
Computer Aided Exercising in Prolog and SML

Dávid Hanák, Tamás Benkő, Péter Hanák, and Péter Szeredi
{dhanak,benko,hanak,szeredi}@inf.bme.hu

Budapest University of Technology and Economics, Hungary

Abstract. This paper introduces a fully computerized, web based in-
teractive system which enables students of Computer Science at the Bu-
dapest University of Technology and Economics to do simple exercises in
two declarative programming languages, namely Prolog and SML. This
system works as a part of a comprehensive teaching support environment
that supports both the students and the teachers of the Declarative Pro-
gramming course.

1 Introduction

In the Declarative Programming course we teach Standard ML and Prolog for 4th

semester students of Computer Science at the Budapest University of Technology
and Economics (BUTE).

In the first three semesters students learn several imperative programming
languages including Pascal, C and C++, they also get some basic training in
x86 assembly, and later on they become familiar with Java and SQL. On the
other hand, this single semester course is the only opportunity for them to learn
about declarative thinking in the context of programming.

It is a commonplace that programming requires practice, but how can stu-
dents be forced to exercise their skills? One way is to give laboratory exercises
but unfortunately we run short both on human and technical resources. The
number of students attending the course has increased from about 100 to more
than 400 per semester in the last eight years, while the staff consists “only” of
two lecturers and two PhD students. To tackle the problem we developed several
tools to facilitate the work of lecturers, and an interactive web-based program
incorporating an extensive exercise database which allows students to practice 24
hours a day. These pieces of software have recently been integrated into a com-
prehensive teaching support system called ETS, an Environment for Teachers
and Students.

The rest of this paper presents a sketchy design of ETS and reports its current
state, describing the exercise system in detail.

2 An Environment for Teachers and Students

Because of the high number of students, it is vitally important to have as many
auxiliary tasks automated as possible, such as the evaluation of assignments and



exercises. Supporting the lecturers by lifting the burden of administrative tasks
is also a relevant question.

This recognition lead us first to the implementation of several independent
programs handling these tasks, and finally to the integration of these pieces of
software into a comprehensive teaching support system called ETS (a Hungar-
ian acronym). The best English equivalent of this acronym is Environment for
Teachers and Students. The design of ETS has been laid down in [1] and the
system is currently under development.

The ETS consists of loosely connected components linked to a common
database. Some components are already in use, others are unfinished yet, and
still there are some which only exist in the plans.

One component provides an interface to the database for users with various
privileges. Another component is responsible for managing assignments: this
includes reception of the programs, running the tests, evaluating the results
and notifying the students. A third component is an interactive exercise system
designed especially for the needs of programming courses. The initial version of
this component was reported in [2].

The latter two components will be introduced in the rest of this section.

2.1 Managing Assignments

Assignments consist of several simple programming tasks and a single complex
problem issued in each semester. Points received for the solutions add up to the
examination scores.

Along with each task we provide a testbed, a submission script and a set of
test cases. The testbed contains procedures/functions for parsing test cases and
pretty-printing solutions, so that the students do not have to bother with this
and can fully concentrate on the algorithm. A very similar testbed is used for
testing the solutions on the server-side, too. The submission script—running on
Unix-like systems—must be used to hand in the programs via e-mail. This way
we ensure that the students are properly identified (the script requests that the
sender name be selected from a list), and also that all submissions use the same
attachment format. The server automatically evaluates the submitted program,
stores the results in the database, and sends a verbose log to the student.

An HTML form is also available for students who—being unfamiliar with
Unix systems—may have problems using the submission script.

2.2 The Exercise System

The exercise system offers several types of exercise problems to the students,
receives and checks their solutions. In case of an erroneous solution it reports
the errors and offers re-editing. The system also follows and registers the progress
of students by making statistics.

At the design of the exercise system, we had the following objectives in mind:

– user friendly interface with easy navigation;



– “fool proof” error handling covering all possible errors, informative error
messages;

– protecting confident data and the system itself against malicious programs;
– easy addition of new exercises and exercise types by the administrators;
– reducing the possibility of human mistakes by avoiding redundancy: check

solutions directly by running the exercise, rather than by comparison to a
reference solution;

– organising tasks into topics for easier traversal.

In order to avoid overwhelming the students with exercises they cannot solve,
the problems are gradually made available by the system, following the course
curriculum. The first exercises the students encounter are very simple and require
only the most basic skills in both languages. Then—as the semester goes on—
they assume deeper and deeper knowledge.

In the rest of the section, we describe those topics of the course material
which are supported by the exercise system, and then we discuss some aspects
of implementation of the system.

Exercise Topics in Prolog

Standard prefix notation. First the students must get to know how Prolog parses
expressions, what are the atoms, compounds and operators. This is best practised
by letting the students themselves do the work of the Prolog parser: the task is
to specify the canonical form of an expression.
Q: a(2+3*5,b(1-2,4))
A: a(+(2,*(3,5)),b(-(1,2),4))

Lists are fundamental in all declarative languages because of their recursive
structure that suits recursive algorithms well. Therefore it is a must to under-
stand how they are built. The canonical form expresses the recursiveness well,
but using syntactic sugars may hide it. In this exercise the students must find
the canonical form of list expressions.
Q: [2+3,[1]|T]
A: .(+(2,3),.(.(1,[]),T))

Unification. When the notion of canonical form is clear, attention must be paid
to the unification of expressions containing variables. The students, given two
expressions, must tell whether unification succeeds or fails, and in case of success
what values the variables will assume.
Q: [3+Y|Z] = [X+4*5,X].
A: success, X = 3, Y = 4*5, Z = [3]

Equational operations. The four types of equations: unification (=), identity (==),
arithmetic evaluation (is) and arithmetic equality (=:=) can be quite confusing
for someone just learning Prolog. These exercises help understand the main
differences between these predicates. The task is again to tell whether the call



succeeds, fails or signals an error, and in case of success what values the variables
will assume.
Q: X is +(1,2), X =:= 10//3.
A: success, X = 3
Q: X is 5//4, X == 5//4.
A: failure

Control. The next step is to introduce control structures like the cut (!), the con-
ditional (-> ;), and the negation (\+). The question is the same as above.
Q: U is 21/6, (U < 3 -> X is 3-U ; X is U-3).
A: success, U = 3.5, X = 0.5
Q: X = 2, \+ \+ X = 1.
A: failure

Backtracking is of course the most powerful feature of Prolog. Students have to
understand how a nondeterministic program is executed, how clauses are tried,
what happens at cuts and in conditionals. In this type of exercise a small set of
predicates is given, and the students have to tell what solutions are enumerated
in the variable(s) of a specified call.
Q: p(1, 1). p(3, 1). p(_, 2).

q([H|T], A) :- p(H, A).
q([H|T], A) :- p(T, A).

| ?- q([1,2,3,4], X).

A: X = 1; X = 2; X = 2

Programming. When the students can handle all of the above “basic ingredients”,
they are asked to write simple predicates. The problem is specified by giving the
head comment of the predicate, and some examples.
Q: % adj(+L, ?Sum, ?A, ?B): A and B are adjacent elements

% in the L list of numbers, and their sum is Sum.

| ?- adj([2,3,1,4], 5, A, B).
A = 2, B = 3 ? ;
A = 1, B = 4 ? ;
no

Built-in predicates. As soon as they can write simple predicates from the scratch,
it is time to start using built-in and library predicates. This is again the usual
success/failure/error type exercise.
Q: append(X, _, [1,2]), X = [_|_], !.
A: success, X = [1]



Meta-logic predicates perform operations that require reasoning about the cur-
rent instantiation of terms (such as atom/1 and ground/1) or decomposing terms
into their constituents (functor/3, arg/3 and =../2). The question is the same
as above.
Q: functor(X, +, 2), X =.. [_,1,2|_].
A: success, X = 1+2
Q: X =.. [_,1,2|_], functor(X, +, 2).
A: instantiation error

Exercise Topics in SML

Basic types and values. The first thing students learn about SML is that it has
a strong type system. They find out about primitive data types (like int and
bool), the corresponding value sets, simple operators and functions manipulating
these data, and how these values can be coupled into tuples. In the first exercises
they are given a tuple containing basic expressions and have to specify its type
and value the SML interpreter would give.
Q: ("pi"^"e", 4 mod 2, 1<>0)
A: ("pie", 2, true) : string * int * bool

Lists are naturally also important in SML, but the syntax is somewhat different
from that of Prolog. Students learn how lists can be constructed with the cons
(::) operator, how to use syntactic sugar, and also hear about the append (@)
operator. Exercises at this stage ask the same kind of question as above, only
for lists.
Q: [2.1, 4.2] @ real 3 :: [abs(~1.7)]
A: [2.1, 4.2, 3.0, 1.7] : real list

Understanding simple functions. The next step after learning about the basic
data types is to come to know the most important SML construct, namely the
notion of the function, and to learn about pattern matching and conditional
constructs. Students also have to recognise (as yet monomorphic) function types.
In these exercises we ask the type of a function or the return value of a function
call.
Q: fun f (c,s) = explode (s ^ str c)
A: f : char * string -> char list
Q: f as above, f (#"e", "pi") = ?
A: [#"p", #"i", #"e"] : char list

Writing simple functions on your own stimulates constructive thinking already
at this early stage. Students are given the specification and type of a function,
and have to implement it.
P: (* sum xs = the sum of integers in ‘xs’

sum : int list -> int
*)
sum [4,6,3] = 13



Lambda notation comes up as the canonical form of function definitions. These
examples ask either the type or the value of an expression containing a lambda
function.
Q: val f = fn (s,c) = str c ^ s
A: f : string * char -> string
Q: (fn x => x*x) 2
A: 4 : int

Polymorphism. Since students already know about lists and tuples, it is rea-
sonable to teach them how they can handle such constructs in general, without
knowing the type of their constituents in particular. Here we ask
• the type of a function with specified body;
• a possible body with given type and head;
• a function definition given its specification.

Q: fun f x ls = length ls > x
A: f : int -> ’a list -> bool
Q: f : ’a list -> ’a list * ’a

fun f (x::xs) = ?
A: fun f (x::xs) = (xs, x)
P: (* lgr (l,ls) = ‘ls’ is longer than ‘l’

lgr : int * ’a list -> bool
*)

Datatype declarations. The ability of constructing user defined data types (like
binary trees) is a very strong feature of SML. The task here usually is to write
a function operating on a predefined data type.
P: datatype (’a, ’b) union = A of ’a

| B of ’b
(* split xs = (as,bs) where ‘as’ is the list of all A values,

‘bs’ is the list of all B values from ‘xs’
split : (’a, ’b) union list -> ’a list * ’b list

*)

Lazy and eager evaluation. Students learn quite early that the evaluation strat-
egy of SML is eager, but there are a few exceptions when lazy evaluation is used.
These are the logical operators (andalso, orelse, if-then-else) and the func-
tion definition, where the body is evaluated only on calling the function. The
goal here is to call their attention to this feature. An expression is given with
calls to print and printVal, and the output of the evaluation must be specified
as an answer.
Q: printVal 1 > 0 orelse printVal(null [1])
A: 1
Q: (fn (x,y) => print x) ("app", printVal "le")
A: "le"app



Partially applicable functions. If we know there is lazy evaluation in SML, we
might be interested in delaying some calculations and bringing others forward.
This can be solved with curried functions, which come handy in a lot of other sit-
uations as well. These exercises ask the type of partially applied functions.
Q: fun f x y = Math.sqrt(x*x + real(y*y))

val g = f 4.0
A: f : real -> int -> real

g : int -> real

Higher order functions. Eventually students learn about functions that take a
function as an argument, like map and foldl. The exercises of this topic ask the
type and/or value of expressions containing these functions.
Q: foldl op o chr
A: (char -> char) list -> int -> char
Q: map (fn i => i div 2) [3,4,6,9]
A: [1,2,3,4] : int list

About the Implementation. In the implementation of the exercise system,
we defined the following concepts:

– The exercise scheme gives the means of how a task is presented, in what form
the answer is expected, how it is checked and how the result is reported back
to the user—naturally between the limits imposed by the exercise system
itself and the capabilities of HTML forms.

– The category defines the section of the course material the current task
belongs to.

– Categories may form category groups to help navigation: instead of select-
ing categories from a long flat list, they are presented in a hierarchy. One
category may belong to several groups.

Categories can be formed by refining and further partitioning the topics discussed
so far. The topics themselves can serve as category groups.

Let us now list the most important schemes:

Prolog schemes
Standard prefix notation: give the canonical form of an expression
Success/failure/error: give the result of a call, in case of success also

determine the value of a specific variable
All solutions: enumerate (in proper order) all solutions of a goal, as re-

turned in a specified variable
Programming: write a predicate satisfying a given specification

SML schemes
Type: determine the type of a declaration (value or function)
Value: determine the simplest form of the value of an expression
Function body: determine the body of a function if the head and the type

is given



Type declaration: define a data type satisfying a specification
Programming: write a function conforming to a given specification

Checking the exercises is not always simple and calls for tricks to handle every
possible error intelligently. First of all the solution must pass a syntactical test
and only then can we move on to the semantical test, which in turn may consist
of more rounds. Often the solution has to be tested against minimal requirements
and then checked whether it is not over-specific.

For example, to check that the type of an SML declaration is really what the
student told and not more generic, we wrap the declaration and the type into a
structure.

structure expr :
sig val y : correct type end =

struct
declaration of x
val y : type guess = x

end

This way the message of the SML interpreter is different if the type is altogether
wrong or if it is just over-specific.

To check Prolog standard prefix notations, an appropriate DCG parser has
been included in the system.

3 Conclusions

We described that the increasing number of students presents a problem we
faced by introducing automated tools in exercising, evaluation and adminis-
trative tasks. These tools have been integrated into a comprehensive teaching
support system called ETS. We briefly presented the main components of ETS,
and discussed the exercise system in greater length.

Acknowledgement. Thanks are due to all students who have helped us in the
implementation of the ETS and its ancestors, especially to Lukács Tamás Berki
and András György Békés for their work on the exercise system.

References

1. Dávid Hanák: Computer Support for Declarative Programming Courses (in
Hungarian), 2001, MSc Thesis, see also http://dp.iit.bme.hu:4321/

2. András György Békés, Lukács Tamás Berki: A Web-based Exercise System for
Programming Languages (in Hungarian), 2001, Students’ Conference, Budapest,
Hungary

3. Péter Hanák, Péter Szeredi, Tamás Benkő, Dávid Hanák: “Yourself, my lord, if no
servants around” – A Web Based Intelligent Tutoring System (in Hungarian),
2001, NETWORKSHOP01, Sopron, Hungary


