
Implementing Global Constraints as
Structured Networks of Elementary

Constraints

Dávid Hanák
Budapest University of Technology and Economics

dhanak@inf.bme.hu

CS2, Szeged

July 1–4, 2002

1/11

1. Introduction
CLP
• stands for Constraint Logic Programming ;
• denotes a family of programming languages used for finding values in various
domains satisfying a set of relations (constraints);
• has several branches: CLP(B), CLP(Q/R), CLP(FD), CHR;
• is usually embedded into a host language, like Prolog.

CLP(FD)
• variables are represented by finite sets of interger values and
• connected by the constraints propagating changes in their domains;
• solutions can be enumerated by labeling ;
• constraints can be global constraints and indexicals.

| ?- A in 4..7, B in 0..10, A*2 #= B, labeling([], [A,B]).
A = 4, B = 8 ; A = 5, B = 10 ; {no}

Global constraints as structured networks of elementary constraints
• theory by Nicolas Beldiceanu (SICS);
• implementation in SICStus Prolog by Dávid Hanák (BUTE).

2/11

2. Representing constraints as graphs
Initial graph
• an initial graph is generated from the constraint;
• every argument (variable) is assigned to a vertex;
• arcs are generated according to a regular pattern;
• arcs (directed edges) can be unary (!), binary, tertiary etc.;
• elementary constraints correspond to arcs.

Elementary constraints
• are easily and quickly tested;
• can be forced to succeed or fail;
• are implemented by reifiable indexicals.

Final graph
• includes arcs for which the elementary constraints hold;
• includes vertices which have at least one arc connected;
• is required to satisfy certain properties;
• graph properties are restrictions to the number of arcs, vertices, sources, con-
nected compontents, etc.

3/11

3. The description language in theory
Type checking
• arguments of constraints are type checked;
• simple data types: int, atom and dvar;
• collection: an ordered list of items, each item having a set of labeled attributes;
• some other infrequently used types (list, term).

Value restrictions
• additional conditions on the values of the arguments;
• name relop expression;
• distinct(attribute);
• required(attribute);
• and much more. . .

Arc generators
• input: one or more collections, the items of which correspond to vertices;
• output: arcs connecting the vertices.

loop i?1 i?2 i?3 path i i i1 2 3- - clique(<)
i ii i1 2

3 4

-

-
? ?@@R��	

4/11

Example: element constraint

Constraint: element(ITEM,TABLE)
Arguments: ITEM: collection(index-dvar, value-dvar)

TABLE: collection(index-int, value-int)
Restrictions: required([ITEM.index,ITEM.value]), |ITEM| = 1,

ITEM.index ≥ 1, ITEM.index ≤ |TABLE|,
required([TABLE.index,TABLE.value]),
TABLE.index ≥ 1, TABLE.index ≤ |TABLE|,
distinct(TABLE/index)

Arc generator: product
Arc input: ITEM, TABLE
Arc constraint: ITEM.index[1] = TABLE.index[2] ∧

ITEM.value[1] = TABLE.value[2]
Graph property: narc = 1

element({index-3 value-2},
{index-1 value-6,
index-2 value-9,
index-3 value-2,
index-4 value-9})

k3
2

k
6
1k
9
2k
2
3k
9
4

�
�
�>

���:XXXzZ
Z
Z~

5/11

4. Correcting the language specification

Selectors and designators. Assume we have a collection of collections.
• If it is a collection of sets, then

– each set must have unique elements;
– an element can appear in more than one sets.

• If it is a partitioning, each element can appear exactly once altogether.

How can we express this with distinct(. . .)? New concepts:
• selector ::= name | selector . attribute
meaning: for the appropriate values one by one, . . .
• designator ::= selector | designator / attribute
meaning: for the list of the appropriate values together, . . .

Usage:
• distinct(SETS.set/val) – for all sets one by one, values must be distinct;
• distinct(PARTS/p/val) – all the values in all the partitions must be distinct.

Arc constraint notation
• ITEM.value[1] means take the value attribute of the first argument, which is
of type ITEM – this is not too fortunate;
• should use something like Args[1].value or Arg1.value instead.

6/11

5. The description language in practice

Constraint definition. A constraint is represented by a clause with 7 arguments.
These are:
• the name and arguments of the constraint;
• the list of type checks;
• the list of value restrictions;
• the arc generator input (a list of collections);
• the name of the arc generator;
• the elementary constraint in the form Args => Body;
• the list of graph properties to be checked.

Collections
• a collection has the form {Item1 ; Item2 ; . . . } where Itemi is a record ;
• a record has the form (Att1-Val1 , Att2-Val2 , . . .) where Att i is an attribute
name and Val i is a value;
• the parentheses may be omitted.

{ index-1,value-6 ; index-2,value-9 ;
index-3,value-2 ; index-4,value-9 }

7/11

Example: element constraint
graphfd:global(element(Item, Table),

[
Item-collection(index-dvar, value-dvar),
Table-collection(index-int, value-int)
],
[
required(Item.index), required(Item.value),
size(Item) =:= 1,
Item.index #>= 1, Item.index #=< size(Table),
Item.value in Table/value,
required(Table.index), required(Table.value),
Table.index >= 1, Table.index =< size(Table),
distinct(Table/index)
],
[Item,Table],
product,
{A;B} => {A}.index #= {B}.index #/\ {A}.value #= {B}.value,
narc = 1).

8/11

6. Version 1: the complex relation checker
Features
• complete type checking (dvar is interpreted as int);
• full support for selectors and designators;
• partial restriction support:

– distinct(. . .) and required(. . .); plus
– arbitary Prolog calls;
– size(. . .) is replaced with the length of a collection or list.

• full set of built-in arc generators;
• extensive set of supported graph properties.

Example run

Testing element({index-2,value-3},
{index-1,value-1;index-2,value-3}).

Type checking passed.
Type restrictions held.
Graph properties held.
Relation is sustained.

Testing element({index-2,value-1},
{index-1,value-1;index-2,value-3}).

Type checking passed.
Type restrictions held.
Graph properties failed.
Relation is not sustained.

9/11

7. Version 2: the propagator
Embedding into SICStus Prolog
• fitted into the CLP(FD) system of SICStus using the well defined interface;
• this way it can be mixed with “traditional” constraint tools.

Propagation. When the constraint wakes up
• some elementary constraints are known to succeed;
• some are known to fail;
• some of the rest are forced into success or failure.

Example: propagation of the narc = N property
• two sets of arcs: S : known to succeed, U : still uncertain.
• if |S| > N , fail;
• if |S| = N , force every arc in U to failure;
• if |S|+ |U | < N , fail
• if |S|+ |U | = N , force every arc in U to success;
• otherwise can not do anything.

Handling other properties can be a lot more complicated.

10/11

Example run

| ?- graph_global(element({index-A,value-B},
{index-1,value-6 ; index-2,value-9 ; index-3,value-2})).

A in 1..3, B in{2}\/{6}\/{9} ? ;
no
| ?- graph_global(element({index-A,value-B},

{index-1,value-6;index-2,value-9;index-3,value-2})),
labeling([], [A]).

A = 1, B = 6 ? ; A = 2, B = 9 ? ; A = 3, B = 2 ? ; no

Benefits
• a great number of constraints can be described in a dense form using the same
formalism;
• the same propagator can handle all of them.

Drawbacks
• it is hard to write thorough propagation for some graph properties;
• some formal descriptions may lead to more complete propagation than others;
• the efficiency of such generic propagator is very low.

11/11

8. Conclusions
The relation checker
• verifies the description language itself;
• verifies the formal descriptions of the constraints;
• verification needs proper sets test cases.

The propagator
• validates the completeness of constraint descriptions;
• may serve as a prototype for more effective implementations;
• requires good graph property enforcing algorithms;
• can not be as complete as direct methods.

	Introduction
	CLP
	CLP(FD)
	Global constraints as structured networks of elementary constraints

	Representing constraints as graphs
	Initial graph
	Elementary constraints
	Final graph

	The description language in theory
	Type checking
	Value restrictions
	Arc generators
	Example: element constraint

	Correcting the language specification
	Selectors and designators.
	Arc constraint notation

	The description language in practice
	Constraint definition.
	Collections
	Example: element constraint

	Version 1: the complex relation checker
	Features
	Example run

	Version 2: the propagator
	Embedding into SICStus Prolog
	Propagation.
	Example: propagation of the narc = N property
	Example run
	Benefits
	Drawbacks

	Conclusions
	The relation checker
	The propagator

