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1. Introduction
The Declarative Programming course
• held at the Budapest University of Technology and Economics (BUTE);
• for 4th semester students in Computer Science;
• as an introduction to functional and logic programming;
• via (Moscow) SML and (SICStus) Prolog;
• emphasis is placed on the declarative aspects;

Constraints
• number of students increased from approx. 100 to more than 400 in eight years;
• the staff consists of two part-time lecturers and two PhD students;
• there are no laboratory exercises.

All these call for a system helping the work of lecturers and students.

ETS - An Environment for Teaching Students [1] is an integrated system of
loosely connected components doing auxiliary tasks:
• evaluation of assignments;
• exercising;
• administration; etc.
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2. The Exercise System
Functionality
• offers several types of simple exercise tasks;
• presents a problem, receives and checks the solution;
• reports any possible errors and requests correction;
• follows and registers the progress of students.

Design objectives
• user friendly interface;
• “fool proof” error handling with informative error messages;
• protection against malicious programs;
• easy management of exercises and exercise types;
• direct solution checking by invoking the interpreter;
• ability to organise tasks into categories;
• offering the exercises gradually following the lectures.

Two basic concepts
• category: a logical group of problems;
• scheme: the way how a task is presented and checked.
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3. Some Prolog categories

Standard prefix notation. Specify the canonical form of an expression made up of
• operators:

Q: 6*t-j A: -(*(6,t),j)
• lists:

Q: [1,2|A] A: .(1,.(2,A))
• arbitrary compounds:

Q: g(G/H, [2/3+u|J]) A: g(/(G,H), .(+(/(2,3),u), J))

Unification. Specify the result (success/failure/error) of a Prolog unification, and in
case of success, also specify the values of some or all variables.
• simple, only one variable:

Q: | ?- .(X,X) = [[]]. A: success, X = []
• advanced, several variables:

Q: .(U,[U,1]) = [E+2+3,F+G,E]. A: E=1, F=1+2, G=3, U=1+2+3

Programming. Write a simple Prolog predicate satisfying a given specification.

% longer(+L, ?S): the list L is longer than the list S
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Standard prefix notation - figure 1
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Standard prefix notation - figure 2
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Standard prefix notation - figure 3
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Standard prefix notation - figure 4
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4. Some SML categories

Basic types and values. Given a tuple containing basic expressions, specify
• its value in its simplest form:

Q: 8 :: 6+4 :: 9 div 3 :: nil A: [8,10,3]
• its type:

Q: ("o"^"r", op-(3,4), [[true]])A: string * int * bool list list

Polymorphism. Handling data structures without knowing the type of their con-
stituents in particular. Specify
• a possible body with given type and head:

Q: val x : ’a -> (’a -> ’b) -> ’b; fun x y z = ?
A: fun x y z = z y

• a function definition given its specification:
(* lgr (l,ls) = ‘ls’ is longer than ‘l’ *
* lgr : int * ’a list -> bool *)

Higher order functions. Specify the type of an expression containing such functions.

Q: foldr op= A: bool -> bool list -> bool
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Basic types and values - figure 1
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Basic types and values - figure 2
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Basic types and values - figure 3
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Basic types and values - figure 4
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5. Schemes

Prolog schemes

Standard prefix notation: give the canonical form of an expression

Success/failure/error: give the result of a call, in case of success also determine
the value of a specific variable

All solutions: enumerate (in proper order) all solutions of a goal, as returned in
a specified variable

Programming: write a predicate satisfying a given specification

SML schemes

Type: determine the type of a declaration (value or function)

Value: determine the simplest form of the value of an expression

Function body: determine the body of a function if the head and the type is
given

Type declaration: define a data type satisfying a specification

Programming: write a function conforming to a given specification
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