
Data Mining algorithms

2017-2018 spring 

03.14-21.2016 
1. Linear separators in python 
2. Clustering 
3. GMM 
4. MRF
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W1 Februar 7-9: Introduction, kNN, evaluation  
W2 Februar 14-16: Evaluation, Decision Trees 
W3 Februar 21-23: Linear separators, iPython, VC theorem 
W4 Februar 28-march 2: Linear separators, iPython, maximal margin 
W5 March 7-9: SVM, VC theorem and Bottou-Bousquet  
W6 March 14-16: clustering (hierarchical, density based etc.), GMM, 
MRF, Apriori and association rules 
W7 March 21-23: Recommender systems and generative models  
W8 March 28-30: basics of neural networks, Sontag-Maas-Bartlett 
theorems, Bayes networks  
W9 April 4-6: holiday 
W10 April 11-13: BN, CNN, MLP, Dropout, Batch normalization  
W11 April 18-20: midterm, RNN 
W12 April 25-27: LSTM, GRU, attention, Image caption, Turing Machine 
W13 May 2-4: RBM, DBN, VAE, GAN 
W14 May 9-11: Boosting, Time series 
W14 May 16-18: TS, Projects on Friday  
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Plan



check out logreg.ipynb 
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Ipython and linear separators

svm_kernels.ipynb



How will perform a lnkage, density or a k-means?

a) b) c) d) e)

f)

4



Clustering with weka
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Mickey mouse
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Mickey.arff



Statistical analysis: determine a probabilistic model to fit a known 
set of observations.  

Formally, we have a set of observations X = {x1, .., xT } in Rd and 
a probability density function (pdf ) as  

where we even presumed that the model is parametric hence the 
formula (sometimes with “;” not with pipe) 

Hence the name: θ = {θ1, .., θN } is the parameter set of the 
density function. 
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Generative models



Now let us define the likelihood function to be equal to the 
probability of observing our sample set X:  

Our main goal is to estimate the parameter set which maximizing 
the likelihood function or the natural logarithm of it (log-
likelihood) over X, formally  

where we think of X as a constant.  

8

Generative models



This optimization problem is the so-called Maximum Likelihood 
Estimation (MLE).  

If our density function is simple enough, we can calculate the 
parameters analytically by setting the derivative of the log-
likelihood to zero.  

Unfortunately, there are important and widely used models 
where we cannot solve the derivative directly and therefore we 
need more refined methods to estimate the parameters.  

One of them is the Expectation-Maximization [Dempster et al., 
1977].
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Generative models



By the EM algorithm we assume that either our set of known 
observations or our model parameter set has missing latent 
variables or values.  

The EM method is an iterative algorithm: 

1. E-step:  calculate the expected value of the latent variables 
using the current estimation of the parameters 

2. M-step: we calculate the parameters which maximize the 
estimated likelihood over the known observations. 
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Expectation Maximization



We usually think of the known observations (or the training set) X 
= {x1, .., xT } as independent samples drawn from the same 
distribution, thus the joint probability is 

Now, let us assume that the missing set of random variables Y 
exists  
-> we define the complete pdf and therefore the complete 
likelihood as  
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Expectation Maximization



With the left side and the first part of the right side we assume a 
joint relationship between the missing, latent variables and the 
known observations.  

If we think of Y as a random variable drawn from an underlying 
distribution, we can define the following supplementary function: 
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Expectation Maximization



The expected value of the complete log-likelihood over Y drawn 
from a distribution  

    

parametrized by the previous (thus a constant) estimation of the 
parameters (θ(i−1)) and X, another constant. 
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Expectation Maximization



With Q(θ, θ(i−1)) we have a more manageable function to 
calculate the next estimation of the parameters:  
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Expectation Maximization
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Expectation Maximization

Summary: 

E-step:  

M-step:  

It can be proved that this two-step procedure is guaranteed not to 
decrease the original likelihood and converge to an unfortunately 
local maximum [Dempster et al., 1977, McLachlan and Krishnan, 
2007]. 
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Gaussian Mixture Model

Approximation	with	a	single	normal	distribution?	

1. Poor	approximation	quality	
2. Can	prefer	observations	not	in	the	original	sample	population		

Idea?	

Expanding	to	mixture	distributions!	

If	the	number	of	mixture	distributions	is	finite	->	Gaussian	Mixture	
Model
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Gaussian Mixture Model

Formally,	let	N	be	the	number	of	Gaussian	distributions,	each	in	Rd	and	
their	positive	mixing	weights	ω	=	{ω1,	ω2,	..,	ωN	}	with	Ni=1	ωi	=	1.		

Pdf:	

where	Θ	=	{ω1,..,ωN,μi,..,μN,Σ1,..,ΣN}	are	the	parameters	of	the	mixture	
and	the	i-th	d-dimensional	multivariate	normal	distribution	is		
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Gaussian Mixture Model

Parameters	of	our	mixture	model?	
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Gaussian Mixture Model

Parameters	of	our	mixture	model?	

Unfortunately,	in	practice	the	number	of	parameters	of	our	mixture	
distribution	could	be	really	huge.		

What	are	the	parts?
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Gaussian Mixture Model
Parameters	of	our	mixture	model?	

Unfortunately,	in	practice	the	number	of	parameters	of	our	mixture	
distribution	could	be	really	huge.		

What	are	the	parts?	

If	we	assume	a	d-dimensional	underlying	vector	space,	our	parameter	
set	has	three	parts:		

1.	ω	=	{ω1	,	..,	ωN	}	is	an	N	-dimensional	real	vector 
2.	μ	=	{μ1,	..,	μN	}	is	a	set	of	d-dimensional	mean	vectors 
3.	Σ	=	{Σ1,	..,	ΣN	}	is	a	set	of	N	covariance	matrices	each	with	d2	
elements.		
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Gaussian Mixture Model
We	can	reduce	the	latter	->	Nd	with	diagonal	covariance	matrices	
(isotropic	Gaussians)	

Overall:	cardinality(Θ)	:=|	Θ	|=	N	(1	+	2d)		

Vs.	k-means?	

How	to	find	an	element	analyticaly?	
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Gaussian Mixture Model
We	can	reduce	the	latter	->	Nd	with	diagonal	covariance	matrices	
(isotropic	Gaussians)	

Overall:	cardinality(Θ)	:=|	Θ	|=	N	(1	+	2d)		

Vs.	k-means?	

How	to	find	an	element	analyticaly?	

Derivation?	:(	

EM	☺
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Gaussian Mixture Model

We	need	a	latent,	but	computable	estimation	of	the	probability	og	the	
latent	variables:	

Adjuvant	proportion	or	the	the	membership	probability:	

xt	∈	X	and	the	i-th	Gaussian	as	
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Gaussian Mixture Model

Interpretation:	

the	probability	that	sample	xt	was	generated	by	the	i-th	Gaussian	
distribution		

due	to	the	fact	that	Ni	γi(xt)	=	1	for	all	x.		

During	the	E-step	we	estimate	the	membership	probabilities	for	the	
observations	using	the	actual	parameters.	
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Gaussian Mixture Model

M-step:		

use	these	expected	values	to	determine	a	better	estimation	of	the	
parameters.			

The	smoothness	property	of	the	Gaussian	Mixtures	(and	for	all	the	
density	functions)	allow	us	to	optimize	over	the	natural	logarithm	of	
the	likelihood	instead	of	the	likelihood:	

Gradient?	
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Gaussian Mixture Model

Gradient: 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Gaussian Mixture Model

Gradient	for	the	weight: 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Gaussian Mixture Model

Gradient	for	the	weight: 

Connection	with	the	
membership	prob.?
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Gaussian Mixture Model

There	is	a	straightforward	connection	between	the	membership	
probability	and	our	gradient:
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Gaussian Mixture Model

The	rest	of	the	gradient	vector	respect	to	the	mean,	under	assumption	
of	diagonal	covariance	matrices	(isotropic	Gaussian):
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Gaussian Mixture Model

Similarly,	the	gradient	vector	respect	to	the	variance,	under	assumption	
of	diagonal	covariance	matrices	(isotropic	Gaussian):
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Gaussian Mixture Model
Summary:	

1.	Set	the	parameters	of	GMM	by	random.	
2.	E-step:	Estimate	the	membership	probabilities	after	k	iterations:	

3.	M-step:	Set	the	gradients	to	zero:	

4.	Go	back	to	2	
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Gaussian Mixture Model
Summary:	

1.	Set	the	parameters	of	GMM	by	random.	
2.	E-step:	Estimate	the	membership	probabilities	after	k	iterations:	

3.	M-step:	Set	the	gradients	to	zero:	

4.	Go	back	to	2	

Are	we	done?
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Gaussian Mixture Model
What	was	missing?	

The	mixture	parameter	is	tricky,	setting	to	zero:	

Ultimately	(as	an	approx.),	the	formula	to	update	the	mixture	weights	is	
just	as	illustrative	as	the	above	expressions:		
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Gaussian Mixture Model
E-step:	Estimate	the	membership	probabilities	after	k	iterations:	

M-step:	Set	the	gradients	to	zero:	

Are	we	done	yet?
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Gaussian Mixture Model
The	EM	algorithm	will	alternate	between	the	two	steps	and	as	we	
mentioned	in	the	previous	section	there	are	theoretical	guarantees	of	
convergence,	hence	a	direct	implementation	will	not	work	or	will	be	
slow	in	particular	cases.		

The	main	reason	is	that	the	denominator	in	the	definition	of	the	
membership	probability	can	easily	underflow	even	in	fp64	(64	bit	
precision,	aka	double)	and	especially	in	large	dimensional	spaces.		

How	can	we	overpass	it?
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Gaussian Mixture Model
The	main	reason	is	that	the	denominator	in	the	definition	of	the	
membership	probability	can	easily	underflow	even	in	fp64	(64	bit	
precision,	aka	double)	and	especially	in	large	dimensional	spaces.		

How	can	we	overpass	it?	

One	solution	is	to	modify	the	expression.	Let	us	reformulate	the	value	
ωigi(x)	as	emi(x)	where
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Gaussian Mixture Model
One	solution	is	to	modify	the	expression.	Let	us	reformulate	the	value	
ωigi(x)	as	emi(x)	where	

and		

where			 	 	 	 	 	 	 	 ->	At	least	one	exponent	is	1!



39

Gaussian Mixture Model
One	solution	is	to	modify	the	expression.	Let	us	reformulate	the	value	
ωigi(x)	as	emi(x)	where	

and		

where			 	 	 	 	 	 	 	 ->	At	least	one	exponent	is	1!	
And	of	course:	if	one	of	them	is	1	…	->	others	are	zero	☺ 



We painted the points from the first cluster to gray and to black from the 
second. 

How can it be that the points on the right are in the gray clusters? 

                           

What if we use k-means?

Gaussian Mixture Model
40



 A) There is a known cost function: 
  - K-means : RMSE 
  - GMM: loglikelihood  
                           - DBSCAN: variance or outliers … 

 b) External knowledge (annotation) 
  - similarly  to classification: F-measure … 
  - or DT	

Performance
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Mutual information: 

Pkj : the prob. of assigning to the j-th cluster while the point is originally from the k-th 

Is it a good measure? 

We can normalize via entropy: 

MI (K ,C )=∑
k
∑
j
pkj log

pkj
pk p j

H (K )=∑ − pk log pk H (C )=∑− pc log pc

NMI (K ,C )=
∑
k
∑
j
pkj log

pkj
pk p j

H (C )+ H (K )
2

Performance
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Bag of Visual Words (Csurka et al 2004)

Fig.: Li Fei Fei 
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Rigid local descriptors

       
 

Segmentation 
     ~ 2-300 

Dense Grid 
    ~ 5k+ Region of Interest 

   ~ 1-2k 	
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What will k-means or GMM do with the following images?

Spatiality
45



       
 

 Spatial Pooling  
  Rigid splits ☹ 
  1x3, 2x2, 4x4  
  Segmentation 

 Even NN ☹  

 Back to square one: 
  by GMM we assumed  
  exchangeability 

 Or …. ☺ 

Spatial Pooling
46
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Random Fields
As	we	mentioned	the	Gaussian	Mixture	 is	powerful	method	to	model	
the	prior	distribution	of	a	single	observation.		

Nevertheless	there	we	can	easily	think	of	structures	over	the	samples	
(for	 example	 a	 website)	 or	 samples	 originated	 from	 a	 complicated	
structure	of	sub-samples,	such	as	words	or	image	patches.		

In	such	a	case	we	can	model	the	overall	observation	(a	set	of	samples)	
as	 a	 set	 of	 random	 variables	 each	 drawn	 from	 a	 prior	 probability	
distribution.	
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Random Fields

If	 our	 underlying	 prior	 model	 is	 a	 Gaussian	 Mixture	 we	 assume	
exchangeability	 for	 the	 inner	 samples	 of	 the	 sample	 [Perronnin	 and	
Dance,	2007].		

This	conditional	 independence	gives	us	 the	advantage	of	variability	 in	
the	 layout	 of	 the	 sub-samples,	 although	 there	 are	 some	 structures	
where	the	composition	is	significant.	
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Random Fields
Let	us	capture	the	relation	between	the	samples	with	a	graphical	
model	or	Random	Field:		

• the	vertices	are	the	set	of	samples	(random	variables)	
• we	connect	samples	if	there	is	a	known	connection	between	them		

There	are	several	kinds	of	Random	Fields,	among	them	are	the	
Gaussian	and	the	Markov	Random	Field.		

One	of	the	main	characteristics	of	the	Gaussian	Random	Field	is	the	
assumption	of	conditional	independence	between	the	random	
variables	(rough	interpretation	is	a	graph	without	edges).
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Random Fields
In	comparison,	by	the	Markov	Random	Field	we	can	also	capture	
connections	between	samples	with	an	undirected	graph	whilst	
following	both	local	and	global	Markov	property.		

Formally,	let	be	X	an	observation	with	T	corresponding	observations:		

X	=	{x1,	..,	xT	}	

For	example	an	image	with	a	set	of	keypoints,	regions	or	pixels	[Geman	
and	Graffigne,	1986,	Szirányi	et	al.,	2000].	
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Random Fields
In	our	case,	the	Random	Field	has	T	vertices	and	we	connect	two	
vertices	with	an	edge	if	they	are	neighbours	according	to	our	
knowledge.	

Three	type	of	Markov	properties:	
• Local	
• Global		
• pairwise
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Random Fields

		

The	local	Markov	property	means	that	an	observation	is	conditionally	
independent	of	the	non-neighbour	observations:		
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Random Fields
The	local	Markov	property	means	that	an	observation	is	conditionally	
independent	of	the	non-neighbour	observations:		

Nxi	is	the	neighbourhood	of	xi	,	the	set	of	nodes	adjacent	to	xi.	

The	global	Markov	property	denotes	that	any	two	disjoint	subsets	XA,XB	
⊂	X	are	conditionally	independent	given	a	non-empty	separate	set	XC	.	
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Random Fields
The	global	Markov	property	denotes	that	any	two	disjoint	subsets	XA,XB	
⊂	X	are	conditionally	independent	given	a	non-empty	separate	set	XC	.	

->	any	path	between	each	node	from	XA	to	any	node	in	XB	will	include	
at	least	one	node	from	XC	.	

OR	in	other	words	if	we	remove	XC	from	the	graph	there	will	be	no	
paths	connecting	XA	and	XB.	
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Random Fields
The	smallest	set	of	nodes	for	a	node,	which	is	making	the	node	
conditionally	independent	from	all	other	nodes	in	the	graph,	is	called	
the	Markov	blanket	of	the	node.		

This	set	is	equivalent	with	the	neighbourhood	of	the	node.		

The	last	property	is	the	pairwise	Markov	property:	

if	two	separate	nodes	are	not	immediate	neighbours	then	they	are	
conditionally	independent	given	the	rest	of	the	nodes	in	the	graph	
[Hammersley	and	Clifford,	1971].		
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Random Fields
The	Hammersly-Clifford	theorem	[Hammersley	and	Clifford,	1971]	
states	that	the	joint	probability	has	a	Gibbs	distribution	form,		

where	U(X	|	Θ)	called	as	the	energy	function.		



57

Random Fields

And		

is	the	partition	function	(or	normalization	constant)		

the	expected	value	of	the	energy	function	over	our	generative	model.	

Note:	what	if	we	define	the	energy	function	as	the	natural	logarithm	of	
a	pdf?
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Random Fields

Note:	what	if	we	define	the	energy	function	as	the	natural	logarithm	of	
a	pdf?	

Z	is	trivially	equal	to	1	and	therefore	we	get	back	the	original	pdf	as	
expected.		

According	to	[Hammersley	and	Clifford,	1971,	Besag,	1974]	if	our	MRF	
can	be	factorized	over	the	set	of	cliques	(CX)	in	the	graph	than	our	pdf	
has	a	from	of		
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Random Fields
Compared	to	GMM:	

Estimation	of	the	parameters	rather	depends	on	the	energy	function	
and	consequently	on	the	normalization	constant.		

Despite	a	wide	variety	of	methods	can	be	used	to	determine	the	
parameters:	

• Inference	(though	the	Maximum-a-Posteriori	inference	is	NP-hard	
[Taskar	et	al.,	2004])	

• Simulated	annealing	[Geman	and	Graffigne,	1986]	
• Maximum	Likelihood	may	be	an	option	(with	proper	energy	

functions)
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Random Fields
Example:	Images	

Fisher	Information:	Riemannian	metric	over	generative	models,		
the	gain	over	GMM	is	1-5	%


