

Data Mining algorithms

2017-2018 spring

02.07-09.2018

Overview

Classification vs. Regression

Evaluation I

Bálint Daróczy daroczyb@ilab.sztaki.hu Basic reachability: MTA SZTAKI, Lágymányosi str. 11

Web site: <u>http://cs.bme.hu/~daroczyb/DM_2018_spring</u> (slides will be uploaded after class)

Requirements

Lectures: 2x(2x45) min., wed and fri 12pm – 2pm Where? IB134

Can we start at 12:15 with a 5 min. break and finish at 13:50?

Project work: challenge?

Tests: midterm (7th week?) + exam

 Tan, Steinbach, Kumar (TSK): Introduction to Data Mining Addison-Wesley, 2006, Cloth; 769 pp, ISBN-10: 0321321367, ISBN-13: 9780321321367

http://www-users.cs.umn.edu/~kumar/dmbook/index.php

2. Leskovic, Rajraman, Ullmann: Mining of Massive Datasets <u>http://infolab.stanford.edu/~ullman/mmds.html</u>

3. Devroye, Győrfi, Lugosi: A Probabilistic Theory of Pattern Recognition, 1996

4. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

5. Hopcroft, Kannan: Computer Science Theory for the Information Age http://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/hopcroft-kannan-feb2012.pdf

+ papers

Main topics

- Evaluation of classifiers: cross-validation, bias-variance trade-off
- Supervised learning (classification): nearest neighbour methods, decision trees, logistic regression, non-linear classification, neural networks, support vector networks timeseries classification and dynamic time warping
- Linear and polynomial, one and multidimensional regression and optimization: gradient descent and least squares
- Advanced classification methods: semi-supervised learning, multi-class classification, multi-task learning, ensemble methods: bagging, boosting, stacking, ensemble
- Clustering: k-means (k-medoid, FurthestFirst), hierarchical clustering, Kleinberg's impossibility theorem, internal and external evaluation, convergence speed
- Principal component analysis, low-rank approximation, collaborative filtering and applications (recommender systems, drug-target prediction)
- Density estimation and anomaly detection
- Frequent itemset mining
- Additional applications and problems: preprocessing, scaling, overfitting, hyperparameter optimization, imbalanced classification

Scikit (mainly)

Chainer

Tensorflow

Keras

Weka (some)

DATO (opt.)

Underlying: python (numpy), R etc. Server: at SZTAKI (unfortunately w/o GPU)

Some ideas:

Text mining/classification trust and bias embeddings network?

Recommendation system: item-to-item recommendation regular explicit

Image:

classification/reconstruction medical image classification

Team work would be preferable

Presentation at the end of the semester

User/Movie	Napoleon Dynamite	Monster RT.	Cindarella	Life on Earth
David	1	?	?	3
Dori	5	3	5	5
Peter	?	4	3	?

Representation

Dataset: set of objects, with some known attributes

Hypothesis: the attributes represent and differentiate the objects

E.g. attribute types: binary nominal numerical string date 'records"

Attributes, "features"

Representation

Attributes, "features"

Structure:

- sequential
- spatial
- Sparse or dense

We presume that the set of attributes are previously known and fixed

Missing values?

Machine learning

Let be a finite set $X = \{x_1, ..., x_T\}$ in \mathbb{R}^d and for each point a label $y = \{y_1, ..., y_T\}$ usually in $\{-1, 1\}$. The problem of binary classification is to find a particular f(x) which approximate y over X.

How to measure the performance of the approximation? How to choose the function class? How to find a particular element in the chosen function class? How to generalize?

Classification vs. regression?

Classification

E.g. the problem of learning a half-space or a linear separator. The task is to find a d-dimensional vector w, if one exists, and a threshold b such that

 $w \cdot x_i > b$ for each x_i labelled+1 $w \cdot x_i < b$ for each x_i labelled -1

A vector-threshold pair, (w, b), satisfying the inequalities is called a linear separator -> dual problem: high dimensional learning via kernels (inner products)

Sample set

Clustering, is it regression?

Fig.: TSK

Presumption: our data points are in a vector space.

K-means (D, k)

Init: Let C_1, C_2, \dots, C_k be the centroids of the clusters

While the centroids change:

assign every point in D to the cluster with the closest centroid Update the centroids according to the assigned points (mean)

The initial centroids are:

a) random points from Db) random vectors

 $\frac{\frac{1}{x_{1}}}{\frac{1}{x_{1}}}$

When do we stop?

a) the centroids are not changing

b) the approximation error is below a threshold

c) we reach the maximal number of allowed iterations

Fig.: TSK

Hypothesis:

"If it walks like a duck, swim like a duck, eat like a duck than it is a duck!"

- 1. Find k nearest training points
- 2. Majority vote

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

K- nearest neighbor (K-NN)

Why it is not a good classifier?

Machine learning algorithms are either

Eager: the algorithm builds a model and predicate using only the model or

Lazy: the algorithm use the training set during prediction

kNN is lazy Complexity? Generalization?

K- nearest neighbor (K-NN)

E.g. Distance/divergence metrics:

- Minkowski

- Mahalanobis
$$D_M(x) = \sqrt{(x-\mu)^T S^{-1}(x-\mu)}.$$

- Cosine, Jaccard, Kullback-Leibler, Jensen-Shannon etc.

Notes:

- scale
- normalization

Fig.: TSK

Theorem

Any finite set of points $X = \{x_1, ..., x_n\}$ in \mathbb{R}^d can be projected into a $k = O(\epsilon^{-2} \log(n))$ dimensional space while preserving the pairwise L2 distances with some distortion:

$$\sqrt{\frac{k}{d}}\|x_i-x_j\|_2(1-\epsilon) \leq \|\theta(x_i)-\theta(x_j)\|_2 \leq \sqrt{\frac{k}{d}}\|x_i-x_j\|_2(1+\epsilon) \quad (1)$$

Main questions:

- **1** what is the constant in k? e.g. n=1M, $\epsilon = 0.01$, then $k \approx c * 120000$
- 2 what is the transformation? JL transform: random orthogonal unit vectors uniformly chosen from S^{d-1} (the unit sphere in \mathbb{R}^d)

The JL transform satisfies three main properties:

- **①** Spherical symmetry: for any orthogonal matrix A, the transformed A and the transformation θ has the same distribution
- Orthogonality
- Ormality

Indyk & Motwani (1998):

No orthogonality, no normality Independently draw each entry in θ from $\mathcal{N}(0, \frac{1}{d})$ yet it satisfies JL. On expectation the normality and the orthogonality are satisfied:

$$\mathsf{E}[\langle \theta_i, \theta_j \rangle] = 0, \mathsf{E}[\langle \theta_i, \theta_i \rangle] = 1$$
(2)

 $O(\epsilon^{-2} dlog(n))$ in time and $n^{O(\epsilon^{-2})}$ in space

Achlioptas (2003):

No spherical symmetry

For all unit vectors x, the $\theta(x)_i^2$ concentrated around mean $\frac{1}{d}$ Distribution 1: Choose each entry in θ uniformly from $\{-\frac{1}{\sqrt{d}}, \frac{1}{\sqrt{d}}\}$ Distribution 2: Choose each entry independently as:

$$heta_{ij} = \left\{ egin{array}{ccc} (rac{d}{3})^{-1/2}, & ext{w.p. } 1/6 \ 0, & ext{w.p. } 2/3 \ -(rac{d}{3})^{-1/2}, & ext{w.p. } 1/6 \end{array}
ight.$$

Sparse: 2/3 of the entries are zero, going lower may distort the sparse vectors

Ailon & Chazelle (2009):

Heisenberg principle: A singal and its spectrum cannot be both concentrated.

Key idea:

Preprocess the vectors with Fourier (actually with Walsh-Hadamard)

 $O(d \log(d) + \epsilon^{-2} \log^3(n))$ in time (if d is large enough) They assume that $d = 2^m > k$ (because of FFT) and $d = \Omega(\epsilon^{-1/2})$ and $n \ge d$:(

The final transformation is $\theta = PHD$:)

Ailon & Chazelle (2009):

The final transformation is $\theta = PHD$:)

- P: *kxd*, with probability $q = \min\{O(\frac{\log^2(n)}{d}), 1\}$ i.i.d from $\mathcal{N}(0, 1/q)$ otherwise zero
- H: Walsh-Hadamard
- D: diagonal, flipping coins with prob. 1/2 with values $\{-1,+1\}$

For same certain type of points $||Px||_2$ has high variance, especially if a point is very sparse (e.g. one non-zero element)

However if we precondition with HD the vectors will be suitable to be transformed with P while satisfy JL (with a certain prob., see lemma 1 in Ailon & Chazelle (2009)) aka it densifies the sparse input vectors

OK, we should stop, since the next step is a bit far away. Yet.

But wait ...

What may be the next step?

Are there any other methods to approximate distance or approximate NN?

e.g. Riemannian Manifold

Given a smooth (or differentiable) n-dimensional manifold M, a Riemannian metric on M (or TM) is a family of inner products $(\langle \bullet, \bullet \rangle_p)_{p \in M}$ on each tangent space T_pM , such that the inner product depends smoothly on p.

A smooth manifold M, with a Riemannian metric is called a Riemannian manifold.

Riemannian Metric

Let γ : [x, y] be a continuously differentiable curve in M.

The length of a curve γ on M is defined as integrating the length of the tangent vector d γ (d is a differential operator).

Example: $g_{11} dx_1^2 + g_{12} dx_1 dx_2 + g_{22} dx_2^2 \dots$

If g_{ii} is the Kronecker delta it will be the Euclidean.

The distance d(x,y) is the shortest among the curves between x and y.

OK, at this point we should really stop! Do not worry, we will come back.

Confusion matrix

(binary classification):

Ground truth / predicted class	pos	neg	Total
pos	True Positive (TP)	False Negative (FN)	TP+FN
neg	False Positive (FP)	True Negative (TN)	FP+TN
Total	TP+FN	FP+TN	

Accuracy: proportion of correctly classified instances TP+TN/(TP+FP+TN+FN)

Precision (p): proportion of correctly classified positive instances in the set of instances with positive predicted label TP/(TP+FP)

Recall (r): proportion of correctly classified positive instances TP/(TP+FN)

F-measure: harmonic mean of precision and recall (2*p*r/(p+r))

Evaluation

٠ С

0.9

- Only for binary classification
- Area Under Curve: prop. with the probability of correct separation
- threshold independent
- Presumption: available scores (ties?)

Class	+	_	+	_	_	-	+	_	+	+	
	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
TP	5	4	4	3	3	3	3	2	2	1	0
FP	5	5	4	4	3	2	1	1	0	0	0
TN	0	0	1	1	2	3	4	4	5	5	5
FN	0	1	1	2	2	2	2	3	3	4	5
TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

ROC: Receiver Operating Characteristic

Class	+	_	+	_	_	-	+	_	+	+	
	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
TP	5	4	4	3	3	3	3	2	2	1	0
FP	5	5	4	4	3	2	1	1	0	0	0
TN	0	0	1	1	2	3	4	4	5	5	5
FN	0	1	1	2	2	2	2	3	3	4	5
TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

AUC=?

+	+	-	+	-	-	+	+	-	+		
0.16	0.32	0.42	0.44	0.45	0.51	0.78	0.87	0.91	0.93	Score	
										TP	
										FN	
										TN	
										FP	
C	omo or	vorcisor				_				TPR	
	low to	compar	e mode	els?						FPR	
A	UC?						+	-	+	+	
A	UC? 0.43	0.56	0.62	0.78	0.79	0.86	+	- 0.89	+ 0.91	+ 0.96	Score
A	UC? 0.43	0.56	0.62	0.78	0.79	0.86	+ 0.89	- 0.89	+ 0.91	+ 0.96	Score TP
A	UC? 0.43	0.56	0.62	0.78	0.79	0.86	+ 0.89	- 0.89	+ 0.91	+ 0.96	Score TP FN
A	UC? 0.43	0.56	0.62	0.78	0.79	0.86	+ 0.89	- 0.89	+ 0.91	+ 0.96	Score TP FN TN
A	UC? 0.43	0.56	0.62	0.78	0.79	0.86	+ 0.89	- 0.89	+ 0.91	+ 0.96	 Score TP FN TN FP
A	UC? 0.43	0.56	0.62	0.78	0.79	0.86	+ 0.89	- 0.89	+ 0.91	+ 0.96	Score TP FN TN FP FP TPR