Computer Aided Exercising
in Prolog and SML

David Hanak, Tamas Benkd, Péter Hanak, Péter Szeredi

Budapest University of Technology and Economics, Hungary
{dhanak,benko,hanak,szeredi}@inf.bme.hu

FDPE Workshop, Pittsburgh, PA, USA

October 7, 2002

1. Introduction

The Declarative Programming course

held at the Budapest University of Technology and Economics (BUTE);
for 4t semester students in Computer Science;

as an introduction to functional and logic programming;

via (Moscow) SML and (SICStus) Prolog;

emphasis is placed on the declarative aspects;

Constraints
e number of students increased from approx. 100 to more than 400 in eight years;
e the staff consists of two part-time lecturers and two PhD students;
e there are no laboratory exercises.

All these call for a system helping the work of lecturers and students.

ETS - An Environment for Teaching Students [1] is an integrated system of
loosely connected components doing auxiliary tasks:

e evaluation of assignments;

e exercising;

e administration; etc.

1/14

2. The Exercise System

Functionality
e offers several types of simple exercise tasks;
e presents a problem, receives and checks the solution;
e reports any possible errors and requests correction;
e follows and registers the progress of students.

Design objectives
e user friendly interface;
“fool proof” error handling with informative error messages;
protection against malicious programs;
easy management of exercises and exercise types;
direct solution checking by invoking the interpreter;
ability to organise tasks into categories;
offering the exercises gradually following the lectures.

Two basic concepts
e category: a logical group of problems;
e scheme: the way how a task is presented and checked.

2/14

3. Some Prolog categories

Standard prefix notation. Specify the canonical form of an expression made up of
e operators:

Q: 6%t-j A: -(x(6,t),7)
o lists:
Q: [1,2]4] A . (1,.(2,0)
e arbitrary compounds:
Q: g(G/H, [2/3+ulJ]) A: g(/(G,H), .(+(/(2,3),0), I))

Unification. Specify the result (success/failure/error) of a Prolog unification, and in
case of success, also specify the values of some or all variables.
e simple, only one variable:
Q: | 7- .(X,X) = [[I]. A: success, X = []
e advanced, several variables:
Q: .(,[U,1]) = [E+2+3,F+G,E]. A: E=1, F=1+2, G=3, U=1+2+3

Programming. Write a simple Prolog predicate satisfying a given specification.

% longer (+L, ?7S): the list L is longer than the list S

3/14

Standard prefix notation - figure 1

Prolog - standard prefix notation {operators) - 1464, easy exercize (#1464) - hints

Give the canonical form of the following expression (in standard prefis notation)!
EFE=7

[thiz will cause a syntax error

Check

Another example

4/14

Standard prefix notation - figure 2

Prolog - standard prefix notation {operators) - 1464, easy exercize (#1464) - hints

Syntax error

this
<<<here>>>
will cause a syntax error

Grve the canonical form of the following expression (in standard prefiz notation)!

Ext -7

6%t-1

Check Another example

5/14

Standard prefix notation - figure 3

Prolog - standard prefix notation {operators) - 1464, easy exercise (#1464) - hints

This isn't a canonical form!

Give the canonical form of the following expression (in standard prefiz notation)!
EFE=7

= (6,
_(tf
3
J

Check Anather example

6/14

Standard prefix notation - figure 4

Prolog - standard prefix notation {operators) - 1464, easy exercize (#1464) - hints

That's in canonical form but it's not the same!

Give the canonical form of the following expression (in standard prefisz notation)!

65t

- (* (&,
t
Ie
h
J

Check Another example

7/14

4. Some SML categories

Basic types and values. Given a tuple containing basic expressions, specify
e its value in its simplest form:
Q: 8 :: 6+4 :: 9 div 3 :: nil A: [8,10,3]
e its type:
Q: ("o"~"r", op-(3,4), [[true]]l)A: string * int * bool list list

Polymorphism. Handling data structures without knowing the type of their con-
stituents in particular. Specify
e a possible body with given type and head:
Q: val x : ’a -> (’a -> ’b) -> ’b; fun x y z = 7
A: funxyz=2y
e a function definition given its specification:
(* 1gr (1,1s) = ‘ls’ is longer than ‘1’ *
* lgr : int * ’a list -> bool *)

Higher order functions. Specify the type of an expression containing such functions.

Q: foldr op= A: bool -> bool list -> bool

8/14

Basic types and values - figure 1

SML - hasic types and values - 19, ntermediate exercise (#3017)

TWhat will be the type of 32 after evaluating the following SML command?

L

val x = ("o r", op-(3,4), [[true]l]]

> wval u : [cause syntax error

Check | Another example |

Let the next example be I arhitrary =

9/14

Basic types and values - figure 2

SML - hasic types and values - 19, ntermediate exercise (#3017)

Syntax error:

Toplevel input:

1

| signature expr = sig val x : cause syntax error end
1 LN TaTaTa)
!

Unbound type constructor: cause

“What will be the type of % after evaluating the following SIL command?

val x = ("o"™"r", op-(3,4), [[true]])

> wal x : fint"real

Check | Another example |

Let the next example be I arbitrary |

10/14

Basic types and values - figure 3

SML - bhasic types and values - 19, mtermediate exercise (#3017)

The specified type doesn't suit the given value!

TWhat will be the type of x after evaluating the following SMML command?

val ¥ = ("o"™"r", op—-(3,4), [[truell)

> val = : [a

Check | Another example |

Let the next example be I arbitrary =

11/14

Basic types and values - figure 4

SML - bhasic types and values - 19, mtermediate exercise (#3017)

The specified type suits the value but it is too generic!

TWhat will be the type of x after evaluating the following SMML command?

val ¥ = ("o"™"r", op—-(3,4), [[truell)

> val = : |string *int * bool list list

Check | Another example |

Let the next example be I arbitrary =

12/14

5. Schemes

Prolog schemes

Standard prefix notation: give the canonical form of an expression

Success/failure/error: give the result of a call, in case of success also determine
the value of a specific variable

All solutions: enumerate (in proper order) all solutions of a goal, as returned in
a specified variable

Programming: write a predicate satisfying a given specification
SML schemes

Type: determine the type of a declaration (value or function)
Value: determine the simplest form of the value of an expression

Function body: determine the body of a function if the head and the type is
given

Type declaration: define a data type satisfying a specification

Programming: write a function conforming to a given specification

13/14

Acknowledgement

Thanks are due to
e all students who have helped us in the implementation of the ETS;
e especially to Lukdcs Tamdas Berki and Andras Gyérgy Békés for their work on the
exercise system.

References

[1] David Hanak: Computer Support for Declarative Programming Courses (in
Hungarian), 2001, MSc Thesis, see also http://dp.iit.bme.hu:4321/

[2] Andras Gyorgy Békés, Lukacs Tamas Berki: A Web-based Exercise System for
Programming Languages (in Hungarian), 2001, Students’ Conference, Budapest,
Hungary

[3] Péter Hanak, Péter Szeredi, Tamas Benks, David Hanak: “Yourself, my lord, if
no servants around” — A Web Based Intelligent Tutoring System (in Hungarian),
2001, NETWORKSHOPO1, Sopron, Hungary

14/14

	Introduction
	The Declarative Programming course
	Constraints
	ETS - An Environment for Teaching Students ets

	The Exercise System
	Functionality
	Design objectives
	Two basic concepts

	Some Prolog categories
	Standard prefix notation.
	Unification.
	Programming.
	Standard prefix notation - figure 1
	Standard prefix notation - figure 2
	Standard prefix notation - figure 3
	Standard prefix notation - figure 4

	Some SML categories
	Basic types and values.
	Polymorphism.
	Higher order functions.
	Basic types and values - figure 1
	Basic types and values - figure 2
	Basic types and values - figure 3
	Basic types and values - figure 4

	Schemes

