
Poster Presentation:
FDBG, the CLP(FD) Debugger Library

of SICStus Prolog?

Dávid Hanák, Tamás Szeredi, and Péter Szeredi

Budapest University of Technology and Economics

{dhanak,tszeredi}@inf.bme.hu, szeredi@cs.bme.hu

1 Introduction

Debugging tools serve an important role in software development. This also holds
for constraint programming and CLP(FD) in particular, where it is often nec-
essary to observe how the domains of various variables behave, how di�erent
constraints linked by shared variables a�ect each other, etc. There are numerous
projects for implementing debuggers for CLP(FD) systems. Some have commit-
ted themselves to interactive tools, others have chosen assertion based methods,
and a large number of publications deal with trace generation and analysis.

We have decided to develop a trace based debugger for the CLP(FD) library
of SICStus Prolog, a library which neatly embeds the theory of �nite domain
constraints into Prolog. The SICStus environment has an advanced and extensi-
ble debugger for the base language, but until recently it has lacked direct support
to observe the run of constraint programs. The goal of FDBG (which is short
for Finite domain DeBuGger) is to �ll in this gap.

FDBG was written almost entirely in Prolog, as user space code, no native
routines were used directly. The library (along with its source code) is part of
the SICStus Prolog distribution versions 3.9 and upwards, and is documented in
detail in the SICStus User's Manual.

2 Debugger Services

FDBG consists of two loosely coupled parts. The core is responsible for making
the run of a CLP(FD) program observable by translating it into a sequence of
events. The outer layer consists of a collection of con�gurable and extensible
visualizers and utility predicates which process and display the events according
to the needs of the user. The two are linked together through a simple interface.

CLP(FD) Events. By observing the process of CLP(FD) problem solving we
can conclude that events can belong to two classes. The events of the �rst class
called constraint events occur when a constraint does some propagation on the
domains of its variables. Events belonging to the second class are labeling events,

? The subject is presented in full detail at the WLPE'04 workshop.

representing decisions made during the exploration of the search space. Events of
these two classes appear interleaved in a trace log, as labeling triggers additional
propagation, after which labeling is resumed, etc.

Every event intercepted by the FDBG core is described with a Prolog term
and then dispatched to the appropriate visualizers. Most visualizers, such as the
default ones provided by FDBG, display the event in the trace log. Consequently,
a log usually contains a block of lines for each event. However, in general a
visualizer can do any kind of processing or analysis.

Basic Services. To make FDBG produce a verbose text log of the trace events
using its built-in visualizers, a CLP(FD) program needs no modi�cation. All the
user needs to do is to turn on the debugger before invoking the main program.

For constraint events, the default log entry consists of the name and actual
arguments of the constraint, and the list of variables narrowed in that particular
step, showing their domains before and after the propagation took place. Vari-
ables are identi�ed by their names, which are assigned either implicitly by the
debugger core, or explicitly by the user. A sample of such a trace with explicitly
assigned names can be seen on Fig 1.

For labeling events, an entry contains the name of the variable being labeled,
and describes the way its domain is divided. This can either be the selection of a
single value or narrowing to a subset of its domain. Alternative choices branching
o� the same choicepoint can be recognized as such by a unique identi�er included
in the log.

Advanced Features. A useful service of FDBG is the naming of variables and
terms in general. An advantage of naming is that built-in visualizers will use the
speci�ed name to refer to variables wherever they appear in the log. The user
can also easily identify these variables anywhere from the program by using the
annotation service, which replaces variables with descriptive Prolog terms.

If the user is unsatis�ed with the output of the default visualizers or �nds
it hard to understand, he has the opportunity to customize them, or to write
his own visualizers. FDBG provides an easy way to switch between the built-in
and custom visualizers, and they may also be used simultaneously. An example
custom log can be seen on Fig. 2.

Writing visualizers also provides a simple means to �lter trace events, or to
silently wait for the occurrence of an event and start the Prolog debugger at that
point.

The �gures below show two snippets from two traces of the 4-queen problem.
The �rst one was printed by the built-in visualizer, while the second one, showing
the entire checkerboard, was created by a custom visualizer.

no_threat(4,<queen_3>,1)

queen_3: {1}\/{3} -> {1}

Constraint exited.

Fig. 1. Basic log entry

no_threat(4,<queen_3>,1)

[. X . .]

[. . . X]

[X . - .]

[X . X X]

Fig. 2. Custom log entry

