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W1 Februar 7-9: Introduction, kNN, evaluation  
W2 Februar 14-16: Evaluation, Decision Trees 
W3 Februar 21-23: Linear separators, iPython, VC theorem 
W4 Februar 28-march 2: Linear separators, iPython, maximal margin 
W5 March 7-9: SVM, VC theorem and Bottou-Bousquet  
W6 March 14-16: clustering (hierarchical, density based etc.), GMM, 
MRF, Apriori and association rules 
W7 March 21-23: Recommender systems and generative models  
W8 March 28-30: basics of neural networks, Sontag-Maas-Bartlett 
theorems, Bayes networks 
W9 April 4-6: 
W10 April 11-13: BN, CNN, MLP, Dropout, Batch normalization 
W11 April 18-20: midterm, RNN  
W12 April 25-27: LSTM, GRU, attention, Image caption, Turing Machine 
W13 May 2-4: RBM, DBN, VAE, GAN 
W14 May 9-11: Boosting, Time series 
W14 May 16-18: TS, Projects on Friday  
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Plan
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Maximal margin (recap)

Margin	of	an	actual	model:	

The	maximum	margin	problem	is	to	maximize	the	
margin	while	solving	the	original	labeling	problem:	
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Maximal margin (recap)

Margin	of	an	actual	model:	

The	maximum	margin	problem	is	to	maximize	the	
margin	while	solving	the	original	labeling	problem:	

		

where	the	class	labels	are	in	{-1,+1}
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Maximal margin

Because	of	the	monotonicity	of	the	sigmoid	
function,	it	can	be	expanded	into	a	probabilistic	
sense:	

i.e.	maximizing	the	minimum	uncertainty	(difference	
from	the	undecided	probability).	
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Maximal margin

By	definition	(the	minimum	distance	from	the	
hyperplane	(notice,	we	allow	equality	too))	

		

for	all	(x,y)	pairs	in	the	training	set	and	so	we	can	
define	a	new	hyperplane		

for	which	the	following	holds	for	all	(x,y):
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Maximal margin  
(still a bit recap)

The	original	maximization	problem	is	equivalent	to	
minimization	of	the	norm	of	the	new	normal	vector	
with	a	new	constrain,	formally	

Questions:		

	 Why	the	½	?		
	 Why	the	square?		
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Maximal margin (partially new 
stuff)
This	convex,	quadratic	optimisation	problem	cannot	
be	solved	directly	because	of	the	constraints.	

Both	the	constraint	and	value	functions	are	cdf	->	
We	can	treat	it	is	a	Lagrangian	problem	

Formally,	let	be	αt	≥	0,∀t	the	set	of	primal	variables	
of	the	Lagrangian	(multipliers).		

Lagrangian	function	is	
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Maximal margin

Why	Lagrange?
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Maximal margin

Why	Lagrange?	

The	derivative	respect	to	the	normal	vector	will	be	
zero	at	points	where	the	original	optimisation	has	
usually	an	optimum	(note,	not	all	cases)		

Let	us	derive	the	derivative!
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Maximal margin

Why	Lagrange?	

The	derivative	respect	to	the	normal	vector	will	be	
zero	at	points	where	the	original	optimisation	has	
usually	an	optimum	(note,	not	all	cases)		

Let	us	derive	the	derivative!	

Stationary	points:	where	the	derivative	is	zero	
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Maximal margin

Recap:	

The	normal	vector	is	a	linear	combination	of	the	
training	samples:	

Let	put	everything	into	the	kitchen	sink:
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Maximal margin
So	our	final	optimization	(dual)	

Notice,	the	second	set	of		constraints	come	from	the	
bias	term.	

How	can	we	solve	such	a	problem?	Seems	
complicated.
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Maximal margin
Karush-Kuhn-Tucker	conditions:	actually	two	
independent	result:		

	 Karush	1939	-	master	thesis	
	 Kuhn-Tucker	1951	–	independently		

The	optimal	solution	includes	the	positice	Lagrangian	
multipliers	and	

	What	can	be	the	interpretation?
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Maximal margin
Karush-Kuhn-Tucker	conditions:	actually	two	
independent	result:		

	 Karush	1939	-	master	thesis	
	 Kuhn-Tucker	1951	–	independently		

The	optimal	solution	includes	the	positice	Lagrangian	
multipliers	and	

	What	can	be	the	interpretation?	

Cortes-Vapnik	(1995)	referred	the	training	points	
with	non-zero	multipliers	(aka	positive	according	to	
KKT)	as	Support	Vectors.	
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Maximal margin
The	optimal	solution	includes	the	positice	Lagrangian	
multipliers	and	

	What	can	be	the	interpretation?	

Cortes-Vapnik	(1995)	referred	the	training	points	
with	non-zero	multipliers	(aka	positive	according	to	
KKT)	as	Support	Vectors.		

and		

Unnecessary	points?	
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Maximal margin (a bit of 
recap)

With	a	simple	loss	(penalty	measure)	the	1-Norm	
Soft	Margin	problem	is	

where	is	the	same	as	before	(previously	determined	
constant).	

Let	us	check	the	Lagrangian!		
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Maximal margin (a bit of 
recap)

Lagrangian	function:

Beta	is	an	additional	set	of	Lagrange	multipliers	for	the	second	constraint.	

What	is	next?	
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Maximal margin (a bit of 
recap)

Lagrangian	function:

Beta	is	an	additional	set	of	Lagrange	multipliers	for	the	second	constraint.	

What	is	next?		Derivative!
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Maximal margin (a bit of 
recap)

Derivates:

Notice	the	gradient	respect	to	the	normal	vector	does	not	include	neither	the	loss	or	
the	second	constraint	->	identical	to	the	case	of	non-soft	margin!!!	(Cortes-Vapnik	
1995)	

Since	we	know	from	KKT		that	both	set	of	multipliers	are	positive:	
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Maximal margin (a bit of 
recap)

The	C	upper	is	an	upper	bound	and	finally	we	arrived	
at:	

Where	the	derivatives	are	simple:



22

Maximal margin (a bit of 
recap)

Replace	the	scalar	product	with	a	kernel	and	the	final	algorithm	is:	
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Brief intro to VC theorem
Lady	(Dr.	Muriel	Bristol-Roach)	:“by	tasting	a	cup	of	tea	made	
with	milk	she	can	discriminate	whether	the	milk	or	the	tea	
infusion	was	first	added	to	the	cup"		

R.	A.	Fisher	prepared	8	cups	->	4/4	

He	asked	the	Lady	to	choose	4	cups	in	which	she	thinks	the	
milk	was	added	first.			

What	is	the	probability	of	having	0,1,2,3,4	correct	answers?
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Brief intro to VC theorem
Lady	(Dr.	Muriel	Bristol-Roach)	:“by	tasting	a	cup	of	tea	made	with	
milk	she	can	discriminate	whether	the	milk	or	the	tea	infusion	was	
first	added	to	the	cup"		

R.	A.	Fisher	prepared	8	cups	->	4/4	

He	asked	the	Lady	to	choose	4	cups	in	which	she	thinks	the	milk	
was	added	first.			

What	is	the	probability	of	having	0,1,2,3,4	correct	answers?	

Overall:	70	cases	

Out	of	them:	

Having	zero	correct	answer:	1	
Having	one	correct	answer:	16		
Having	two	correct	answers:	36	
Having	three	correct	answers:	16	
Having	four	correct	answers:	1	
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Vapnik-Chervonenkis theorem
The	Vapnik-Chervonenkis	theorem	explains	the	connection	between	
generalisation,	training	set	selection	and	model	selection.		

Empirical	risk:	

The	theorem	states	that	if	we	optimize	for	a	binary	loss	function	(0	if	f(xi)	=	yi	
and	1	if	not)	over	a	set	of	independent	samples	from	a	fixed	distribution	D	with	
known	labels	(the	training	set)	than	the	true	risk	Rtrue(f)	(the	expected	value	of	
the	loss	function	over	D)	is	upper	bounded	by	the	empirical	risk	plus	an	
additional	value	depending	on	the	chosen	function’s	capabilities.	
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Vapnik-Chervonenkis theorem
The	VC-theorem	[Vapnik	and	Chervonenkis,	1971]:		
the	worst	case	scenario	

For	binary	classification	with	a	binary	loss	function	and	a	chosen	function	class	
F	the	generalisation	(the	difference	between	the	true	and	the	empirical	risk)	is	
bounded	as	follows		

and	
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Vapnik-Chervonenkis theorem
The	theory	shows	that	the	bound	is	depending	only	on	the	size	of	the		
training	set	and	the	separating	capability	of	the	chosen	function	class	
measured	by	the	shattering	coefficient	S(F,T),	the	maximum	number	of	
different	labellings	the	function	class	F	can	realize	over	T	samples.		

Maximal	number	of	labelings	in	case	of	binary	classification?	

S(F,T)=?
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Vapnik-Chervonenkis theorem
The	theory	shows	that	the	bound	is	depending	only	on	the	size	of	the		
training	set	and	the	separating	capability	of	the	chosen	function	class	
measured	by	the	shattering	coefficient	S(F,T),	the	maximum	number	of	
different	labellings	the	function	class	F	can	realize	over	T	samples.		

Maximal	number	of	labelings	in	case	of	binary	classification?	

S(F,T)=?	

For	binary	labels	the	maximum	and	the	ideal	would	be	S(F,T)	=	2T	but	in	practice	
usually	it	is	not	the	case.		

To	capture	this	amount,	they	defined	the	so	called	Vapnik-Chervonenkis	
dimension	(VC-dimension)	that	is	independent	from	the	size	of	the	training	set.	
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Vapnik-Chervonenkis theorem
The	VC-dimension	of	a	function	class	VC(F)	is	the	cardinality	of	the	largest	set	in	
the	d-dimensional	space	which	can	be	separated	correctly	(or	shattered)	with	
any	label	set.		

According	to	Sauer’s	lemma	[Sauer,	1972]	the	shattering	coefficient	is	upper	
bounded	as	

	Linear	separator?	

Is	it	sharp	bound?	
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Vapnik-Chervonenkis theorem
The	VC-dimension	of	a	function	class	VC(F)	is	the	cardinality	of	the	largest	set	in	
the	d-dimensional	space	which	can	be	separated	correctly	(or	shattered)	with	
any	label	set.		

According	to	Sauer’s	lemma	[Sauer,	1972]	the	shattering	coefficient	is	upper	
bounded	as	

Linear	separator?	
Radon	theorem	(about	convex	sets):	the	VC-dimension	of	the	linear	separator	
(a	hyperplane	which	separates	the	space	into	two	half-spaces)	is	d	+	1	in	d-
dimensional	space	

Is	it	sharp	bound?		
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Vapnik-Chervonenkis theorem
The	VC-dimension	of	a	function	class	VC(F)	is	the	cardinality	of	the	largest	set	in	
the	d-dimensional	space	which	can	be	separated	correctly	(or	shattered)	with	
any	label	set.		

According	to	Sauer’s	lemma	[Sauer,	1972]	the	shattering	coefficient	is	upper	
bounded	as	

Linear	separator?	
Radon	theorem	(about	convex	sets,	we	will	discuss	it	later):	the	VC-dimension	
of	the	linear	separator	(a	hyperplane	which	separates	the	space	into	two	half-
spaces)	is	d	+	1	in	d-dimensional	space	

Is	it	sharp	bound?		
No,	imagine	three	points	on	a	line	in	R2	
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Vapnik-Chervonenkis theorem
E.g.	

Let	us	consider	a	linear	separator	capable	of	separating	with	low	empirical	risk.		

If	the	number	of	examples	in	the	training	set	were	high,	the	feature	space	may	
(!)	had	been	high	dimensional	according	to	the	theory.		

This	suggests	a	high	shattering	coefficient	and	high	upper	bound.		

VC-dimension	of	the	class	of	polynomial	functions	(kernel!)	in	Rd	with	degree	
D?	
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Vapnik-Chervonenkis theorem
E.g.	

Let	us	consider	a	linear	separator	capable	of	separating	with	low	empirical	risk.		

If	the	number	of	examples	in	the	training	set	were	high,	the	feature	space	may	
(!)	had	been	high	dimensional	according	to	the	theory.		

This	suggests	a	high	shattering	coefficient	and	high	upper	bound.		

VC-dimension	of	the	class	of	polynomial	functions	(kernel!)	in	Rd	with	degree	
D?		

The	embedded	linear	space	has	a	dimension
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Vapnik-Chervonenkis theorem
Remember	T	is	finite	by	definition,	what	are	the	consequences?	
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Vapnik-Chervonenkis theorem
Remember	T	is	finite	by	definition,	what	are	the	consequences?	

We	can	always	find	a	polynomial	function	with	a	high	enough	degree	where		
	 	 	 	
	 	 	 	 d’	>	T+1	

Empirical	risk	will	be	zero.	

But	what	about	the	generalisation	and	the	shattering	coefficient?
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Vapnik-Chervonenkis theorem
Remember	T	is	finite	by	definition,	what	are	the	consequences?	

We	can	always	find	a	polynomial	function	with	a	high	enough	degree	where		
	 	 	 	
	 	 	 	 d’	>	T+1	

Empirical	risk	will	be	zero.	

But	what	about	the	generalisation	and	the	shattering	coefficient?	

Shattering	coefficient	will	be	high	if	T	is	high	->	the	upper	bound	increase	

☹ 	

Optimisation	for	low	true	risk	is	a	balance	between	low	empirical	risk	and	low	
VC-dimension.	
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Vapnik Chervonenkis dimension in 
general (HK book)

Let	U	be	a	set	of	n	points	in	the	plane.		

Let	ε	>	0	be	a	given	error	parameter.		

Pick	a	random	sample	S	of	size	s	from	U.		

Let	R	be	query	rectangle,	estimate	|R	∩	U|	by	the	quantity		

We	wish	to	assert	that	the	fractional	error	is	at	most	ε	for	every	
rectangle	R,	i.e.,	that	
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Vapnik Chervonenkis 
dimension

There	is	a	small	probability	that	the	sample	is	atypical:	
Example	picking	no	points	from	a	rectangle	R	which	has	a	lot	of	
points.		

We	can	only	assert	the	above	with	high	probability	or	that	its	
negation	holds	with	very	low	probability:		

where															is	another	error	parameter.		
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Pick	s	samples	uniformly	at	random	from	the	n	points	in	U.	For	
one	fixed	R,	the	number	of	samples	in	R	is	a	random	variable	
which	is	the	sum	of	s	independent	0-1	random	variables,	each	
with	probability																							of	having	value	one.	So,	the	
distribution	of	|R∩S|	is	Binomial(s,q).		

Using	Chernoff	bounds	(chapter	2	in	HK	book!),	for	0	≤	ε	≤	1: 

Vapnik Chervonenkis 
dimension
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Set	system	(U,S)	consists	of	a	set	U	along	with	a	collection	S	of	
subsets	of	U.		

A	subset	A	⊆	U	is	shattered	by	S	if	each	subset	of	A	can	be	
expressed	as	the	intersection	of	an	element	of	S	with	A.	

The	VC-dimension	of	the	set	system	(U,	S)	is	the	maximum	size	
of	any	subset	of	U	shattered	by	S.	

An	example:	
U	=	R2	of	points	in	the	plane	
S	being	the	collection	of	all	axis-parallel	rectangles.	

Vapnik Chervonenkis 
dimension
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Vapnik Chervonenkis 
dimension
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Theorem	(Radon):		
Any	set	S	⊆	Rd	with	|S|	≥	d	+	2,	can	be	partitioned	into	two	
disjoint	subsets	A	and	B	such	that	convex(A)	∩	convex(B)	=	∅		

VC	dimension	of	Half	spaces	in	d-dimensions:	

Define	a	half	space	to	be	the	set	of	all	points	on	one	side	of	a	
hyper	plane,	i.e.,	a	set	of	the	form	{x|a	·	x	≥	a0}.		

Radon’s	theorem		implies	that	half-spaces	in	d-dimensions	do	
not	shatter	any	set	of	d+2	points.	

Vapnik Chervonenkis 
dimension
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Sketch	of	proof:	

Divide	the	set	of	d+2	points	into	sets	A	and	B.	Suppose	that	
some	half	space	separates	A	from	B.	Then	the	half	space	
contains	A	and	the	complement	of	the	half	space	contains	B.	
This	implies	that	the	half	space	contains	the	convex	hull	of	A	and	
the	complement	of	the	half	space	contains	the	convex	hull	of	B.	
Thus,	convex(A)	∩	convex(B)	=	∅	a	contradiction.	

The	VC-dimension	of	half	spaces	is	d	+	1.	

Vapnik Chervonenkis 
dimension
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Vapnik Chervonenkis 
dimension

Spheres	in	d-dimensions	
	 	
	 A	sphere	in	d-dimensions	is	a	set	of	points	of	the	form	
	 {x|	|x	−	x0|	≤	r}.	The	VC-	dimension	of	spheres	is	d	+	1.	

Convex	polygons		

Consider	the	system	of	all	convex	polygons	in	the	plane.	For	any	
positive	integer	n,	place	n	points	on	the	unit	circle.	Any	subset	
of	the	points	are	the	vertices	of	a	convex	polygon.	Clearly	that	
polygon	will	not	contain	any	of	the	points	not	in	the	subset.	This	
shows	that	convex	polygons	can	shatter	arbitrarily	large	sets,	so	
the	VC-dimension	is	infinite.		
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Vapnik-Chervonenkis theorem
Summary:	

1) Low	the	empirical	risk	
2) Function	class	with	low	shattering	coefficient	(low	complexity)	
3) Let	us	take	a	disjoint	test	set,	then	according	to	the	proof	

4) 		

If	we	evalute	on	a	separate	test	set	we	have	an	upper	bound	:)	

Limitations?	
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Vapnik-Chervonenkis theorem
Summary:	

1) Low	the	empirical	risk	
2) Function	class	with	low	shattering	coefficient	(low	complexity)	
3) Let	us	take	a	disjoint	test	set,	then	according	to	the	proof	

4) 		
If	we	evalute	on	a	separate	test	set	we	have	an	upper	bound	:)	

Limitations?		

1) Fixed	distribution	…	(e.g.?)	
2) Really	high	for	complex	models,	says	nothing…	☹ or…?	
3) Are	we	even	close	to	the	optimal	during	optimisation?
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Bottou and Bousquet (2007) 
The	error	has	three	parts	and	they	are	additive:	

Linear	separator?	

Limitations	of	the	training	set?	

Gradient	descent?

Approximation	error Estimation	error Optimisation	error
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Gradient	based	optimisations:	

Gradient	Descent	(GD)	

Second	order	Gradient	Descent	(2GD):	

where	H	is	the	Hessian

Bottou and Bousquet (2007) 
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Gradient	based	optimisations:	

Stochastic	Gradient	Descent	(GD)	

Second	order	Stochastic	Gradient	Descent	(2GD):

Bottou and Bousquet (2007) 
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Bottou and Bousquet (2007) 

Consequence?
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Bottou and Bousquet (2007) 

Consequence?	

Large-scale	vs.	small-scale	learning	act	differently	

And	now	for	something	completely	different!	
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Project works


