
Computer Aided Exercising

in Prolog and SML

Dávid Hanák, Tamás Benkő, Péter Hanák, Péter Szeredi
Budapest University of Technology and Economics, Hungary

{dhanak,benko,hanak,szeredi}@inf.bme.hu

FDPE Workshop, Pittsburgh, PA, USA

October 7, 2002



1/14

1. Introduction
The Declarative Programming course
• held at the Budapest University of Technology and Economics (BUTE);
• for 4th semester students in Computer Science;
• as an introduction to functional and logic programming;
• via (Moscow) SML and (SICStus) Prolog;
• emphasis is placed on the declarative aspects;

Constraints
• number of students increased from approx. 100 to more than 400 in eight years;
• the staff consists of two part-time lecturers and two PhD students;
• there are no laboratory exercises.

All these call for a system helping the work of lecturers and students.

ETS - An Environment for Teaching Students [1] is an integrated system of
loosely connected components doing auxiliary tasks:
• evaluation of assignments;
• exercising;
• administration; etc.



2/14

2. The Exercise System
Functionality
• offers several types of simple exercise tasks;
• presents a problem, receives and checks the solution;
• reports any possible errors and requests correction;
• follows and registers the progress of students.

Design objectives
• user friendly interface;
• “fool proof” error handling with informative error messages;
• protection against malicious programs;
• easy management of exercises and exercise types;
• direct solution checking by invoking the interpreter;
• ability to organise tasks into categories;
• offering the exercises gradually following the lectures.

Two basic concepts
• category: a logical group of problems;
• scheme: the way how a task is presented and checked.



3/14

3. Some Prolog categories

Standard prefix notation. Specify the canonical form of an expression made up of
• operators:

Q: 6*t-j A: -(*(6,t),j)
• lists:

Q: [1,2|A] A: .(1,.(2,A))
• arbitrary compounds:

Q: g(G/H, [2/3+u|J]) A: g(/(G,H), .(+(/(2,3),u), J))

Unification. Specify the result (success/failure/error) of a Prolog unification, and in
case of success, also specify the values of some or all variables.
• simple, only one variable:

Q: | ?- .(X,X) = [[]]. A: success, X = []
• advanced, several variables:

Q: .(U,[U,1]) = [E+2+3,F+G,E]. A: E=1, F=1+2, G=3, U=1+2+3

Programming. Write a simple Prolog predicate satisfying a given specification.

% longer(+L, ?S): the list L is longer than the list S



4/14

Standard prefix notation - figure 1



5/14

Standard prefix notation - figure 2



6/14

Standard prefix notation - figure 3



7/14

Standard prefix notation - figure 4



8/14

4. Some SML categories

Basic types and values. Given a tuple containing basic expressions, specify
• its value in its simplest form:

Q: 8 :: 6+4 :: 9 div 3 :: nil A: [8,10,3]
• its type:

Q: ("o"^"r", op-(3,4), [[true]])A: string * int * bool list list

Polymorphism. Handling data structures without knowing the type of their con-
stituents in particular. Specify
• a possible body with given type and head:

Q: val x : ’a -> (’a -> ’b) -> ’b; fun x y z = ?
A: fun x y z = z y

• a function definition given its specification:
(* lgr (l,ls) = ‘ls’ is longer than ‘l’ *
* lgr : int * ’a list -> bool *)

Higher order functions. Specify the type of an expression containing such functions.

Q: foldr op= A: bool -> bool list -> bool



9/14

Basic types and values - figure 1



10/14

Basic types and values - figure 2



11/14

Basic types and values - figure 3



12/14

Basic types and values - figure 4



13/14

5. Schemes

Prolog schemes

Standard prefix notation: give the canonical form of an expression

Success/failure/error: give the result of a call, in case of success also determine
the value of a specific variable

All solutions: enumerate (in proper order) all solutions of a goal, as returned in
a specified variable

Programming: write a predicate satisfying a given specification

SML schemes

Type: determine the type of a declaration (value or function)

Value: determine the simplest form of the value of an expression

Function body: determine the body of a function if the head and the type is
given

Type declaration: define a data type satisfying a specification

Programming: write a function conforming to a given specification



14/14

Acknowledgement

Thanks are due to
• all students who have helped us in the implementation of the ETS;
• especially to Lukács Tamás Berki and András György Békés for their work on the
exercise system.

References

[1] Dávid Hanák: Computer Support for Declarative Programming Courses (in
Hungarian), 2001, MSc Thesis, see also http://dp.iit.bme.hu:4321/

[2] András György Békés, Lukács Tamás Berki: A Web-based Exercise System for
Programming Languages (in Hungarian), 2001, Students’ Conference, Budapest,
Hungary

[3] Péter Hanák, Péter Szeredi, Tamás Benkő, Dávid Hanák: “Yourself, my lord, if
no servants around” – A Web Based Intelligent Tutoring System (in Hungarian),
2001, NETWORKSHOP01, Sopron, Hungary


	Introduction
	The Declarative Programming course
	Constraints
	ETS - An Environment for Teaching Students ets



	The Exercise System
	Functionality
	Design objectives
	Two basic concepts



	Some Prolog categories
	Standard prefix notation.
	Unification.
	Programming.
	Standard prefix notation - figure 1
	Standard prefix notation - figure 2
	Standard prefix notation - figure 3
	Standard prefix notation - figure 4



	Some SML categories
	Basic types and values.
	Polymorphism.
	Higher order functions.
	Basic types and values - figure 1
	Basic types and values - figure 2
	Basic types and values - figure 3
	Basic types and values - figure 4



	Schemes

