises as the parallel connection of Gj1 and GRj2 . It is easy to see

that aRj2 , bRj2 , and fRj2 corresponding to GRj2 can be defined as aRj2 = aj2 , bRj2 = bj2 ,

and fRj2(S) = fj2(Aj2 \ S). Furthermore, if Dj2 represents fj2 , then the graph DR
j2

obtained from Dj2 by reversing the orientation of the edges and swapping the names
of sj2 and tj2 represents fRj2 . Thus we have everything at our disposal to construct
a directed graph D′i that represents the function f ′i corresponding to the parallel
connection of Gj1 and GRj2 . Now observe that to compute bi we can consider two
cases: either µ is connected to xj1 and yj2 or not. We take the minimum of the
two values. The first case is simply min aj1 + bRj2 , bj1 +aRj2 = min aj1 + bj2 , bj1 +aj2 ,
and the second case is f ′i(Ai): graph G′i is isomorphic to the parallel connection of
Gj1 and GRj2 and the definition of bi requires that Ai is connected to xi = yi. The
value of f ′i(Ai) can be determined by a simple minimum cut computation in D′i.

Let T1 ⊆ Aj1 contain those vertices v for which there exists a pair {v, u} ∈ Di
with u ∈ Aj2 and let T2 ⊆ Aj2 contain those vertices v for which there exists a pair
{v, u} ∈ Di with u ∈ Aj1 . Observe that Ai = (Aj1 \ T1) ∪ (Aj2 \ T2). (Here we are
using the fact that each vertex is contained in at most one pair, thus v ∈ T1 cannot
be part of any pair {v, u} with u 6∈ V (Di)). To construct Di, we connect Dj1 and

Dj2 with an edge
−−−→
tj1sj2 of length 0 and set si := sj1 and ti := tj2 . Furthermore, we

introduce two new vertices γ1, γ2 and add the following edges (see Figure 5):

(1) −−−→sj1γ1 with length aj2 ,

(2) −−→γ1γ2 with length fj1(Aj1 \ T1) + fj2(T2),
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Dj1 T1sj1
tj1

γ1

Dj2T2 tj2
sj2

γ2

aj2

∞ ∞

0

aj1

∞∞∞

fj1(Aj1 \ T1) + fj2(T2)

Fig. 5. Construction of Di in a series connection.

(3)
−−→
γ2tj2 with length aj1 ,

(4) −−→γ2γ1 with length ∞,

(5) −→γ1v with length ∞ for every v ∈ V (Dj1),

(6) −→vγ2 with length ∞ for every v ∈ V (Dj2),

(7) −→vγ1 with length ∞ for every v ∈ T1, and

(8) −→γ2v with length ∞ for every v ∈ T2.

Suppose that F is the subgraph that realizes the value fi(S) for some S ⊆ Ai; we
first show that Di has an appropriate cut with value at most fi(S). Subgraph F is
the edge-disjoint union of subgraphs F1 ⊆ Gj1 and F2 ⊆ Gj2 . We consider 3 cases:
in subgraph F , vertex µ is either connected to neither xj1 nor yj2 , connected only
to xj1 , or connected only to yj2 (recall that xi = xj1 , µ = yj1 = xj2 , and yi = yj2 .

Case 1: µ is connected to neither xj1 nor yj2 . In this case, vertices of Aj1 are not
connected to yi and vertices of Aj2 are not connected to xi, hence S = Ai ∩Aj1 =
Aj1 \ T1 is the only possibility. Furthermore, F connects both T1 and T2 to µ. It
follows that `(F ) = `(F1)+`(F2) ≥ fj1(Aj1 \T1)+fj2(T2). Set X = V (Dj1)∪{γ1}:
now we have δDi

(X) = fj1(Aj1 \T1) + fj2(T2) ≤ `(F ), X contains (Aj1 \T1)∪{si},
and is disjoint from (Aj2 \ T2) ∪ {ti}.

Case 2: µ is connected only to xi. This is only possible if Aj1 \ T1 ⊆ S. Clearly,
`(F1) ≥ aj1 . Subgraph F2 has to connect every vertex in (S∩Aj2)∪T2 to xj2 = µ and
every vertex Ai \S = Aj2 \ (S∪T2) to yj2 . This implies `(F2) ≥ fj2((S∩Aj2)∪T2).
Let X2 ⊆ V (Dj2) be the corresponding cut in Dj2 . Set X := X2∪V (Dj1)∪{γ1, γ2},
we have δDi

(X) = fj2((S∩Aj2)∪T2)+aj1 ≤ `(F2)+aj1 ≤ `(F ) (note that no edge
with infinite length leaves X since T2 ⊆ X2). As X contains S and contains none
of the vertices in Ai \ S, we proved the existence of the required cut.

Case 3: µ is connected only to yi. Similar to case 2.
Suppose now that for some S ⊆ Ai, there is a set X ⊆ V (Di) with S ∪ {si} ⊆

X ⊆ V (Di) \ ((Ai \S)∪{ti}). We show that δDi(X) ≥ fi(S). If δDi(X) =∞, then
there is nothing to show. In particular, because of the edge −−→γ2γ1, we are trivially
done if γ2 ∈ X and γ1 6∈ X. Thus we have to consider only 3 cases depending on
which of γ1, γ2 are contained in X.

Case 1: γ1 ∈ X, γ2 6∈ X. In this case, the edges having length ∞ ensure

Journal of the ACM, Vol. V, No. N, MM 20YY.



36 · Bateni, Hajiaghayi, and Marx

x y

t1

t2

t3

Fig. 6. The graph used in the proof Theorem 8.2.

that V (Dj1) ⊆ X and V (Dj2) ∩ X = ∅, thus δDi
(X) = `(−−→γ1γ2) + `(

−−−→
tj1sj2) =

fj1(Aj1 \ T1) + fj2(Tj2). We also have S = Aj1 \ T1. Now it is easy to see that
fi(S) ≤ fj1(Aj1 \T1) + fj2(Tj2): taking the union of some F1 realizing fj1(Aj1 \T1)
and some F2 realizing fj2(Tj2), we get a subgraph F realizing fi(S).

Case 2: γ1, γ2 ∈ X. The edges starting from γ1 and having length∞ ensure that
V (Dj1) ⊆ X. Furthermore, γ2 ∈ X ensures that T2 ⊆ X. Let X2 := X ∩ V (Dj2);
we have X2 ∩Aj2 = T2 ∪ (S ∩Aj2), which implies δDj2

(X2) ≥ fj2(T2 ∪ (S ∩Aj2)).
Observe that δDi

(X) = aj1 + δDj2
(X2) (where the term aj1 comes from the edge

−−→
γ2tj2). Let F1 be a subset of Gj1 realizing aj1 and let F2 be a subset of Gj2 realizing
fj2(T2 ∪ (S ∩ Aj2)). Let F := F1 ∪ F2, and note that F connects vertices S with
xi, vertices Ai \ S with yi, and vertices in T1 ∪ T2 with µ. Thus fi(S) ≤ `(F ) =
aj1 + fj2(T2 ∪ (S ∩Aj2)) ≤ δDi

(X), as desired.
Case 3: γ1, γ2 6∈ X. Similar to Case 2.

8. HARDNESS FOR TREEWIDTH 3

In this section, we show that Steiner forest is NP-hard on graphs with treewidth
at most 3. Very recently, this has been proved independently by Gassner [2009],
but our compact proof perhaps better explains what the reason is for the sharp
difference between the series-parallel and the treewidth 3 cases.

Consider the graph in Figure 6 and let us define the function f analogously to the
function fi in Section 7: for every S ⊆ {1, 2, 3}, let f(S) be the minimum length of
a subgraph F where x and y are not connected, ti is connected to x for every i ∈ S,
and ti is connected to y for every i ∈ {1, 2, 3} \ S; if there is no such subgraph F ,
then let f(S) =∞. It is easy to see that f({1, 2}) = f({2, 3}) = f({1, 2, 3}), while
f({2}) =∞. Thus, unlike in the case of series-parallel graphs, this function is not
submodular.

We use the properties of the function f defined in the previous paragraph to
obtain a hardness proof in a more or less “automatic” way. Let us define the
Boolean relation R(a, b, c) := (a = c) ∨ (b = c). Observe that for any S ⊆ {1, 2, 3},
we have f(S) = 3 if R(1 ∈ S, 2 ∈ S, 3 ∈ S) = 1 and f(S) = ∞ otherwise (here
1 ∈ S means the Boolean variable that is 1 if and only if 1 ∈ S). Thus the gadget
in Figure 6 in some sense represents the relation R and, as we shall see, this is
sufficient to construct an NP-hardness proof.

An R-formula is a conjunction of clauses, where each clause is the relation R
applied to some Boolean variables or to the constants 0 and 1, e.g., R(x1, 0, x4) ∧
Journal of the ACM, Vol. V, No. N, MM 20YY.



PTASes for Steiner forest on planar and bounded-treewidth graphs · 37

R(0, x2, x1) ∧ R(x3, x2, 1). In the R-SAT problem, the input is an R-formula and
it has to be decided whether the formula has a satisfying assignment.

Lemma 8.1. R-SAT is NP-complete.

Proof. Readers familiar with Schaefer’s Dichotomy Theorem (more precisely,
the version allowing constants [Schaefer 1978, Lemma 4.1]) can easily see that R-
SAT is NP-complete. It is easy to verify that the relation R is neither weakly
positive, weakly negative, affine, nor bijunctive. Thus the result of Schaefer imme-
diately implies that R-SAT is NP-complete.

For completeness, we give a simple self-contained proof here. The reduction is
from Not-All-Equal 3SAT 4, which is known to be NP-complete even if there are
no negated literals [Schaefer 1978]. Given a NAE-3SAT formula, we replace each
clause as follows. For each clause NAE(a, b, c), we introduce a new variable d and
create the clauses R(a, b, d) ∧ R(c, d, 0) ∧ R(c, d, 1). If a = b = c, then it is not
possible that all three clauses are simultaneously satisfied (observe that the second
and third clauses force c 6= d). On the other hand, if a, b, c do not have the same
value, then all three clauses can be satisfied by an appropriate choice of d. Thus
the transformation from NAE-3SAT to R-SAT preserves satisfiability.

The main idea of the following proof is that we can simulate arbitrarily many
R-relations by joining in parallel copies of the graph shown in Figure 6.

Theorem 8.2. Steiner forest is NP-hard on planar graphs with treewidth at
most 3.

Proof. The proof is by reduction from R-SAT. Let φ be an R-formula having n
variables and m clauses. We start the construction of the graph G by introducing
two vertices v0 and v1. For each variable xi of φ, we introduce a vertex xi and
connect it to both v0 and v1. We introduce 3 new vertices ai, bi, ci corresponding
to the i-th clause. Vertices ai and bi are connected to both v0 and v1, while ci is
adjacent only to ai and bi. If the i-th clause is R(xi1 , xi2 , xi3), then we add the
3 pairs {xi1 , ai}, {xi2 , bi}, {xi3 , ci} to D. If the clause contains constants, then
we use the vertices v0 and v1 instead of the vertices xi1 , xi2 , xi3 , e.g., the clause
R(0, xi2 , 1) yields the pairs {v0, ai}, {xi2 , bi}, {v1, ci}. The length of every edge is
1. This completes the description of the graph G and the set of pairs D.

We claim that the constructed instance of Steiner forest has a solution with
n + 3m edges if and only if the R-formula φ is satisfiable. Suppose that φ has a
satisfying assignment f . We construct F as follows. If f(xi) = 1, then let us add
edge xiv1 to F ; if f(xi) = 0, then let us add edge xiv0 to F . For each clause,
we add 3 edges to F . Suppose that the i-th clause is R(xi1 , xi2 , xi3). We add one
of aiv0 or aiv1 to F depending on the value of f(xi1) and we add one of biv0 or
biv1 to F depending on the value of f(xi2). Since the clause is satisfied, either
f(xi3) = f(xi1) or f(xi3) = f(xi2); we add ciai or cibi to F , respectively (if f(xi3)
is equal to both, then the choice is arbitrary). We proceed in an analogous manner

4In Not-All-Equal 3SAT, or NAE-3SAT for short, we are given a 3SAT instance with the extra

restriction that a clause is not satisfied if all the literals in a clause are true. Similarly to 3SAT,
the clause is not satisfied if all the literals are false, either. Thus, the literals in each clause have

to take both true and false values.
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for clauses containing constants. It is easy to verify that each pair is in the same
connected component of F .

Suppose now that there is a solution F with length n+ 3m. At least one edge is
incident with each vertex xi, since it cannot be isolated in F . Each vertex ai, bi, ci
has to be connected to either v0 or v1, hence at least 3 edges of F are incident with
these 3 vertices. As F has n+ 3m edges, it follows that exactly one edge is incident
with each xi, and hence exactly 3 edges are incident with the set {ai, bi, ci}. It
follows that v0 and v1 are not connected in F . Define an assignment of φ by setting
f(xi) = 0 if and only if vertex xi is in the same component of F as v0. To verify
that a clause R(xi1 , xi2 , xi3) is satisfied, observe that ci is in the same component of
F as either ai or bi. If ci is in the same component as, say, ai, then this component
also contains xi3 and xi1 , implying f(xi3) = f(xi1) as required.

Finally, we claim that the graph of the above construction is planar and has
treewidth at most three. Planarity can be easily verified. We propose a tree de-
composition as follows to establish the treewidth bound. The root of the tree has
a bag containing v0, v1. The root has a child for each variable xi, with a bag
containing v0, v1, xi. In addition, there is a two-node path connected to the root
corresponding to each clause and its gadget: let ai, bi, ci be the vertices of the gad-
get. Then, the root of the tree decomposition has a child, whose bag is v0, v1, ai, bi,
and has a child of its own with a bag ai, bi, ci. The largest bag has size four, and the
endpoints of each edge of the graph appear together in at least one tree node.
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255–270.

Marx, D. 2009. Complexity results for minimum sum edge coloring. Discrete Applied Mathe-
matics 157, 5, 1034–1045.

Mitchell, J. S. B. 1999. Guillotine subdivisions approximate polygonal subdivisions: A sim-

ple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM Journal on Computing 28, 4, 1298–1309.

Mohar, B. and Thomassen, C. 2001. Graphs on surfaces. Johns Hopkins University Press,

Baltimore, MD.
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