
FDBG, the CLP(FD) Debugger Library
of SICStus Prolog

Péter Szeredi, Dávid Hanák, Tamás Szeredi

Budapest University of Technology and Economics

szeredi@cs.bme.hu, {dhanak,tszeredi}@inf.bme.hu

September 7, 2004

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France

Contents
• Introduction

• Basic Concepts

? CLP(FD) Events

? Visualizers

• Using The Debugger

? Built-in Visualizers

? Variable Naming

? Customizing Visualizers

• Implementation Issues

? Event Detection

? Variable Naming Revisited

• Conclusions

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 1

Introduction

CLP(FD) and Debugging
• CLP(FD) implementations:

? Designated development environments (e.g. OPL Studio);

? Embedded into a host language – Prolog is a logical choice

(backtracking, logic variables).

• CLP(FD) and debugging in SICStus Prolog:

? Extensive CLP(X) libraries, including CLP(FD);

? An excellent, flexible, extensible debugger for Prolog;

? minimal support for CLP(X) debugging (until FDBG).

• Possible approaches to observe a CLP(FD) run:

? interactive tools (e.g. step-by-step debuggers);

? assertion based methods;

? trace generation and analysis – ideal for nonlinear program

execution, like in the case of CLP(FD).

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 3

FDBG and its Event Trace
• FDBG = Finite domain DeBuGger

• Main purpose: enable CLP(FD) programmers to gather

information about constraints and variables possibly even

without modifying the observed program.

• FDBG translates the run of a CLP(FD) program into an event

trace:

? a sequence of log entries;

? each entry corresponds to a CLP(FD) event;

? an event represents:

∗ the activity of a constraint and its effect on variables;

∗ a labeling decision while exploring the search tree.

? appearance of entries is fully customizable.

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 4

A Sample Session with FDBG

| ?-

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 5

A Sample Session with FDBG

| ?- use_module(library(clpfd)), use_module(library(fdbg)),
fdbg_on.

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 5

A Sample Session with FDBG

| ?- use_module(library(clpfd)), use_module(library(fdbg)),
fdbg_on.

% The clp(fd) debugger is switched on
yes

| ?-

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 5

A Sample Session with FDBG

| ?- use_module(library(clpfd)), use_module(library(fdbg)),
fdbg_on.

% The clp(fd) debugger is switched on
yes

| ?- X #< 6, X #> 3, labeling([], [X]).

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 5

A Sample Session with FDBG

| ?- use_module(library(clpfd)), use_module(library(fdbg)),
fdbg_on.

% The clp(fd) debugger is switched on
yes

| ?- X #< 6, X #> 3, labeling([], [X]).
<fdvar_1> in inf..5

fdvar_1 = inf..sup -> inf..5
Constraint exited.

<fdvar_1> in 4..sup
fdvar_1 = inf..5 -> 4..5
Constraint exited.

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 5

A Sample Session with FDBG

| ?- use_module(library(clpfd)), use_module(library(fdbg)),
fdbg_on.

% The clp(fd) debugger is switched on
yes

| ?- X #< 6, X #> 3, labeling([], [X]).
<fdvar_1> in inf..5

fdvar_1 = inf..sup -> inf..5
Constraint exited.

<fdvar_1> in 4..sup
fdvar_1 = inf..5 -> 4..5
Constraint exited.

Labeling [3, <fdvar_1>]: starting in range 4..5.
Labeling [3, <fdvar_1>]: step: <fdvar_1> = 4
X = 4 ? ;
Labeling [3, <fdvar_1>]: step: <fdvar_1> >= 5
X = 5 ? ;
Labeling [3, <fdvar_1>]: failed.

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 5

Basic Concepts

CLP(FD) Events
• CLP(FD) problem solving consists of two repeated phases:

? narrowing a variable domain due to constraint propagation;

? narrowing a variable domain due to labeling.

• Observation: with two classes of events we can describe the

behavior of a CLP(FD) program:

? constraint events

∗ a constraint is woken up and performs propagation;

? labeling events

∗ a choicepoint is created or exhausted (through failure);

∗ the domain of a variable is narrowed.

• Events are intercepted and dispatched to visualizers by the

FDBG core.

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 7

Visualizers
• Predicates responsible for handling CLP(FD) events;

• Usually display trace information;

• In general can do any kind of processing (like checking

invariants);

• Analogously to event classes, there are two types:

? constraint visualizers;

? labeling visualizers.

• FDBG provides default built-in visualizers for both types;

• Utility predicates support writing custom visualizers.

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 8

The User Interface

An Example – The N-queens Problem

nqueens(N, Queens) :-
bb_put(board_size, N),
length(Queens, N),
fdbg_assign_name(Queens, queen),
domain(Queens, 1, N),
constrain_all(Queens),

% asiymmetric(N, Queens), % break symmetry
labeling([ff], Queens).

...
no_threat(X, Y, I) :-

fd_global(no_threat(X,Y,I), 1, [val(X),val(Y)]).

:- multifile clpfd:dispatch_global/4.
clpfd:dispatch_global(no_threat(X,Y,I), S, S, Actions) :-

(integer(X) -> no_threat_prop(Y, X, I, Actions)
; integer(Y) -> no_threat_prop(X, Y, I, Actions)
; Actions = []
).

...

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 10

Built-in Visualizers
• FDBG uses built-in visualizers by default;

• Built-in visualizers can work without any program modification.

One block of output of the constraint visualizer

no_threat(2,<queen_3>,2)
queen_3: 1..2 -> {1}
Constraint exited.

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 11

Built-in Visualizers
• FDBG uses built-in visualizers by default;

• Built-in visualizers can work without any program modification.

One block of output of the constraint visualizer

no_threat(2,<queen_3>,2) The constraint itself;

queen_3: 1..2 -> {1} Legend: domain narrowings;

Constraint exited. constraint behavior.

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 11

Built-in Visualizers
• FDBG uses built-in visualizers by default;

• Built-in visualizers can work without any program modification.

One block of output of the constraint visualizer

no_threat(2,<queen_3>,2) The constraint itself;

queen_3: 1..2 -> {1} Legend: domain narrowings;

Constraint exited. constraint behavior.

Details:

• The legend lists all the variables of the constraint;

• Most common behaviors are entailment (above) and failure.

• Variable names:

? all variables are assigned a name for clarity;

? needed because name in source is not preserved in Prolog;

? usually displayed between angle brackets (<queen_3>).

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 11

Built-in Visualizers – cont.

Output of the labeling visualizer

Labeling [3, <fdvar_1>]: starting in range 4..5.
Labeling [3, <fdvar_1>]: step: <fdvar_1> = 4
X = 4 ? ;
Labeling [3, <fdvar_1>]: step: <fdvar_1> >= 5
X = 5 ? ;
Labeling [3, <fdvar_1>]: failed.

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 12

Built-in Visualizers – cont.

Output of the labeling visualizer

Labeling [3, <fdvar_1>]: starting in range 4..5.
Labeling [3, <fdvar_1>]: step: <fdvar_1> = 4
X = 4 ? ;
Labeling [3, <fdvar_1>]: step: <fdvar_1> >= 5
X = 5 ? ;
Labeling [3, <fdvar_1>]: failed.

Details:

• Each event results in one line of output;

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 12

Built-in Visualizers – cont.

Output of the labeling visualizer

Labeling [3, <fdvar_1>]: starting in range 4..5.
Labeling [3, <fdvar_1>]: step: <fdvar_1> = 4
X = 4 ? ;
Labeling [3, <fdvar_1>]: step: <fdvar_1> >= 5
X = 5 ? ;
Labeling [3, <fdvar_1>]: failed.

Details:

• Each event results in one line of output;

• The number in brackets (3 here) identifies the choicepoint;

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 12

Built-in Visualizers – cont.

Output of the labeling visualizer

Labeling [3, <fdvar_1>]: starting in range 4..5.
Labeling [3, <fdvar_1>]: step: <fdvar_1> = 4
X = 4 ? ;
Labeling [3, <fdvar_1>]: step: <fdvar_1> >= 5
X = 5 ? ;
Labeling [3, <fdvar_1>]: failed.

Details:

• Each event results in one line of output;

• The number in brackets (3 here) identifies the choicepoint;

• Name after number is the variable being labeled in choicepoint;

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 12

Built-in Visualizers – cont.

Output of the labeling visualizer

Labeling [3, <fdvar_1>]: starting in range 4..5.
Labeling [3, <fdvar_1>]: step: <fdvar_1> = 4
X = 4 ? ;
Labeling [3, <fdvar_1>]: step: <fdvar_1> >= 5
X = 5 ? ;
Labeling [3, <fdvar_1>]: failed.

Details:

• Each event results in one line of output;

• The number in brackets (3 here) identifies the choicepoint;

• Name after number is the variable being labeled in choicepoint;

• This is followed by a specification of the event:

? choicepoint creation (start);

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 12

Built-in Visualizers – cont.

Output of the labeling visualizer

Labeling [3, <fdvar_1>]: starting in range 4..5.
Labeling [3, <fdvar_1>]: step: <fdvar_1> = 4
X = 4 ? ;
Labeling [3, <fdvar_1>]: step: <fdvar_1> >= 5
X = 5 ? ;
Labeling [3, <fdvar_1>]: failed.

Details:

• Each event results in one line of output;

• The number in brackets (3 here) identifies the choicepoint;

• Name after number is the variable being labeled in choicepoint;

• This is followed by a specification of the event:

? choicepoint creation (start);

? labeling choice (here step);

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 12

Built-in Visualizers – cont.

Output of the labeling visualizer

Labeling [3, <fdvar_1>]: starting in range 4..5.
Labeling [3, <fdvar_1>]: step: <fdvar_1> = 4
X = 4 ? ;
Labeling [3, <fdvar_1>]: step: <fdvar_1> >= 5
X = 5 ? ;
Labeling [3, <fdvar_1>]: failed.

Details:

• Each event results in one line of output;

• The number in brackets (3 here) identifies the choicepoint;

• Name after number is the variable being labeled in choicepoint;

• This is followed by a specification of the event:

? choicepoint creation (start);

? labeling choice (here step);

? failure.

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 12

Variable Naming
• Variables are assigned a name:

? manually by calling fdbg_assign_name/2;

? automatically when calling fdbg_annotate/2,3;

? auto-assigned names look like fdvar N (N unique counter).

• Names are primarily used to refer to variables in the trace;

• This done via annotation: each variable in a term is replaced by

a term containing its name, itself, and its narrowed domain;

• Convenience service: assign names to an entire term and each

variable in it with a single call:

term/variable selector name

bar(A, [B, C]) [] foo assigned name

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 13

Variable Naming
• Variables are assigned a name:

? manually by calling fdbg_assign_name/2;

? automatically when calling fdbg_annotate/2,3;

? auto-assigned names look like fdvar N (N unique counter).

• Names are primarily used to refer to variables in the trace;

• This done via annotation: each variable in a term is replaced by

a term containing its name, itself, and its narrowed domain;

• Convenience service: assign names to an entire term and each

variable in it with a single call:

term/variable selector name

bar(A, [B, C]) [] foo assigned name

A [1] foo 1 }
implicit

derived names
B [2,#1] foo 2 1
C [2,#2] foo 2 2

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 13

Customizing Visualizers
• Built-in visualizers have no knowledge of the problem structure;

• Customized visualization can exploit this additional knowledge;

• Customization is possible on two levels:

? slight modification of the output of the built-in visualizers

by defining hook predicates;

? writing custom visualizers.

• Use a hook predicate to modify the legend of N-queens:
? no_threat(2,<queen_3>,2)

queen_3: [X - . .]
Constraint exited.

• Or a custom visualizer to completely redefine it:
? no_threat(4,<queen_3>,1)

[X X . .]
[. . . X]
[X X - -]
[X X X X]

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 14

Legend Portray Hook

fdbg:legend_portray(Name, Var, After) :-
write(Name), write(’: ’),
print_row(Var, After).

print_row(Var, After) :-
bb_get(board_size, N),
fd_set(Var, Now),
write(’[’), print_fields(1, N, Now, After), write(’]’).

print_fields(I, N, _, _) :-
I > N, !, write(’ ’).

print_fields(I, N, Now, After) :-
write(’ ’),
(fdset_member(I, After) -> write(’X’) % allowed
; fdset_member(I, Now) -> write(’-’) % being pruned
; write(’.’) % pruned
),
I1 is I+1,
print_fields(I1, N, Now, After).

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 15

Custom Visualizer

nqueens_show(Constraint, Actions) :-
fdbg_current_name(Queens, queen),
fdbg_annotate(Constraint, AConst, _),
fdbg_annotate(Queens, Actions, AQueens, _),
print(AConst), nl,
print_board(AQueens).

print_board([]) :- nl.
print_board([fdvar(_,Var,After)|Qs]) :- !,

write(’ ’),
print_row(Var, After), nl,
print_board(Qs).

print_board([V|Qs]) :-
write(’ ’),
fdset_singleton(Set, V),
print_row(V, Set), nl,
print_board(Qs).

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 16

Implementation Issues

Event detection
• SICStus debugger provides advice points: programmable

breakpoints;

• FDBG places advice points on all constraint handling predicates;

• Limitation: only global constraints are handled, indexicals are

ignored;

• Workaround: when FDBG is turned on, constraints otherwise

compiled as indexicals translate into global constraints (through

goal expansion);

• Consequences:

? FDBG should be consulted before the program to be traced;

? Negligible effect on performace compared to overhead of

FDBG in general;

? Minor behavioral changes (slightly different propagation);

? Original form of constraints is lost in the process.

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 18

Variable Naming Revisited

Reminder

• Names can be assigned by the user to any term or variable;

• Visualizers refer to variables with names exploiting annotation;

• Annotation is the process of replacing variables in a term with

descriptive compound terms.

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 19

Variable Naming Revisited

Reminder

• Names can be assigned by the user to any term or variable;

• Visualizers refer to variables with names exploiting annotation;

• Annotation is the process of replacing variables in a term with

descriptive compound terms.

Implementation

• Names are stored in an AVL tree in the global private field;

• As a result, the name store is volatile (fresh for each query);

• Consequences:

? No need to clear the name store after each query (good);

? Need to assign names in each query (seemingly

inconvenient but unavoidable: different variables!);

? The best place to do this is within the program itself.

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 19

Future Work and Conclusions

Future Work
• Indexical to global constraint redirection fails to preserve original

form of constraints – need to find an acceptible solution;

• When labeling fails, there is no information in the log about

what state the domains of variables are restored to through

backtracking;

• A generic, configurable graphical visualizer – plans have already

been proposed, still need to implement it.

Basic 2-dimensional visualization Embellished version

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 21

Conclusions
• Presented basic trasing scheme for CLP(FD) programs written

in SICStus Prolog;

• Introduced events and visualizers;

• Showed how variable naming and output customization can help

to clarify the trace log;

• Given examples to visualizer customization;

• Covered a few implementational details;

• Scetched possible directions of future development.

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 22

Conclusions
• Presented basic trasing scheme for CLP(FD) programs written

in SICStus Prolog;

• Introduced events and visualizers;

• Showed how variable naming and output customization can help

to clarify the trace log;

• Given examples to visualizer customization;

• Covered a few implementational details;

• Scetched possible directions of future development.

Thanks for your attention!

Workshop on Logic Programming Environments – September 7, 2004, Saint-Malo, France 22

