
FDBG, the CLP(FD) Debugger Library
of SICStus Prolog

Dávid Hanák and Tamás Szeredi

Budapest University of Technology and Economics
{dhanak,tszeredi}@inf.bme.hu

Abstract. FDBG (short for Finite domain DeBuGger) is a tool address-
ing the problems of debugging �nite domain (FD) constraint programs.
Implemented as a SICStus Prolog library, it allows CLP(FD) program-
mers to trace FD variable domain changes. FDBG is capable of detecting
the wake-up of constraints as well as the steps of labeling, and it reports
the e�ects of these events on the variables. The simplest way to use
FDBG is to produce a wallpaper trace of the run of the constraint pro-
gram. The trace is analyzed (typically post-mortem) either manually or
by a tool designed for this purpose. However, program behavior may
also be observed in real time exploiting the modular design and the �ex-
ible output redirecting capabilities. FDBG was written almost entirely
in Prolog as user space code, no native routines were used directly. It is
also included (with source) in the o�cial SICStus distribution in versions
3.9 and upwards.

1 Introduction

When writing CLP(FD) programs or global constraints in particular, it is often
necessary to observe how the domains of various variables behave, how di�erent
constraints linked by shared variables a�ect each other, etc. There are numerous
projects aimed at developing tools to debug or trace applications based on �nite
domain constraints, such as Grace [1] or the DiSCiPl project [2]. Some projects
committed themselves to interactive tools, like the Constraint Investigator for
Oz [3], others have chosen an assertion-based approach [4,5], and a large number
of publications deal with trace generation and analysis [6,7,8].

A number of CLP(X) systems are standalone environments developed spe-
cially for writing CLP(X) programs. These often have a built-in debugger tool,
such as the OPL Studio Visualizer [9]. Others are embedded into a host system
or language, like the SICStus Prolog CLP(X) libraries [10]. These environments
are usually also equipped with a debugger of the base system, but it is not at
all straightforward to acquire the necessary trace information on constraints by
means of these debuggers. In case of SICStus, constraints are implemented very
much like a group of coroutines, running in the background, waking up whenever
it is necessary. Therefore single stepping a program is inadequate, because one
does not see what happens in the background. In order to observe that, one has
no choice but to place breakpoints on the coroutines, which is quite tedious.

The main purpose of writing FDBG (which stands for Finite domain De-
BuGger) was to enable CLP(FD) programmers to gather all information about
constraints and variables without even modifying the program itself, let alone
writing predicates speci�cally for debugging purposes. For regular, sequentially
running Prolog programs, a traditional step-by-step debugger is an adequate
tool. But because CLP(X) programs run nondeterministically, we have chosen
to implement a debugger producing wallpaper trace instead. This decision is
justi�ed by the large number of similar attempts we have already referred to.

The trace output is a sequence of log entries. Each entry corresponds to
a CLP(FD) event. One group of events represent the wake-up and activity of
constraints. Such events describe which constraint is active currently and how it
narrows the domains of variables. Events of the other group inform us about the
process of labeling, containing data on the structure of the search tree, showing its
active and failed branches. The appearance of the log entries can be customized
by the programmer who is provided with a set of tools to process the events.
Filters may also be applied easily to reduce the size of the log.

Constraints which are kept in the store and woken up regularly to narrow
domains are often referred to in the literature as propagators. Likewise, the
labeling process is also called distribution of the search space. In this paper,
however, we will follow the conventions of SICStus by using the terms constraints
and labeling. It is important to note that FDBG works only for a subset of
constraints called global constraints, but this seemingly big limitation is mostly
overcome by a trick discussed in Section 4.1.

FDBG was written almost entirely in Prolog as user space code, no native
routines were used directly. The library (along with its source code) is part of
the SICStus Prolog distribution versions 3.9 and upwards.

We assume the reader is familiar with constraint programming and knowing
details of the SICStus CLP({d) library can also be useful. For an introduction
to CLP(X) using SICStus Prolog, refer to [11].

This paper is structured as follows. Section 2 introduces the notion of events
and the related concept of visualizers which are essential in understanding the
principles of FDBG. Section 3 gives a birds-eye view of the user interface and
shows some examples of using the debugger. Section 4 covers the most interesting
aspects of the implementation and illustrates how most of the services can be
provided by user space Prolog code. Section 5 compares the services of FDBG
with those of some other constraint debuggers and Sect. 6 shows some ideas
about the directions of future development. Finally, Sect. 7 concludes the paper.

2 Events In CLP(FD) Execution

The process of �nding a solution satisfying a given set of constraints consists of
two repeated phases. In the �rst phase the CLP(FD) solver calls the appropriate
constraint dispatchers as long as there are unprocessed variable domain changes.
When there are no more constraints to wake, labeling is initiated (or resumed),

which�by constraining the domain of a yet uninstantiated variable�reactivates
the solver. This iteration of the two phases eventually leads to a solution.

From this observation we can draw the conclusion that there are two classes

of events that control the behavior of a CLP(FD) program. The events of the
�rst class are called constraint events in FDBG. These occur when a global
constraint is woken up by the solver. The data available on such events are the
name and arguments of the constraint, and the so called action list, a list of
terms describing the domain narrowing decisions made in the given propagation
step. The events of the second class are called labeling events, and can fall into
one of the following two groups:

� A choicepoint event is an event associated with the creation or the failure of
a choicepoint. Exactly one variable belongs to a choicepoint, but the same
variable might be considered in more than one choicepoints. For example, in
`enum' mode labeling, a single choicepoint enumerates all possible values, but
in `step' mode labeling, several binary choicepoints may have to be created
for the same variable.

� A labeling choice is made when the domain of a variable constrained either
through instantiation or by removing a part of the domain. Several choices
branch o� a single choicepoint.

Available data for a labeling event are the variable under consideration, a term
specifying the subtype of the event, and a unique identi�er of the choicepoint.

Every event is intercepted and dispatched to the appropriate visualizers by
the FDBG core. A visualizer is a Prolog predicate that reacts to events, usually
by displaying the trace information, but in general it can do any kind of process-
ing, like checking invariants, etc. Analogously to the the two major event classes
we can also distinguish two di�erent types of visualizers: constraint visualiz-

ers handling constraint events and labeling visualizers handling labeling events.
FDBG provides several built-in visualizers which produce an exhaustive output,
but one can also develop user-de�ned visualizers to �lter the information or to
organize it in a way that suits the problem at hand better. Both possibilities are
introduced in the next section in greater detail.

3 The User Interface

FDBG works out-of-the-box, that is, in order to use the most basic services the
user does not have to modify the CLP(FD) program at all. When started without
any options, FDBG will use its built-in visualizers, which are discussed in the
�rst subsection below. However, the default trace output can often be confusing.
In order to make the output more understandable, minor modi�cations to the
program are necessary. Fortunately these modi�cations are sparse and do not
decrease the e�ciency signi�cantly. These are described in Sects. 3.2 and 3.3.

If this proves to be insu�cient, one can customize the output of the built-in
visualizers or even write user-de�ned visualizers which can exploit any problem-
speci�c knowledge while displaying the trace information. Naturally, these re-

quire larger and larger modi�cations and extensions to the original program.
These features are covered by Sect. 3.4.

FDBG also provides several auxiliary services, two of which are introduced
in Sect. 3.5, concluding the introduction of the user interface.

For further reading and technical details, please refer to the user manual [10,
Sect. FDBG].

3.1 Built-in Visualizers

The library provides a default visualizer for both event classes. fdbg_show/2
is the default visualizer for constraint events, and fdbg_label_show/3 is the
default for labeling events.

The arguments required by the visualizers are collected and passed by the
FDBG core when an event occurs. A sample output produced by these visualizers
is shown in Fig. 1. In lines 1�5 FDBG is loaded and switched on. Lines 7�
12 show the output of fdbg_show/2, and �nally, lines 13�18 are produced by
fdbg_label_show/3. These are discussed in detail below.

1 | ?- use_module(library(clpfd)), use_module(library(fdbg)).

2 yes

3 | ?- fdbg_on.

4 % The clp(fd) debugger is switched on

5 yes

6 | ?- X #< 6, X #> 3, labeling([], [X]).

7 <fdvar_1> in inf..5

8 fdvar_1 = inf..sup -> inf..5

9 Constraint exited.

10 <fdvar_1> in 4..sup

11 fdvar_1 = inf..5 -> 4..5

12 Constraint exited.

13 Labeling [3, <fdvar_1>]: starting in range 4..5.

14 Labeling [3, <fdvar_1>]: step: <fdvar_1> = 4

15 X = 4 ? ;

16 Labeling [3, <fdvar_1>]: step: <fdvar_1> >= 5

17 X = 5 ? ;

18 Labeling [3, <fdvar_1>]: failed.

Fig. 1. A sample session using built-in visualizers

The output of the constraint visualizer. Each block in the output (separated
by empty lines) represents a wake of a global constraint. The �rst, unindented
line showing the constraint itself is followed by a legend, which informs the user
about all the variables appearing in the constraint. Note that in line 7 the X #< 6

constraint is displayed in a somewhat peculiar way. This is because the CLP(FD)
library of SICStus transforms built-in constraints before posting them into the
store, and this often changes the appearance. However, the meaning is naturally
in accordance with the entered constraint.

Variables in the constraint are assigned a name, and this name is displayed
between angle brackets instead of the usual underscore notation. In the example,
we only have one variable, so it is clear that fdvar_1 means X, but in case of a
more realistic problem, where we have tens or even hundreds of variables, these
names assigned by FDBG are hard to resolve. Therefore FDBG provides tools
to assign names to variables ourselves, as introduced in Sect. 3.2.

Each line in the �rst part of the legend shows a variable of the constraint.
These lines consist of the name of the variable, its domain before the constraint
was woken, and optionally, following the arrow, the domain after the constraint
narrowed it. A few remaining lines may inform about the behavior of the con-
straint, like entailment, failure or side e�ects. In lines 9 and 12 we can see that
both constraints become entailed after the domain of X is narrowed.

The appearance of both the constraint and the legend can be customized,
see Sect. 3.4 for details.

The output of the labeling visualizer. Each labeling event produces a single line
of output, some are followed by an empty separator line, others are immediately
followed by another labeling action.

The number in the brackets (3 in this case) uniquely identi�es the choice-
point.1 The name following the number is the name of the variable being labeled.
Note that several identi�cation numbers might belong to the same variable, de-
pending on the mode of labeling. The text after the colon speci�es the actual
labeling event, informing about the creation (line 13) or failure (line 18) of a
choicepoint, or of a speci�c labeling choice that constrains the domain of the
labeled variable (lines 14 and 16).

3.2 Naming Terms

Automatically assigned variable names are not very informative. FDBG o�ers
a service to assign names not only to single variables, but also to whole terms
for later reference. The typical application is to assign a name to a compound
term containing several constraint variables. In this case, all the variables in
the compound are also automatically assigned a name. This is derived from the
name of the term by appending a variant of its selector inside the compound
(Table 1). During the calculation of such a selector FDBG treats a list of N items

1 The number is in fact the standard SICStus debugger invocation number of a pred-
icate which is called just before the labeling of that variable.

as a compound with N arguments rather than a N -deep chain of ./2 structures.
This special treatment is indicated by a # pre�x in the selector column of the
table.

Table 1. Derived names

name term/variable selector
foo bar(A, [B, C]) []

foo_1 A [1]

foo_2_1 B [2,#1]

foo_2_2 C [2,#2]

Term names are utilized in the process of annotation, which is another service
of FDBG. Here, each variable appearing in a Prolog term is replaced with a com-
pound term describing it (i.e. containing its name, the variable itself, and some
data regarding its domain). In fact, the trace output of fdbg_show/2 contains
the annotated form of the constraints. During annotation, unnamed constraint
variables are also given a unique �anonymous� name automatically. These names
begin with the fdvar pre�x.2

As an auxiliary service, names can also be used to retrieve terms during
execution. A use of this feature is shown in Fig. 3, line 2. It is also exploited
by another built-in constraint visualizer called fdbg_guard/3, which is not dis-
cussed in detail here.

3.3 Labeling

Labeling events are distinguished from constraint events if the user relies on
the labeling predicates provided by the CLP(FD) library. When one chooses to
apply user-de�ned labeling, domain narrowing is usually performed by the same
predicates which are used for constraint propagation (i.e., X=Y, X in RANGE,
etc.), and so FDBG has to take special measures to make a distinction between
the two kinds of events. To let FDBG know these calls occur as a part of labeling,
one has to insert calls to two predicates provided by FDBG as instructed by the
manual [10]. These are fdbg_start_labeling/2, which informs FDBG about
the creation and failure of a choicepoint, and fdbg_labeling_step/2, which
denotes a speci�c choice. These calls do not change the behavior of labeling, and
they in�uence e�ciency only when FDBG is turned on.

3.4 Output Customization and Trace Analysis

If one is not fully satis�ed with the output of the built-in visualizers one has two
options. The output can be modi�ed slightly by de�ning hook predicates, but for
2 It would seem natural to name the variable as it appears in the source code, but this
information is lost at the �rst stage of compilation, when the code is parsed. Notice
that not even the highly sophisticated Prolog debugger can use the original names.

radical changes in the trace log, one has to implement user-de�ned visualizers.
Such visualizers also serve as a great means for synchronous trace analysis. The
advantage of both possibilities is that one can exploit problem speci�c knowledge
which FDBG does not have. Although we don't show an example for a visualizer
performing analysis, we would like call attention to an already mentioned built-in
visualizer, fdbg_guard/3, which produces no output, but watches the domains
of a few selected variables, and pauses the execution by �ring up the Prolog
debugger when a solution is �accidentally� removed from these domains.

Writing hook predicates. By implementing two hook predicates, namely
fdbg:fdvar_portray/3 and fdbg:legend_portray/3, one can change the ap-
pearance of variables in the annotated constraints and the appearance of legend
lines respectively. When called, both are passed three arguments: the variable
in the state before the constraint has actually narrowed it, the domain it would
have after the propagation, and the name assigned to it.

In case of the well known N-queens problem, for instance, one could display
the corresponding row of the chess-board showing possible positions of the queen
for each variable by de�ning fdbg:legend_portray/3 appropriately. Figure 2
shows such a hook predicate and the output it produces. In the latter, an X

marks the �elds where the queen might still be, a dash (-) marks the positions
waived in the current propagation step, and a dot (.) denotes the positions that
have been known to be threatened by other queens before. (The details of the
solution and the applied no_threat/3 constraint are not discussed here.)
A more resourceful application of fdbg:legend_portray/3 is for problems deal-
ing with symbolic values. Such values must be translated into natural numbers
when modeling the problem, but because this translation is often arti�cial and
arbitrary, it is hard to retrace it in one's mind. Using this hook predicate, how-
ever, the trace output can be made a lot clearer by replacing the numbers with
their symbolic equivalents.

De�ning your own visualizers. For more complicated problems one might
want to change the general structure of the trace output, which cannot be done
by means of the above hook predicates. This can be achieved by writing user-
de�ned visualizers, an approach that enables one to process raw trace informa-
tion provided by the FDBG core at one's liking. To enable rapid development,
FDBG provides several utility predicates which perform term annotation, legend
printing and even the simpli�cation of action lists in case one would like to pro-
cess the action list returned by a global constraint (as done by the default legend
printer). To use such a visualizer, its name has to be passed as an argument to
fdbg_on/1 when activating the debugger.

Returning to the N-queens problem, one might want to write a visualizer
that displays the whole chess-board at each event instead of listing the a�ected
variables only. Such a visualizer and it sample output is shown in Fig. 3 (relying
on print_row/2 from Fig. 2). Note how the naming service is utilized in line 2
to fetch the list of variables representing the whole chess-board.

The hook predicate

1 fdbg:legend_portray(Name, Var, After) :-

2 write(Name), write(': '),

3 print_row(Var, After).

4 print_row(Var, After) :-

5 bb_get(board_size, N),

6 fd_set(Var, Now),

7 write('['), print_fields(1,N,Now,After), write(']').

8 print_fields(I, N, _, _) :-

9 I > N, put_code(0'), !.

10 print_fields(I, N, Now, After) :-

11 put_code(0'),

12 (fdset_member(I, After) -> put_code(0'X)

13 ; fdset_member(I, Now) -> put_code(0'-)

14 ; put_code(0'.)

15),

16 I1 is I+1,

17 print_fields(I1, N, Now, After).

Sample output

1 no_threat(2,<queen_3>,2)

2 queen_3: [X - . .]

3 Constraint exited.

Fig. 2. A portray hook for the N-queens problem

3.5 Auxiliary Tools

Simpli�cation of action lists. When someone writes a user-de�ned visualizer,
one of the problems to tackle is the parsing of the action list. To make this task
easier, FDBG o�ers an auxiliary service to simplify such lists.

An action list returned by a global constraint may contain several domain
narrowings in various shapes (in/2, in_set/2 and uni�cation), explicit entail-
ment and failure actions, and calls to Prolog goals. Failure of the constraint can
be caused by either a narrowing that removes all values from a domain or by an
explicit failure action.

Annotation takes the action list into account when calculating the future
domains of annotated variables. After that is done, the corresponding narrowing
actions are not relevant any more. The rest of the action list, on the other hand,
is too varied to be parsed easily. By calling an auxiliary predicate of FDBG with
a list of the annotated variables and the original action list, a much simpli�ed
action list is produced:

� all the irrelevant narrowing actions are removed;

The visualizer

1 nqueens_show(Constraint, Actions) :-

2 fdbg_current_name(Queens, queen),

3 fdbg_annotate(Constraint, AConst, _),

4 fdbg_annotate(Queens, Actions, AQueens, _),

5 print(AConst), nl,

6 print_board(AQueens).

7 print_board([]) :- nl.

8 print_board([fdvar(_,Var,After)|Qs]) :- !,

9 write(' '),

10 print_row(Var, After), nl,

11 print_board(Qs).

12 print_board([V|Qs]) :-

13 write(' '),

14 fdset_singleton(Set, V),

15 print_row(V, Set), nl,

16 print_board(Qs).

Sample output

1 no_threat(4,<queen_3>,1)

2 [. X . .]

3 [. . . X]

4 [X X - -]

5 [X X X X]

6 no_threat(4,<queen_4>,2)

7 [. X . .]

8 [. . . X]

9 [X X . .]

10 [X - X -]

Fig. 3. A user-de�ned visualizer for the N-queens problem

� narrowing actions causing failure are converted to explicit failures;
� all other narrowings are replaced by compound terms describing the a�ected

variables�these compounds are exactly like the ones replacing variables dur-
ing annotation.

Debugger command hooks. The Prolog debugger o�ers a hook predicate to
extend its command interface. Using this hook FDBGmodi�es one command and
introduces two new ones to help the programmer to examine the state of �nite
domain programs also while tracing their execution. The command which lists
blocked goals is modi�ed to also print the annotated form of domain variables.
One of the two new commands allows one to print the annotated form of a
subterm of the current goal, the other lets us assign a name to a subterm.

4 Some Implementation Issues

In this section we are going to discuss certain interesting details of the imple-
mentation. First it is explained how events are detected and reported to the
visualizers. This is followed by the explanation of how variable naming works in
Sect. 4.2.

4.1 Event detection

Global constraints vs. indexicals. As we have mentioned in the Introduction,
FDBG is capable of handling global constraints only. To understand the reasons
behind this limitation, and to see why is it not too serious after all, let us
recollect the main di�erences between the two kinds of constraints known to the
CLP(FD) library of SICStus.

Indexicals [12], the simpler but quicker constraints, always work on a �xed
number of arguments. Most arithmetical constraints (like X #> 0) are translated
to indexicals at compile time. One can also de�ne indexicals with a syntax de�ned
speci�cally for this purpose. Such constraints are handled by the CLP(FD)
library internally in a very special way.

Constraints of the other kind, called global constraints are more generic in
the sense that they can handle a variable number of arguments, such as lists of
variables. They are represented by clauses of a Prolog predicate which�following
certain rules�implements propagation. This predicate is called by the CLP(FD)
library whenever propagation seems possible.

The fact that indexicals are treated specially, while the propagators of global
constraints use traditional Prolog syntax and semantics, is the reason why FDBG
ignores indexicals altogether. This means, in other words, that any domain nar-
rowings done by indexicals happen unnoticed, making FDBG output for pro-
grams relying on them harder to follow. Since we know that many arithmetical
constraints translate to indexicals, this seems to be a big limitation. Fortunately,
after the FDBG library is consulted, all arithmetical constraints are translated
to global constraints instead, and so their behavior becomes observable. Since
translation happens in compile time, it is advisable to load FDBG before any
user programs. The process of translation is explained in detail in the next para-
graph.

Translation of arithmetical constraints. When SICStus encounters a call
to an arithmetical constraint at compile time, it hands it over to the CLP(FD)
library for goal expansion, a reformulation into a call to a regular Prolog predi-
cate. The library simpli�es and optimizes the constraint by precalculating con-
stant subexpressions, bringing all the variables to one side of the equation, etc.
Under regular circumstances, the resulting equation, depending on its shape,
gets expanded into a call to one of the numerous indexicals, each of which
represents a very speci�c arithmetical constraint. When the equation is more
complicated than what the indexicals can handle, it is expanded into a call to

scalar_product/4, a global constraint which can handle linear equations in
general, but is of course less e�cient than the indexicals.

When FDBG is turned on, the aforementioned optimization phase is skipped,
and the arithmetical constraint is always expanded into scalar_product/4. Nat-
urally this will have its e�ect on the performance, but that is negligible compared
to the overhead of FDBG in general. It may also modify the behavior of the pro-
gram slightly, since the propagation of scalar_product/4 is often weaker than
that of the indexicals. Nonetheless, we believe that the chances of a program
behaving incorrectly with indexicals but working perfectly with the global con-
straint are small (unless of course it is one of the built-in constraints which is
erroneous).

The translation lacks one important feature, however. In the process of goal
expansion the original form of an arithmetical constraint is lost. FDBG does
its best to re-transform the scary looking scalar_product/4 constraint into a
more natural form, but this is still di�erent than which it appears in the code
and unfortunately it also varies from time to time. An successful attempt was
made to preserve the original form for run time by introducing a �fth argument
to scalar_product storing the source goal, which was supposed to be ignored
by all except FDBG. However, this required the overwriting of several CLP(FD)
library predicates (so they could cope with the change in the argument count),
which would have been hard to maintain and was quite understandably consid-
ered as undesirable, and so it has been abandoned.

Advice-points. To detect events, we exploit an advanced service of the stan-
dard SICStus Prolog debugger. Namely, advice-points3 are placed on several
predicates of the CLP(FD) library. These predicates can be divided into two
groups, as follows.

1. Predicates generating constraint events:
� The internal equivalent of clpfd:dispatch_global/4, the predicate

which is responsible for global constraint propagation.
� A group of predicates handling goals such as X in RANGE, X in_set

FDSET, X=Y and domain(Xs, Min, Max). Strictly speaking, these are not
constraints, since they do not perform any propagation, �only� narrow
the domain of the a�ected variable(s) in a single step. Still, for the sake
of uniformity, FDBG presents them to the visualizers exactly like global
constraints. In order to do this, a fake action list is generated, which
contains the narrowings and states that the �constraint� has become
entailed.

2. Predicates generating labeling events:
� Three predicates performing narrowing when the user relies on built-in

labeling: clpfd:labeling_singleton/3, clpfd:labeling_min/3, and
clpfd:labeling_max/3.

3 An advice-point is a kind of breakpoint that allows one to carry out some actions
(like calling predicates) at certain points of execution, independently of the tracing
activity.

� fdbg_start_labeling/2, which marks the creation and the failure of
a choicepoint, and fdbg_labeling_step/2, which noti�es FDBG of a
labeling choice, both of which were already mentioned in Sect. 3.3.

Both event types are tidied up a bit before being reported to the visualizers.
For example, the constraints which had been optimized before posting are now
transformed again to at least resemble their original form.

4.2 Variable Naming

As described brie�y in Sect. 3.2, FDBG o�ers a service to assign names to terms
and variables in particular. The name serves two purposes: it is used by the
visualizers to refer to domain variables and it may be used to retrieve terms
at any point in the program. This latter feature was exploited in the example
visualizer shown in Fig. 3.

Names are stored in an AVL tree managed by the ASSOC library of SICStus
Prolog. The tree itself is stored in a somewhat peculiar place: in a mutable value
wrapped up in a unary compound, which is an element of an open-ended list
stored in the global private �eld of the debugger associated with break level zero.
Let us see, why.

� This global private is capable of storing a Prolog term for the lifetime of a
toplevel query. It is initiated with a fresh variable for each query, and thereon
can be uni�ed with arbitrary terms by calling the appropriate debugger
predicate.

� Since there is exactly one global private associated with a query, FDBG rec-
ommends a convention to allow multiple simultaneous uses of this resource.
Namely, it uni�es it with an open-ended list, and allocates a single (�rst
available) element of this list, giving that element a functor which uniquely
identi�es its use (fdbg/1 in this case, the name of the module using the
element in general).

� This functor carries a mutable value, storing an AVL tree of terms with their
associated names as keys. The value is mutable because we need to modify
the AVL tree whenever a name is added to the store.

As a consequence, we have an expandable name store which is automatically
reset for every toplevel query. This has the advantage that we do not have to
clear it after we are done. On the other hand, names must be reassigned in each
query.4 The best way to do this is to insert the call doing the name assignment
into the program itself.

5 Related Work

5.1 VIFID

Just like FDBG, the VIFID (Variable Visualization for Finite Domains) pro-
gram [13] was also aimed at tracing SICStus Prolog CLP(FD) programs. VIFID
4 Since we lose all references to the variables of a query once it exits, this is inevitable
anyway.

provides a graphical front-end, written in Tcl/Tk, which displays domains as a
series of red and green squares, green ones denoting values in the domain, red
ones denoting values outside of the domain of the variable. It is also capable of
showing the history of a variable: a graphical listing of all its earlier domains.
A very useful feature is that one may remove values from a domain, or even
post a new constraint to the store, and observe the e�ect on the other variables
immediately. Then, before continuing execution, one has to decide whether to
keep or discard the changes.

On the other hand, the list of variables to be watched as well as the value in-
terval to be displayed must be speci�ed in advance when the system is initialized.
Moreover, the speci�ed interval is the same for all variables. Due to this limita-
tion, it is uncomfortable (or even impossible) to watch variables with di�erent
initial domains simultaneously. Furthermore, the representation of variables is
�xed, i.e., it is always a series of colored squares, there is no way to customize
this look. One also has to insert a call to a VIFID predicate at each point one
wishes to examine the state of the program. This limitation results in the user
not being able to follow propagation in small steps.

5.2 Generic Trace Model

The scheme of a generic trace model is presented in [6]. This model is based
on the formal observational semantics of a �nite domain program, not unlike
FDBG. The observational semantics are used to build a generic trace, which is
already independent from the speci�c solver. The trace in turn can be considered
by debugging tools which thus do not have to take into account all the details
of the solvers.

This separation of the transformation of the observational semantics into
a generic trace and the visualization of the trace makes the construction very
�exible. It, in fact, resembles the basic structure of FDBG, where the problem
of visualization is separated from the question of observing the behavior of the
solver. Thanks to this similarity in their approach, one could easily write a
visualizer for FDBG which produces a generic trace in the format speci�ed by [6].

5.3 Explaining CLP(FD) Execution

The work described by Ågren et al. [14] also produces a log of events, but fo-
cuses on providing explanations for the actions during the process of constraint
solution. This is achieved by extending the implementation of the global con-
straints with code for generating the appropriate events (typically for the domain
prunings performed by the algorithm). This is in contrast with FDBG, which
does not require any modi�cation of the constraint solver, but provides a coarser
granularity trace. While Ågren's work can report on any details of the constraint
solving algorithm, FDBG only shows the change of the variable domains between
the wakeup and subsequent falling asleep of the solver. Another di�erence is that
while Ågren reports on research work in progress, work in this paper has been
encapsulated in a library of SICStus Prolog. As such, FDBG contains a number

of tools and hooks that enable the user to easily customize the processing of the
events.

6 Future Work

In Sect. 4.1 we discussed the translation of arithmetical constraints into global
constraints, explained that in this process the original form is not preserved, and
mentioned an successful but unsatisfactory experiment to resolve this issue. An
acceptable alternative solution is still to be found.

The search tree is represented by labeling events in the trace log. When a
new branch is created, the user is properly informed about its parent node,
the selected variable and the actual reduction of its domain. When a branch
fails, however, the restored state is not contained explicitly, one has to trace it
back from earlier events. It would be very useful if the trace log included this
information, too. Also, it would be interesting to extend the scope of labeling
events to more complicated choices, like nontrivial disjunctive constraints.

A well chosen graphical representation of variable domains can help to grasp
the execution state. For this reason we would like to implement a highly con�g-
urable, interactive graphical visualizer for FDBG. Plans of such a visualizer have
already been proposed in [15], and a rudimentary tool has also been developed.

7 Conclusions

We presented an event based tracing scheme for �nite domain constraint pro-
grams written SICStus Prolog. First, we introduced the notion and classes of
events which give means to observe the execution of a constraint program. Then
the concept of visualizers was introduced, which convert events to trace entries.
Afterwards we recounted how the trace output can be made clearer by means of
naming terms and variables, and by applying annotation, an auxiliary service of
FDBG utilizing variable names.

It was also shown how can one modify the look of the trace log to a certain
extent by customizing the built-in visualizers, or even fully determine the output
by writing user-de�ned visualizers. Examples were presented for both cases.

Following the introduction of the features o�ered by FDBG, we covered some
of the details of the implementation such as the way of detecting CLP(FD)
events, or the method of storing variable names.

Finally we compared FDBG with some other approaches targeted at debug-
ging �nite domain programs by pointing out the similarities and di�erences in
their services, and we also showed possible directions of future development.

Acknowledgement

The authors would like to thank Mats Carlsson, the main implementer of SICStus
Prolog for his invaluable ideas, his continuous support, and his contribution with
the modi�cation of the CLP(FD) library in order to support FDBG.

References

1. Meier, M.: Debugging constraint programs. In Montanari, U., Rossi, F., eds.:
Principles and Practice of Constraint Programming - CP'95, First International
Conference, CP'95, Cassis, France, September 19-22, 1995, Proceedings. Volume
976 of Lecture Notes in Computer Science., Springer-Verlag (1995) pp 204�221

2. Deransart, P., Hermenegildo, M.V., Maluszynski, J., eds.: Analysis and Visualiza-
tion Tools for Constraint Programming, Constrain Debugging (DiSCiPl project).
In Deransart, P., Hermenegildo, M.V., Maluszynski, J., eds.: Analysis and Visu-
alization Tools for Constraint Programming. Volume 1870 of Lecture Notes in
Computer Science., Springer (2000)

3. Müller, T.: Practical investigation of constraints with graph views. In Dechter, R.,
ed.: Principles and Practice of Constraint Programming - CP 2000, 6th Interna-
tional Conference, Singapore, September 18-21, 2000, Proceedings. Volume 1894
of Lecture Notes in Computer Science., Springer-Verlag (2000) pp 320�336

4. Puebla, G., Bueno, F., Hermenegildo, M.: An assertion language for constraint logic
programs. In Deransart, P., Hermenegildo, M., Maluszynski, J., eds.: Analysis and
Visualization Tools for Constraint Programming. Number 1870 in Lecture Notes
in Computer Science, Springer-Verlag (2000) pp 23�61

5. Puebla, G., Bueno, F., Hermenegildo, M.: A framework for assertion-based debug-
ging in constraint logic programming. Lecture Notes in Computer Science 1520

(1998) p 472
6. Deransart, P., Ducassé, M., Langevine, L.: A generic trace model for �nite do-

main solvers. In O'Sullivan, B., ed.: Proceedings of User Interaction in Constraint
Satisfaction (UICS'02), Cornell University (USA) (2002)

7. Ducassé, M., Langevine, L.: Automated analysis of CLP(FD) program execution
traces. In: Proceedings of the International Conference on Logic Programming.
Volume 2401 of Lecture Notes in Computer Science., Springer-Verlag (2002)

8. Jahier, E., Ducassé, M.: Generic program monitoring by trace analysis. In: Theory
and Practice of Logic Programming. Volume 2 part 4&5 of Special Issue Program
Development., Cambridge University Press (2002) pp 613�645

9. Bracchi, C., Ge�ot, C., Paulin, F.: Combining propagation information and
search tree visualization using ILOG OPL studio. In Kusalik, A., ed.: Proceed-
ings of the Eleventh International Workshop on Logic Programming Environments
(WLPE'01), Paphos, Cyprus (2001)

10. Swedish Institute of Computer Science Uppsala, Sweden: SICStus Prolog User's
Manual. (2003) http://www.sics.se/isl/sicstuswww/site/documentation.html.

11. Kreuger, P., Bohlin, M.: Introduction to constraint programming. Lecture notes
at http://www.idt.mdh.se/phd/courses/constraints. See slides. (2002)

12. van Hentenryck, P., Saraswat, V., Deville, Y.: Constraint processing in cc(FD).
Unpublished report (1992)

13. Carro, M., Hermenegildo, M.: Visualization designs for constraint logic program-
ming. In: Swiss Informatics Societies. Volume 2. (2001) pp 27�34

14. Ågren, M., Szeredi, T., Beldiceanu, N., Carlsson, M.: Tracing and explaining execu-
tion of CLP(FD) programs. In Tessier, A., ed.: Proceedings of the Twelfth Interna-
tional Workshop on Logic Programming Environments (WLPE'02), Copenhagen,
Denmark (2002) pp 1�16

15. Szeredi, T.: Korlát-logikai programok nyomkövetése (in Hungarian). Master's
thesis, Budapest University of Technology and Economics (2001) Title in English:

Tracing Finite Domain Programs.

