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= Requirements

Lectures: 2x(2x45) min., wed and fri 12pm — 2pm
Where? IB134

Can we start at 12:15 with a 5 min. break and finish at 13:507
Project work: challenge”

Tests: midterm (7th week?) + exam
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Main topics

Evaluation of classifiers: cross-validation, bias-variance trade-off

Supervised learning (classification): nearest neighbour methods, decision trees,
logistic regression, non-linear classification, neural networks, support vector networks
timeseries classification and dynamic time warping

Linear and polynomial, one and multidimensional regression and optimization:
gradient descent and least squares

Advanced classification methods: semi-supervised learning, multi-class classification,
multi-task learning, ensemble methods: bagging, boosting, stacking, ensemble
Clustering: k-means (k-medoid, FurthestFirst), hierarchical clustering, Kleinberg’s
impossibility theorem, internal and external evaluation, convergence speed

Principal component analysis, low-rank approximation, collaborative filtering and
applications (recommender systems, drug-target prediction)

Density estimation and anomaly detection

Frequent itemset mining

Additional applications and problems: preprocessing, scaling, overfitting,
hyperparameter optimization, imbalanced classification
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2 Tools

Scikit (mainly)
Chainer
Tensorflow
Keras

Weka (some)
DATO (opt.)

Underlying: python (numpy), R etc.
Server: at SZTAKI (unfortunately w/o GPU)
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Some ideas:

Text mining/classification
trust and bias
embeddings
network??

Recommendation system:
item-to-item recommendation
regular explicit

Image:
classification/reconstruction
medical image classification

Team work would be preferable

Presentation at the end of the
semester

Projects

User/Movie Napoleon Monster Cindarella Life on
Dynamite RT. Earth
David 1 ? ? 3
Dori 5 3 5 5
Peter ? 4 3 ?




Dataset: set of objects, with
some known attributes

Hypothesis: the attributes
represent and differentiate the
objects

E.g. attribute types:
binary
nominal
numerical

string
date

“records”

Representation

Attributes, “features”

-~

Tid Refund Marital
Status

1 Yes Single

2 |No Married

3 [No Single

4 |Yes Married

5 |No Divorced

6 |No Married

7 |Yes Divorced

8 [No Single

9 |No Married

10 |No Single

Taxable

125K
100K
70K
120K
95K
60K
220K
85K
75K
90K

~

Income Cheat

No
No
No
No
Yes
No
No
Yes
No

Yes




Representation

Attributes, “features”

Structure:
_ i 4 ™
Sequentlal Tid Refund Marital Taxable
- Spatia| Status  Income Cheat
/11 |Yes Single 125K No
2 |No Married |100K No
Sparse o dense 3 |No Single 70K No
- 4 |Yes Married |[120K No
U) .
We presume that the set of g < 5 |No  |Divorced 95K |Yes
attributes are previously known 3 6 [No  |Married 60K  |No
and fixed = 7 |Yes Divorced | 220K No
8 [No Single 85K Yes
9 [No Married |75K No
Missing values? \_|10 [No  |Single [90K |Yes




Machine learning

Let be a finite set X={x,..,X;} in Rdand for each point a label
y={Y4,..,y7} usually in {-1,1}. The problem of binary classification
IS to find a particular f(x) which approximate y over X.

How to measure the performance of the approximation?

How to choose the function class?

How to find a particular element in the chosen function class”?
How to generalize”

Classification vs. regression?
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2 Classification

E.g. the problem of learning a half-space or a linear separator. The task is to
find a d-dimensional vector w, if one exists, and a threshold b such that

w-Xx, > b for each x; labelled+1
w-X; < b for each x; labelled —1

A vector-threshold pair, (w, b), satisfying the inequalities is called a linear
separator -> dual problem: high dimensional learning via kernels (inner

products)

Input

Attribute set :D

(X)

Classification
model

Output

:> Class label

)



Classification

Sample set
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K-Means

Presumption: our data points are in a vector space.

K-means (D, k)
Init: Let C,, C,,... , G, be the centroids of the clusters

While the centroids change:
assign every point in D to the cluster with the closest centroid
Update the centroids according to the assigned points (mean) i
2

k%

The initial centroids are:
a) random points from D
b) random vectors

X X X
3

When do we stop? L
a) the centroids are not changing
b) the approximation error is below a threshold
c) we reach the maximal number of allowed iterations
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K-means
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K- nearest neighbor (K-NN)

Hypothesis:

“If it walks like a duck, swim like a duck, eat like a duck than it is a duck!”

1.

Find k nearest training points

2. Majority vote

E.Q..

- +

+ —

---------
" ~.
. ~

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

Fig.: TSK




K- nearest neighbor (K-NN)
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Machine learning algorithnms are either

Why it is not a good classifier?

Eager: the algorithm builds a model and predicate using only the model

or

Lazy: the algorithm use the training set during prediction

KNN is lazy

Complexity? Generalization?

Fig.: TSK



K- nearest neighbor (K-NN)

E.g. Distance/divergence metrics:
- Minkowski

- Mahalanobis ~ Da(z) = y/(z — #)TS1(z — p).

- Cosine, Jaccard, Kullback-Leibler, Jensen-Shannon etc.

Notes:
- scale
- normalization
+y _
06 ..... 50 o s 4 o 00
+ 0 + + A0 (0
+ OO + 0 8 + + 0 é)o + O + (9 +
0 0 Q
0 >
% >




Johnson-Lindenstrauss lemma (1984)

Theorem

Any finite set of points X = {x1,...,x,} in R? can be projected into a
k = O(e~2log(n)) dimensional space while preserving the pairwise L2
distances with some distortion:

\/§||X,- — xjll2(1 =€) < [|0(xi) — 0(x})|2 < \/glle' = Xjll2(1 +¢) (1)

Main questions:
© what is the constant in k7 e.g. n=1M, € = 0.01, then k ~ ¢ % 120000

@ what is the transformation? JL transform: random orthogonal unit
vectors uniformly chosen from S~ (the unit sphere in RY)

v




Johnson-Lindenstrauss lemma

The JL transform satisfies three main properties:

© Spherical symmetry: for any orthogonal matrix A, the transformed A
and the transformation 6 has the same distribution

@ Orthogonality
© Normality

Indyk & Motwani (1998):
No orthogonality, no normality
Independently draw each entry in 6 from N(O0, %) yet it satisfies JL.
On expectation the normality and the orthogonality are satisfied:

E[< 0,0, >]=0,E[<6;,0; >] =1 (2)

O(e2dlog(n)) in time and n°( ) in space



Johnson-Lindenstrauss lemma

Achlioptas (2003):
No spherical symmetry
For all unit vectors x, the §(x)? concentrated around mean %
Distribution 1: Choose each entry in 6 uniformly from {—ﬁ,

}

S

Distribution 2: Choose each entry independently as:

( (%)_1/2, w.p. 1/6
i =14 0, w.p. 2/3
\ _(%)_1/27 W.p. 1/6

Sparse: 2/3 of the entries are zero, going lower may distort the sparse
vectors




Johnson-Lindenstrauss lemma

Ailon & Chazelle (2009):

Heisenberg principle:
A singal and its spectrum cannot be both concentrated.

Key idea:
Preprocess the vectors with Fourier (actually with Walsh-Hadamard)

O(d log(d) + €2log>(n)) in time (if d is large enough)
They assume that d = 2™ > k (because of FFT) and d = Q(e7/?)
and n>d :(

The final transformation is 8 = PHD :)



Johnson-Lindenstrauss lemma

Ailon & Chazelle (2009):
The final transformation is 6 = PHD :)

(

JL

)

(

Walsh — Hadamard

(1 )

+1

+1

\ £1)

@ P: kxd, with probability g = min{O(Iogz%), 1} i.i.d from N(0,1/q)

otherwise zero

e H: Walsh-Hadamard
e D: diagonal, flipping coins with prob. 1/2 with values {—1,+1}



Johnson-Lindenstrauss lemma

For same certain type of points ||Px||2 has high variance, especially if a
point is very sparse (e.g. one non-zero element)

However if we precondition with HD the vectors will be suitable to be
transformed with P while satisfy JL (with a certain prob., see lemma 1 in
Ailon & Chazelle (2009)) aka it densifies the sparse input vectors



Johnson-Lindenstrauss lemma

OK, we should stop, since the next step is a bit far away. Yet.

But walit ...

What may be the next step?

Are there any other methods to approximate distance or
approximate NN?



E e.q. Riemannian Manifold

Given a smooth (or differentiable) n-dimensional manifold M,
a Riemannian metric on M (or TM) is a family of inner
products (Ce,e>.),c ON €ach tangent space T M, such that

the inner product depends smoothly on p.

A smooth manifold M, with a Riemannian metric is called a
Riemannian manifold.




Riemannian Metric

Let v: [X, y] be a continuously differentiable curve in M.

The length of a curve y on M is defined as integrating the
length of the tangent vector dy (d is a differential operator).

Example: g1 dX{2 + g4, AX 0X, + gop AX2 ...
It gy is the Kronecker delta it will be the Euclidean.

The distance d(x,y) is the shortest among the curves between
X andy.

OK, at this point we should really stop! Do not worry, we will
come back.

13



Confusion matrix

—valuation

(oinary classification):

Ground truth / pos
predicted
class
pos True
Positive
(TP)
neg False
Positive
(FP)

Total TP+FN

neg Total

False TP+FN
Negative
(FN)

True FP+TN
Negative
(TN)

FP+TN



valuation

Accuracy: proportion of correctly classified instances
TP+TN/(TP+FP+TN+FN)

Precision (p): proportion of correctly classified positive instances in
the set of instances with positive predicted label

TP/(TP+FP)

Recall (r): proportion of correctly classified positive instances
TP/(TP+FN)

F-measure: harmonic mean of precision and recall
(27p"r/(p+r))



> .

False-Positive Rate (FPR) =
FP/(FP+TN)

True-Positive Rate (TPR) =
TP/(TP+FN)

ROC: Receiver Operating
Characteristic

MAP: Mean Average Precision
(Friday)

AveP = >oL i (P(r) x rel(r))

Fvaluation

TPR or sensitivity
¢ o o o o
[8,] (2] ~l [o:] [{e]

o
o

number of relevant documents

NDCG: normalized
Discriminative Cummulative
Gain (later)

P
DCG, = rely + .
v 1 ZQ logy(2)

rel;

=

Pefect Classification

Oe

> e

Qe

FPR or (1 - specificity)

1



Cvaluation, tradeoff
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o Only for binary classification
o Area Under Curve: prop. with the probability of correct

ROC: Receiver Operating Characteristic

separation

o threshold independent

o Presumption: available scores (ties?)

o+

085 087 0. .0

0

0

5

5

TPR 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.2 0
FPR 1 0.8 0.8 0.6 0.4 0.2 0.2 0 0 0




ROC: Receiver Operating Characteristic

Class + -
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_ TPR
Some exercise:

. How to compare models?
AUC?

TP

TPR



