Implementing Global Constraints as Structured Networks of Elementary Constraints

Dávid Hanák

Budapest University of Technology and Economics
dhanak@inf.bme.hu

CS², Szeged

July 1–4, 2002
1. Introduction

CLP
- stands for *Constraint Logic Programming*;
- denotes a family of programming languages used for finding values in various domains satisfying a set of relations (*constraints*);
- has several branches: CLP(B), CLP(Q/R), CLP(FD), CHR;
- is usually embedded into a *host language*, like Prolog.

CLP(FD)
- variables are represented by *finite sets of integer values* and
- connected by the constraints propagating changes in their domains;
- solutions can be enumerated by *labeling*;
- constraints can be *global constraints* and *indexicals*.

```prolog
| ?- A in 4..7, B in 0..10, A*2 #= B, labeling([], [A,B]).
  A = 4, B = 8 ; A = 5, B = 10 ; {no}
```

Global constraints as structured networks of elementary constraints
- theory by Nicolas Beldiceanu (SICS);
- implementation in SICStus Prolog by Dávid Hanák (BUTE).
2. Representing constraints as graphs

Initial graph
• an initial graph is generated from the constraint;
• every argument (variable) is assigned to a vertex;
• arcs are generated according to a regular pattern;
• arcs (directed edges) can be unary (!), binary, tertiary etc.;
• elementary constraints correspond to arcs.

Elementary constraints
• are easily and quickly tested;
• can be forced to succeed or fail;
• are implemented by reifiable indexicals.

Final graph
• includes arcs for which the elementary constraints hold;
• includes vertices which have at least one arc connected;
• is required to satisfy certain properties;
• graph properties are restrictions to the number of arcs, vertices, sources, connected components, etc.
3. The description language in theory

Type checking
- arguments of constraints are type checked;
- simple data types: int, atom and dvar;
- collection: an ordered list of items, each item having a set of labeled attributes;
- some other infrequently used types (list, term).

Value restrictions
- additional conditions on the values of the arguments;
- name relop expression;
- distinct(attribute);
- required(attribute);
- and much more...

Arc generators
- input: one or more collections, the items of which correspond to vertices;
- output: arcs connecting the vertices.
Example: element constraint

Constraint: \text{element(ITEM,TABLE)}
Arguments: ITEM: \text{collection(index-dvar, value-dvar)}
TABLE: \text{collection(index-int, value-int)}
Restrictions: \text{required([ITEM.index,ITEM.value]), |ITEM| = 1, ITEM.index \geq 1, ITEM.index \leq |TABLE|, required([TABLE.index,TABLE.value]), TABLE.index \geq 1, TABLE.index \leq |TABLE|, distinct(TABLE/index)}
Arc generator: \text{product}
Arc input: ITEM, TABLE
Graph property: \text{narc = 1}

\text{element} \{\text{index-3 value-2}, \\
\text{index-1 value-6,} \\
\text{index-2 value-9,} \\
\text{index-3 value-2,} \\
\text{index-4 value-9}\}\}

\begin{tikzpicture}
\node (1) at (0,0) {1};
\node (2) at (1,0) {2};
\node (3) at (2,0) {3};
\node (4) at (3,0) {4};
\node (5) at (0,-1) {5};
\node (6) at (1,-1) {6};
\node (7) at (2,-1) {7};
\node (8) at (3,-1) {8};
\draw (1) -- (2);
\draw (2) -- (3);
\draw (3) -- (4);
\draw (1) -- (5);
\draw (2) -- (6);
\draw (3) -- (7);
\draw (4) -- (8);
\end{tikzpicture}
4. Correcting the language specification

Selectors and designators. Assume we have a collection of collections.

- If it is a collection of *sets*, then
 - each set must have unique elements;
 - an element can appear in more than one sets.
- If it is a *partitioning*, each element can appear exactly once altogether.

How can we express this with `distinct(...)`? New concepts:

- selector ::= name | selector . attribute
 - meaning: *for the appropriate values one by one, ...*
- designator ::= selector | designator / attribute
 - meaning: *for the list of the appropriate values together, ...*

Usage:

- `distinct(SETS.set/val)` – for all sets one by one, values must be distinct;
- `distinct(PARTS/p/val)` – all the values in all the partitions must be distinct.

Arc constraint notation

- `ITEM.value[1]` means *take the value attribute of the first argument, which is of type ITEM* – this is not too fortunate;
- should use something like `Args[1].value` or `Arg1.value` instead.
5. The description language in practice

Constraint definition. A constraint is represented by a clause with 7 arguments. These are:

- the name and arguments of the constraint;
- the list of type checks;
- the list of value restrictions;
- the arc generator input (a list of collections);
- the name of the arc generator;
- the elementary constraint in the form Args => Body;
- the list of graph properties to be checked.

Collections

- a collection has the form \{Item1 ; Item2 ; \ldots\} where Itemi is a record;
- a record has the form (Att1-Val1 , Att2-Val2 , \ldots) where Atti is an attribute name and Vali is a value;
- the parentheses may be omitted.

\{ index-1,value-6 ; index-2,value-9 ;
 index-3,value-2 ; index-4,value-9 \}
Example: element constraint

\[
\text{graphfd:}\text{global}(\text{element}(\text{Item, Table}),\n
[\n\text{Item-collection(index-dvar, value-dvar),} \\
\text{Table-collection(index-int, value-int)}\n],
[\n\text{required(}\text{Item.index}, \text{required(}\text{Item.value}, \text{size(}\text{Item}) =:= 1,} \\
\text{Item.index }\#\geq 1, \text{Item.index }\#\leq \text{size(}\text{Table}),} \\
\text{Item.value in Table/value,} \text{required(}\text{Table.index}, \text{required(}\text{Table.value},} \\
\text{Table.index }\geq 1, \text{Table.index }\leq \text{size(}\text{Table}),} \\
\text{distinct(}\text{Table/index})\n],
[\text{Item,Table}],
\text{product,} \\
\{\text{A;B} \Rightarrow \{\text{A}.\text{index }\#= \{\text{B}.\text{index }\##/\ \{\text{A}.\text{value }\#= \{\text{B}.\text{value, narc }= 1).}
\]
6. Version 1: the complex relation checker

Features

- complete type checking (dvar is interpreted as int);
- full support for selectors and designators;
- partial restriction support:
 - distinct(...) and required(...); plus
 - arbitrary Prolog calls;
 - size(...) is replaced with the length of a collection or list.
- full set of built-in arc generators;
- extensive set of supported graph properties.

Example run

Testing element({index-2,value-3},
 {index-1,value-1;index-2,value-3}).
Type checking passed.
Type restrictions held.
Graph properties held.
Relation is sustained.

Testing element({index-2,value-1},
 {index-1,value-1;index-2,value-3}).
Type checking passed.
Type restrictions held.
Graph properties failed.
Relation is not sustained.
7. Version 2: the propagator

Embedding into SICStus Prolog
- fitted into the CLP(FD) system of SICStus using the well defined interface;
- this way it can be mixed with “traditional” constraint tools.

Propagation. When the constraint wakes up
- some elementary constraints are known to succeed;
- some are known to fail;
- some of the rest are forced into success or failure.

Example: propagation of the narc = N property
- two sets of arcs: S : known to succeed, U : still uncertain.
 - if $|S| > N$, fail;
 - if $|S| = N$, force every arc in U to failure;
 - if $|S| + |U| < N$, fail
 - if $|S| + |U| = N$, force every arc in U to success;
 - otherwise can not do anything.

Handling other properties can be a lot more complicated.
Example run

?- graph_global(element({index-A,value-B},
 {index-1,value-6 ; index-2,value-9 ; index-3,value-2})).
A in 1..3, B in{2}\/{6}\/{9} ? ;
no
?- graph_global(element({index-A,value-B},
 {index-1,value-6;index-2,value-9;index-3,value-2})),
 labeling([], [A]).
A = 1, B = 6 ? ; A = 2, B = 9 ? ; A = 3, B = 2 ? ; no

Benefits

• a great number of constraints can be described in a dense form using the same formalism;
• the same propagator can handle all of them.

Drawbacks

• it is hard to write thorough propagation for some graph properties;
• some formal descriptions may lead to more complete propagation than others;
• the efficiency of such generic propagator is very low.
8. Conclusions

The relation checker
- verifies the description language itself;
- verifies the formal descriptions of the constraints;
- verification needs proper sets test cases.

The propagator
- validates the completeness of constraint descriptions;
- may serve as a prototype for more effective implementations;
- requires good graph property enforcing algorithms;
- can not be as complete as direct methods.