
FDBG, the CLP(FD) debugger library

Dávid Hanák, Tamás Szeredi
Budapest University of Technology and Economics

{dhanak,tszeredi}@inf.bme.hu

CS2, Szeged

July 1–4, 2002

1/13

1. Introduction
Prolog
• stands for Programming in Logic;
• is a declarative, logic programming language.

A Prolog program
• is a set of Horn clauses: facts and deduction rules;
• is interpreted in order to answer queries (questions) by means of resolution.

member(H, [H|T]).
member(X, [H|T]) :- member(X, T).

| ?- member(X, [foo,1]).
X = foo ? ; X = 1 ? ; {no}

CLP
• stands for Constraint Logic Programming ;
• denotes a family of programming languages used for finding values in various
domains satisfying a set of relations (constraints);
• has several branches: CLP(B), CLP(Q/R), CLP(FD), CHR;
• is usually embedded into a host language, like Prolog.

2/13

CLP(FD)
• variables are represented by finite sets of interger values and
• connected by the constraints propagating changes in their domains;
• solutions can be enumerated by labeling ;
• constraints can be global constraints and indexicals.

| ?- A in 4..7, B in 0..10, A*2 #= B, labeling([], [A,B]).
A = 4, B = 8 ; A = 5, B = 10 ; {no}

SICStus Prolog
• is an implementation of the Prolog language;
• contains full implementation of all the above CLP langauges;
• includes a generic debugger for regular Prolog with a programmable interface.

FDBG
• stands for Finite Domain deBuGger ;
• enables us to trace CLP(FD) programs;
• uses the wallpaper trace technique;
• was written almost entirely in user space;
• shipped with SICStus Prolog from version 3.9.

3/13

2. Two simple examples
Loading FDBG

| ?- use_module(library(clpfd)), use_module(library(fdbg)).
| ?- fdbg_on.
% The clp(fd) debugger is switched on
yes

Arithmetic indexicals

| ?- fdbg_assign_name(X, x), X #< 5, X #> 3.
<x> #< 5

x = inf..sup -> inf..4
Constraint exited.

<x> #> 3
x = inf..4 -> {4}
Constraint exited.

X = 4 ? ;
no

4/13

A built-in global constraint

| ?- domain([A,B], 0, 2), exactly(1, [0,A,2], B), B #\= 0.
domain([<fdvar_1>,<fdvar_2>],0,2)

fdvar_1 = inf..sup -> 0..2
fdvar_2 = inf..sup -> 0..2
Constraint exited.

exactly(1, [0,<fdvar_1>,2], <fdvar_2>)
fdvar_1 = 0..2
fdvar_2 = 0..2 -> 0..1

<fdvar_2> #\= 0
fdvar_2 = 0..1 -> {1}
Constraint exited.

exactly(1, [0,<fdvar_1>,2], 1)
fdvar_1 = 0..2 -> {1}
Constraint exited.

A = 1,
B = 1 ? ;
no

5/13

3. Concepts
Goals
• to be able to follow the narrowing of the domains of FD constraint variables;
• to be informed about the wake-up, exit and effects of (global) constraints, and
about the labeling steps and their effects;
• to be able to print terms containing FD variables in a well-readable form.

Terminology
• CLP(FD) events

– a constraint event (when a global constraint is woken)
– some labeling event (start of labeling, a labeling step or failure of labeling)

• Visualizer : a predicate reacting to CLP(FD) events called before any changes
imposed by the current event can take effect. Two basic types:

– constraint visualizer
– labeling visualizer

• Legend
– is a list of variables and the corresponding domains;
– followed by information about the behaviour of the constraint being exam-

ined (exiting, failure, etc.);
– usually gets printed right after the current constraint.

6/13

4. Features
Traceable constraints
• are only the global constraints, indexicals are skipped;
• can be either built-in or user defined;
• after FDBG is loaded, arithmetic constraints are translated into global constraints.

Watching CLP(FD) events
• for each event zero or more visualizers are called;
• these visualizers can be either built-in or user defined.

Tools for writing visualizers. FDBG provides predicates to
• annotate terms: replace FD variables by their names;
• print annotated terms in a well-readable form;
• prepare and print a legend.

Term naming. A name can be assigned to a variable or to an arbitary term.
• Each variable in a named term is also assigned a sensible name;
• in some cases names are generated automatically;
• built-in visualizers refer to variables by their names;
• named terms can be queried using their names.

7/13

5. Basics

Starting FDBG

• FDBG can be turned on and off any time;

• the following options can be specified when turning FDBG on:
– trace output can be redirected to a file or a socket to be opened, or to an

already opened stream;
– a set of visualizers may be specified to be called on both constraint and

labeling events.

Example 1. Output to file, default built-in visualizer, no labeling trace.

| ?- fdbg_on([file(’my_log.txt’, append), no_labeling_hook]).
% The clp(fd) debugger is switched on

Example 2. Output to standard error, user defined and built-in visualizers.

| ?- fdbg_on([stream(user_error), constraint_hook(fdbg_show),
constraint_hook(my_show)]).

% The clp(fd) debugger is switched on

8/13

6. Built-in visualizers

• fdbg_show(+Constraint, +Actions)
A built-in visualizer displaying the current global constraint and the corresponding
legend.

exactly(1,[<a>,,<c>],2)
a = 0..2 -> {1}
b = {0}\/{2}
c = 0..2 -> {1}
Constraint exited.

• fdbg_label_show(+Event, +ID, +Variable)
A built-in visualizer displaying labeling events.

Labeling [13, <c>]: starting in range {0}\/{2}.
Labeling [13, <c>]: dual: <c> = 0
[...]
Labeling [13, <c>]: dual: <c> = 2
[...]
Labeling [13, <c>]: failed.

9/13

7. Term naming

When naming a term
• the specified name is assigned to the whole term;
• all variables appearing in the term are assigned a dervied name – this name is
generated from the specified atom and the selector of the variable;
• names are kept in a global store;
• a separate name store belongs to each toplevel call (the store is volatile).

Derived names

derived name = base name + selector

For example the call fdbg_assign_name(bar(A, [B, C]), foo) generates the fol-
lowing names:

name term remark
foo bar(A, [B, C]) the whole term
foo_1 A 1st argument of bar
foo_2_1 B 1st element of the 2nd argument of bar
foo_2_2 C 2nd element of the 2nd argument of bar

10/13

Predicates

• fdbg_assign_name(+Term, ?Name)
Assigns name Name to term Term for the scope of the current toplevel call. If
Name is a variable, uses an autogenerated name and returns that.

• fdbg_current_name(?Term, ?Name)
– recalls a term (variable) from the global store by its name;
– enumerates every name-term pair in the store.

• fdbg_get_name(+Term, -Name)
Returns the name Name that is assigned to term Term.

11/13

8. Magic sequences

:- use_module(library(fdbg)).
:- use_module(library(clpfd)).
:- use_module(library(lists)).

magic(N, L) :-
length(L, N),
fdbg_assign_name(L, list),
N1 is N-1,
domain(L, 0, N1),
occurrences(L, 0, L),
labeling([ff], L).

occurrences([], _, _).
occurrences([O|Os], I, List) :-

exactly(I, List, O),
J is I+1,
occurrences(Os, J, List).

The exactly/3 constraint

The global constraint exactly(I,List,O)
succeeds if I occurs in List exactly O times.

Sample run

| ?- magic(4, L).
L = [1,2,1,0] ? ;
L = [2,0,2,0] ? ;
no

| ?- magic(10, L).
L = [6,2,1,0,0,0,1,0,0,0] ? ;
no

12/13

9. Sample trace

| ?- [magic].

| ?- fdbg_on(file(’fdbg.log’,
write)).

% FDBG is switched on
yes
f| ?- magic(4, L).
L = [1,2,1,0] ?
yes
| ?- fdbg_off.
% FDBG is switched off
yes

The end of fdbg.log

exactly(2,[1,2,<list_3>,
<list_4>],<list_3>)

list_3 = 1..3
list_4 = 0..2

exactly(0,[1,2,<list_3>,<list_4>],1)
list_3 = 1..3
list_4 = 0..2 -> {0}
Constraint exited.

exactly(1,[1,2,<list_3>,0],2)
list_3 = 1..3 -> {1}
Constraint exited.

exactly(2,[1,2,1,0],1)
Constraint exited.

exactly(3,[1,2,1,0],0)
Constraint exited.

13/13

10. Advanced feature highlights
Fine tuning fdbg_show/2
• it is possible to tune the output by writing hook predicates;
• change the appearance of variables;
• change the appearance of legend lines.

exactly(1,[<a>,2],1)
a = 0..2 -> {1}
Constraint exited.

exactly(1,[<a = 0..2>,2],1)
a = [0,1,2] -> [1]
Constraint exited.

Writing your own visualizers
• for deeper changes you have to write your own visualizer predicates;
• these can exploit problem specific knowledge;
• e.g., “eight queens” problem, draw the complete board.

Support for writing visualizers
• a set of predicates provided by FDBG;
• annotation: replacing variables in a term by a descriptive compound;
• built-in legend printer;
• predicate to simplify action list to prepare a fully customized legend.

	Introduction
	Prolog
	A Prolog program
	CLP
	CLP(FD)
	SICStus Prolog
	FDBG

	Two simple examples
	Loading FDBG
	Arithmetic indexicals
	A built-in global constraint

	Concepts
	Goals
	Terminology

	Features
	Traceable constraints
	Watching CLP(FD) events
	Tools for writing visualizers.
	Term naming.

	Basics
	Starting FDBG
	Example 1.
	Example 2.

	Built-in visualizers
	Term naming
	Derived names
	Predicates

	Magic sequences
	The exactly/3 constraint
	Sample run

	Sample trace
	The end of fdbg.log

	Advanced feature highlights
	Fine tuning fdbg_show/2
	Writing your own visualizers
	Support for writing visualizers

