

1.

2.

Data Mining algorithms

2017-2018 spring

- 02.14-16.2016
- Evaluation II.
 - **Decision Trees**
- 3. Linear Separator

W1 Februar 7-9: Introduction, kNN, evaluation

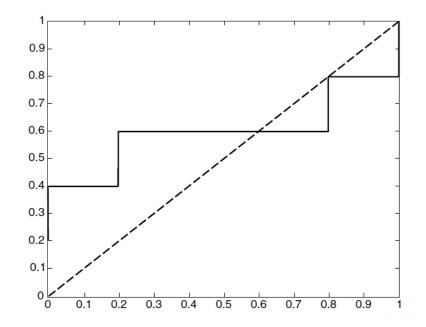
W2 Februar 14-16: Evaluation, Decision Trees

W3 Februar 21-23: Linear separators, iPython, VC theorem W4 Februar 28-march 2: SVM, VC theorem and Bottou-Bousquet W5 March 7-9: clustering (hierarchical, density based etc.), GMM W6 March 14-16: GMM, MRF, Apriori and association rules W7 March 21-23: Recommender systems and generative models W8 March 28-30: basics of neural networks, Sontag-Maas-Bartlett theorems, Bayes networks W9 April 4-6: BN, CNN, MLP W10 April 11-13: Dropout, Batch normalization W11 April 18-20: midterm, RNN W12 April 25-27: LSTM, GRU, attention, Image caption, Turing Machine W13 May 2-4: RBM, DBN, VAE, GAN, Boosting, Time series W14 May 9-11: TS, Projects on Friday

Plan

ROC: Receiver Operating Characteristic

Class	+	-	+	_	-	-	+	-	+	+	
	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
TP	5	4	4	3	3	3	3	2	2	1	0
FP	5	5	4	4	3	2	1	1	0	0	0
TN	0	0	1	1	2	3	4	4	5	5	5
FN	0	1	1	2	2	2	2	3	3	4	5
TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

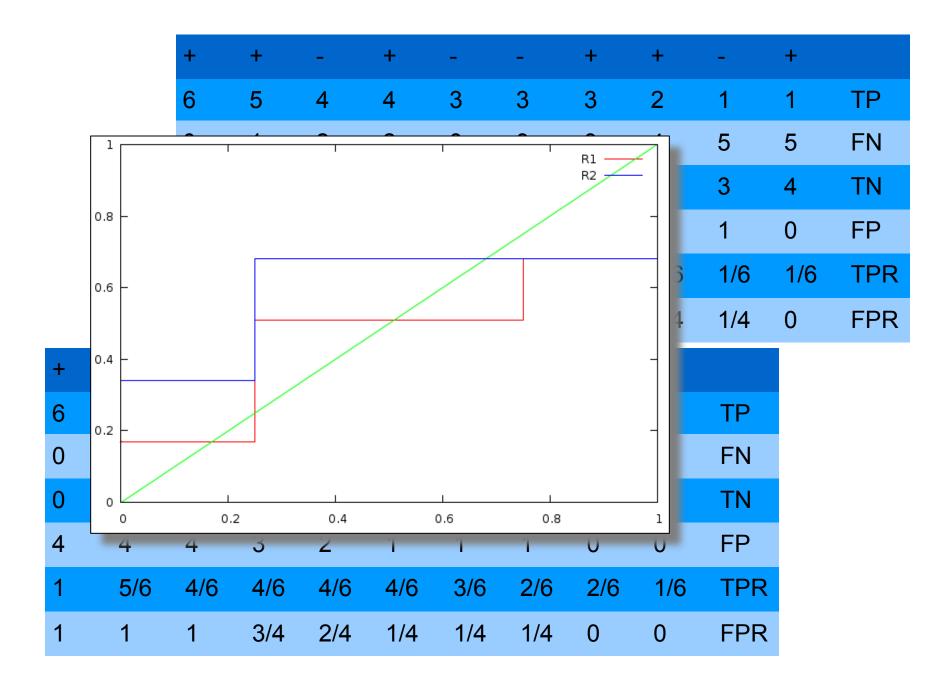


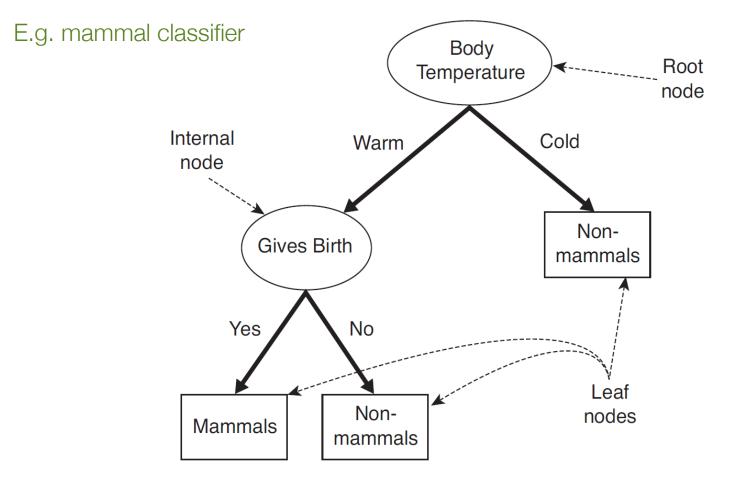
AUC=?

+	+	-	+	-	-	+	+	-	+		
0.16	0.32	0.42	0.44	0.45	0.51	0.78	0.87	0.91	0.93	Score	
										TP	
										FN	
										TN	
										FP	
	Some e									TPR	
	How to AUC?	compa	re moa	eis?						FPR	
	+	+	-	-	-	+	+	-	+	+	
	+ 0.43	+ 0.56	- 0.62	- 0.78	- 0.79	+ 0.86	+ 0.89	- 0.89	+ 0.91	+ 0.96	Score
			- 0.62	- 0.78	- 0.79			- 0.89			Score TP
			- 0.62	- 0.78	- 0.79			- 0.89			
			- 0.62	- 0.78	- 0.79			- 0.89			ТР
			- 0.62	- 0.78	- 0.79			- 0.89			TP FN
			- 0.62	- 0.78	- 0.79			- 0.89			TP FN TN

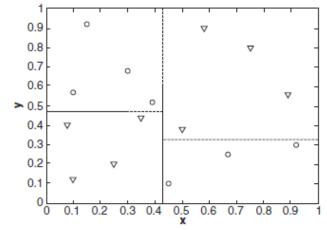
+	+	-	+	-	-	+	+	-	+	
6	5	4	4	3	3	3	2	1	1	TP
0	1	2	2	3	3	3	4	5	5	FN
0	0	0	1	1	2	3	3	3	4	TN
4	4	4	3	3	2	1	1	1	0	FP
1	5/6	4/6	4/6	3/6	3/6	3/6	2/6	1/6	1/6	TPR
1	1	1	3/4	3/4	2/4	1/4	1/4	1/4	0	FPR

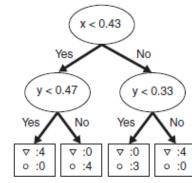
+	+	-	-	-	+	+	-	+	+	
6	5	4	4	4	4	3	2	2	1	TP
0	1	2	2	2	2	3	4	4	5	FN
0	0	0	1	2	3	3	3	4	4	TN
4	4	4	3	2	1	1	1	0	0	FP
1	5/6	4/6	4/6	4/6	4/6	3/6	2/6	2/6	1/6	TPR
1	1	1	3/4	2/4	1/4	1/4	1/4	0	0	FPR

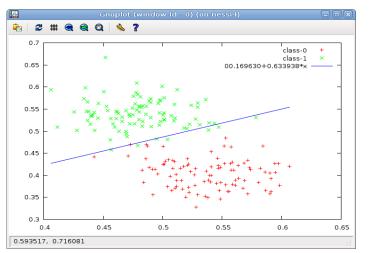




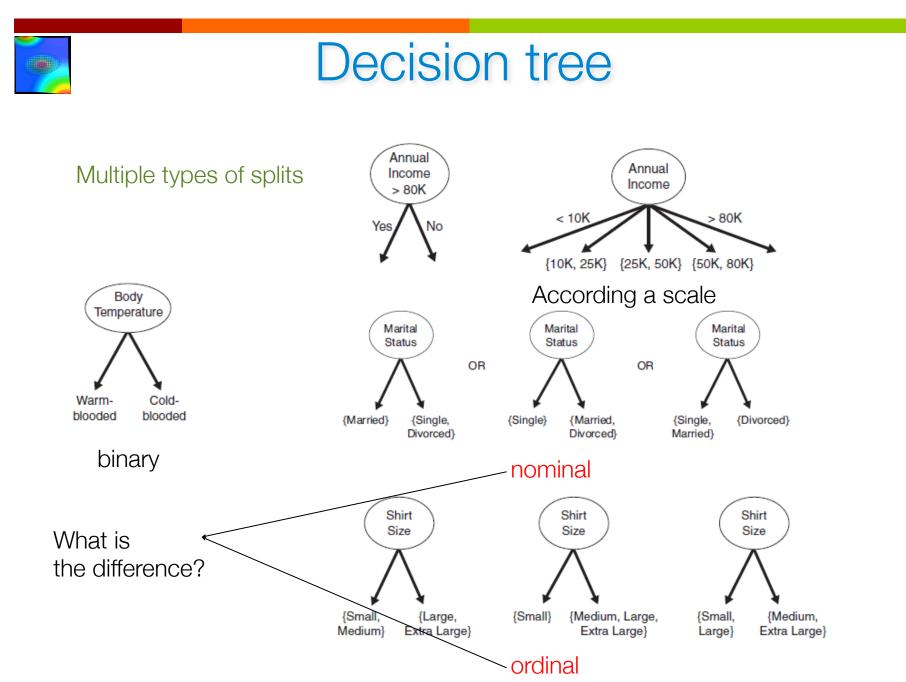
Decision tree

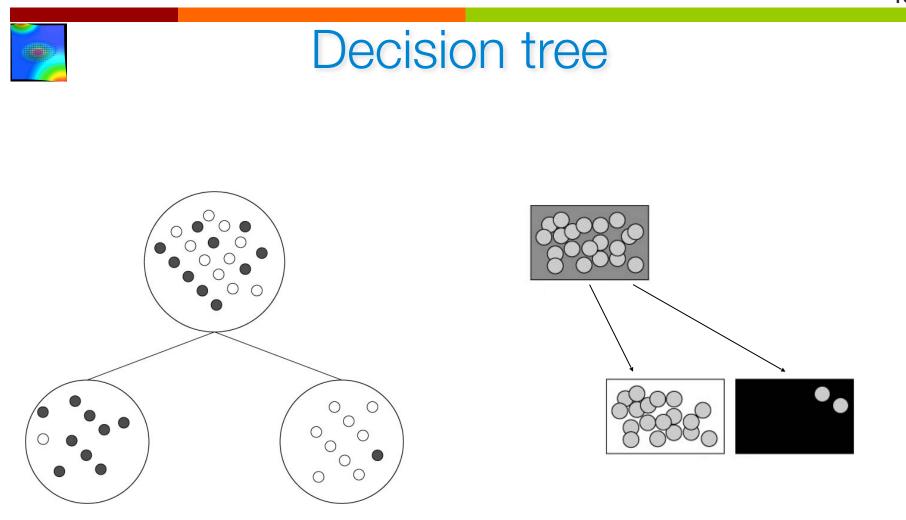






DT?





A good split

A not so good one

Presumption: attributes are nominal

Procedure TreeBuilding (D) If (the data is not classified correctly) Find best splitting attribute A For each a element in A Create child node N_a D_a all instances in D where A=a TreeBuilding (D_a) Endfor Endif

Endlf

What is a good splitting attribute?

- results homogeneous child nodes (separates instances with different class labels)
- balanced (splits into similarly sized nodes)

To measure it we use "purity" measures:

- missclassification error
- o entropy
- o Gini
- o or whatever works/suitable

Missclassification error:

p(i,t): the proportion of instances with class label i in node t

Classification error: 1-max(p(i,t))

Gain:

$$\Delta = I(\text{parent}) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j)$$

where I(parent) is the parent nodes purity measure and the chosen attribute resulted a split into k child nodes

Small example:

Should we choose A or B as a splitting attribute?

Α	В	Class Label
Т	F	+
Т	Т	+
Т	Т	+
Т	F	_
Т	Т	+
F	F	_
F	F	_
F	F	
Т	Т	
Т	\mathbf{F}	—

Decision tree

Small example:

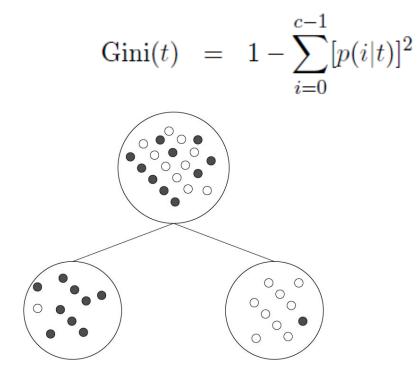
Should we choose A or B as a splitting attribute?

Α	В	Class Label
Т	F	+
Т	Т	+
Т	Т	+
Т	F	_
Т	Т	+
F	F	_
F	F	_
F	F	_
Т	Т	_
Т	\mathbf{F}	—

Error A: MCE = 0+3/7 Error B: MCE = 1/4+1/6 Choose B! or?

Gini (population diversity)

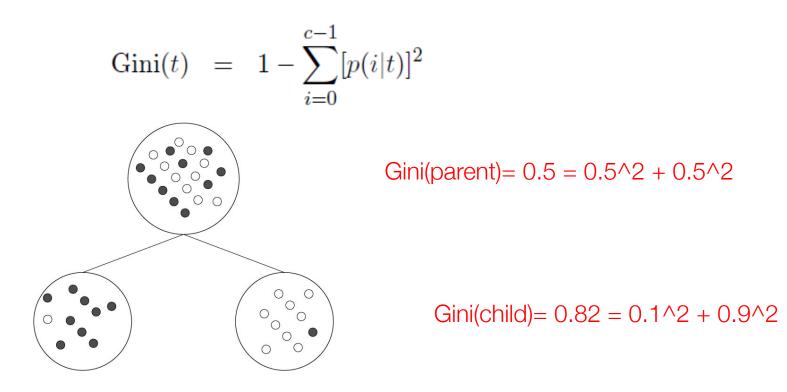
p(i|t) : proportion of instances with class label i in node t



Gini in the parent/root? Gini in the child nodes?

Gini (population diversity)

p(i|t) : proportion of instances with class label i in node t



Decision tree

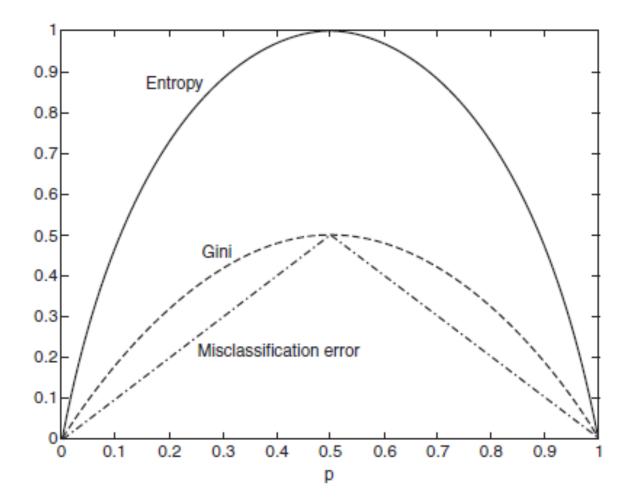
Entropy

p(i|t) : proportion of instances with class label i in node t

$$I(v_j) - \sum_{i=0}^{c-1} p(i|t) \log_2 p(i|t)$$

All three of the measures are having a peak value at 0.5 and they prefer splits into multiple nodes.

Decision tree



Entropy(t) =
$$-\sum_{i=0}^{c-1} p(i|t) \log_2 p(i|t)$$
,
Gini(t) = $1 - \sum_{i=0}^{c-1} [p(i|t)]^2$,
Classification error(t) = $1 - \max_i [p(i|t)]$,

Node N_1	Count
Class=0	0
Class=1	6

Gini =
$$1 - (0/6)^2 - (6/6)^2 = 0$$

Entropy = $-(0/6) \log_2(0/6) - (6/6) \log_2(6/6) = 0$
Error = $1 - \max[0/6, 6/6] = 0$

Node N_2	Count
Class=0	1
Class=1	5

$Gini = 1 - (1/6)^2 - (5/6)^2 = 0.278$
Entropy = $-(1/6)\log_2(1/6) - (5/6)\log_2(5/6) = 0.650$
$Error = 1 - \max[1/6, 5/6] = 0.167$

Node N_3	Count
Class=0	3
Class=1	3

$Gini = 1 - (3/6)^2 - (3/6)^2 = 0.5$
Entropy = $-(3/6)\log_2(3/6) - (3/6)\log_2(3/6) = 1$
$Error = 1 - \max[3/6, 3/6] = 0.5$

Notes:

DTs can handle both nominal and numerical features (dates and strings?) easily interpretable Robust to noise (is it?) But some subtrees can occur multiple times Overfitting is a real issue

Why?

Typical problems:

- too deep and wide trees with less train instances in the leaves
- unbalanced training set (not just DT issue)

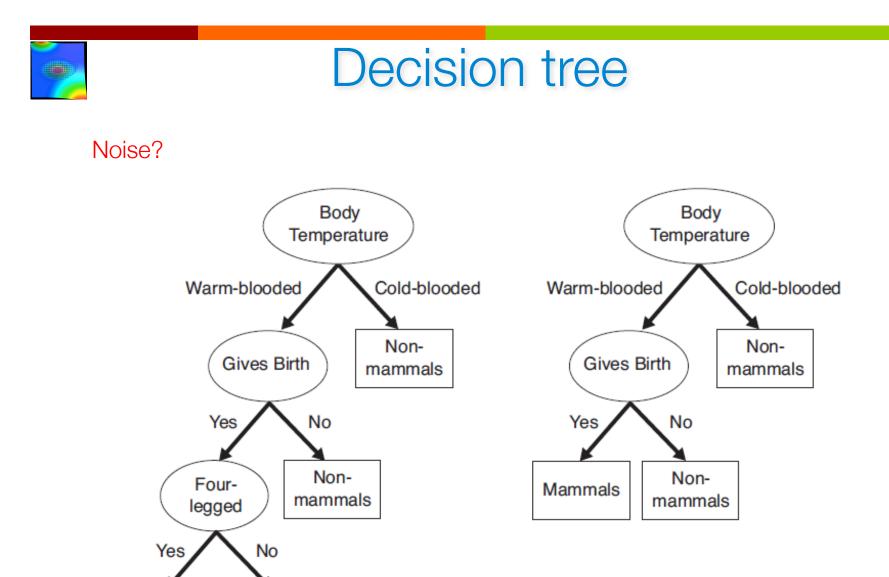
Solution: pruning!

Some preliminaries:

- always prefer the less complex model with the same performance (Minimum description length, MDL)
- early and post-pruning
- MDL(Minimum Description Length):

E.g.: what will happen with a dolphin?

Name	Body	Gives	Four-	Hibernates	Class
	Temperature	Birth	legged		Label
porcupine	warm-blooded	yes	yes	yes	yes
cat	warm-blooded	yes	yes	no	yes
bat	warm-blooded	yes	no	yes	no^*
whale	warm-blooded	yes	no	no	no^*
salamander	cold-blooded	no	yes	yes	no
komodo dragon	cold-blooded	no	yes	no	no
python	cold-blooded	no	no	yes	no
salmon	cold-blooded	no	no	no	no
eagle	warm-blooded	no	no	no	no
guppy	cold-blooded	yes	no	no	no



Non-

mammals

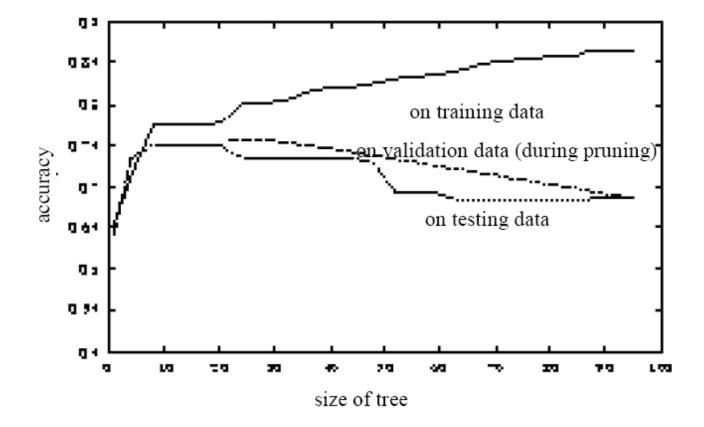
Mammals

Validation

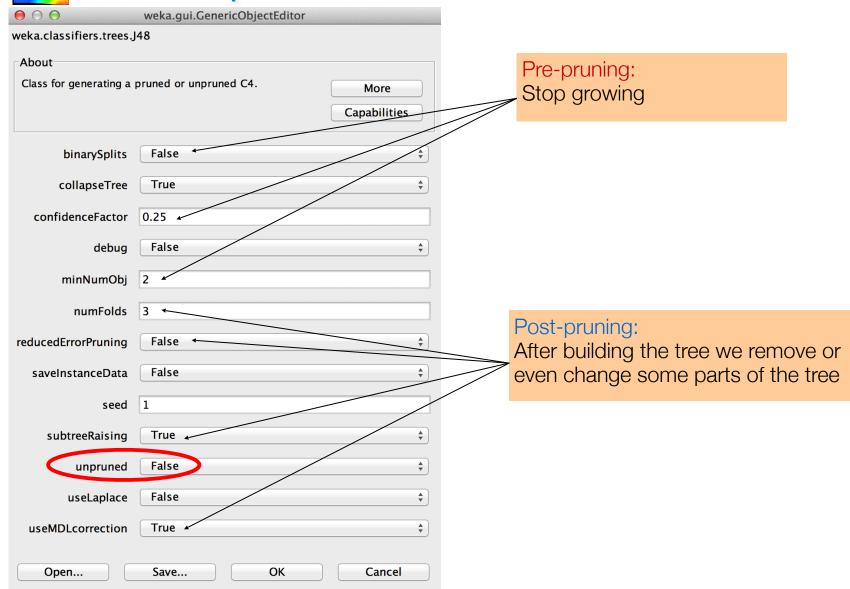
Validation

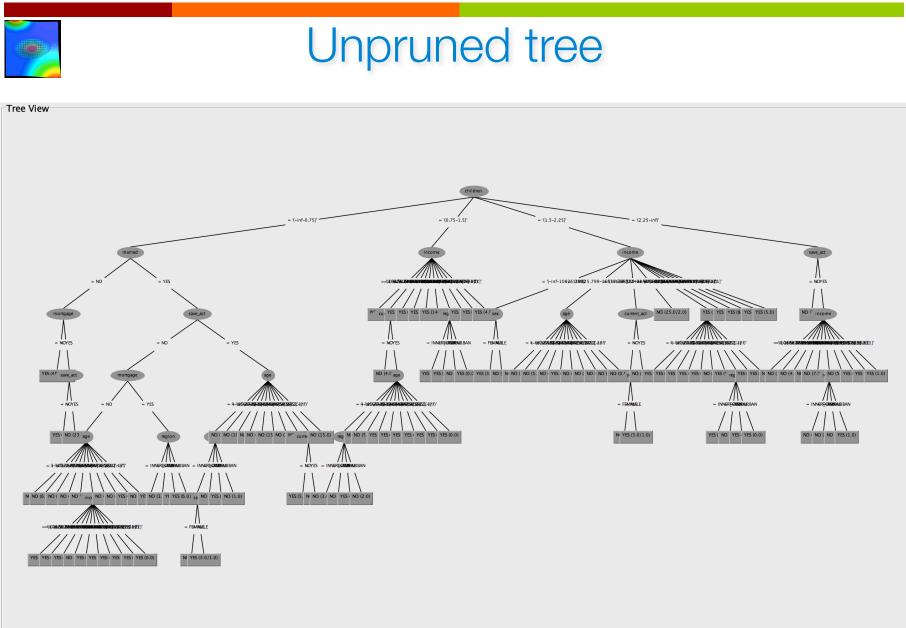
Training set
 Validation set
 Test set

Validation

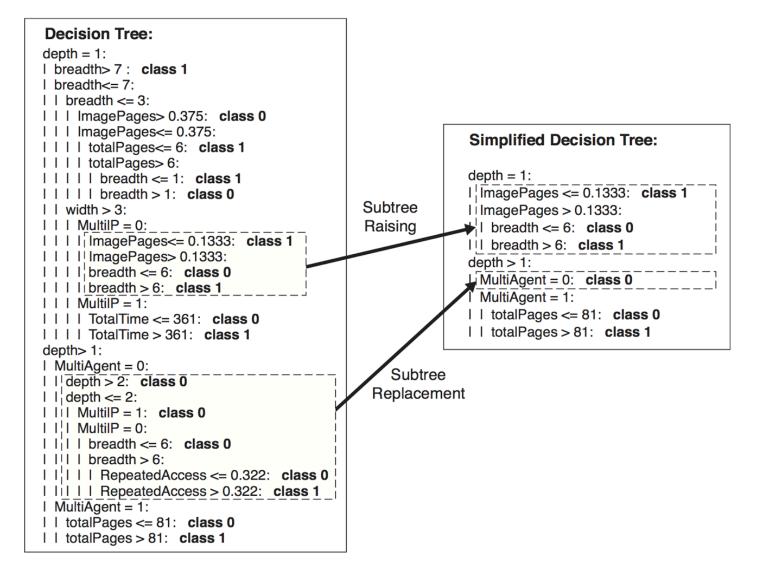


Example: Quinlan C4.5 in Weka





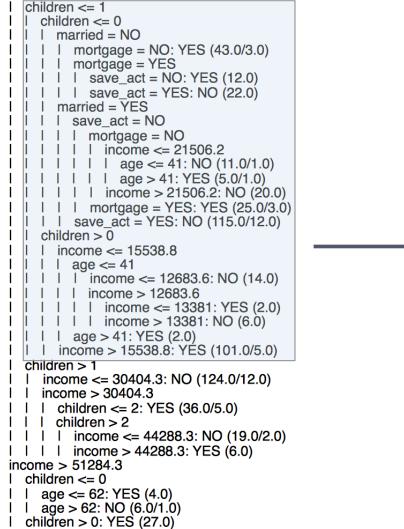
Subtree raising vs. replacement (rep)



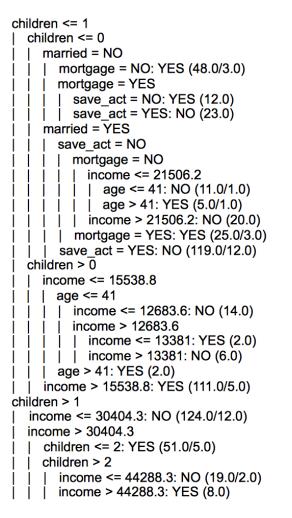
Subtree raising

Number of leaves: 20 Size of the tree: 39

income <= 51284.3



Number of leaves: 17 Size of the tree: 33



Effect of pruning

Subtree replacement vs. raising

Training set

Ŭ						
ID	vehicle	color	acceleration			
Train 1	motorbike	red	high			
Train 2	motorbike	blue	high			
Train 3	car	blue	high			
Train 4	motorbike	blue	high			
Train 5	car	green	small			
Train 6	car	blue	small			
Train 7	car	blue	high			
Train 8	car	red	small			

Start with a two-level tree Prune the tree using the validation set How the decision affect the performance on the test set?

Validation set

ID	vehicle	color	acceleration			
Valid 1	motorbike	red	small			
Valid 2	motorbike	blue	high			
Valid 3	car	blue	high			
Valid 4	car	blue	high			
Test set						
ID	vehicle	color	acceleration			
Teszt 1	motor	piros	small			
Teszt 2	motor	zöld	small			
Teszt 3	autó	piros	small			
Teszt 4	autó	zöld	small			

C4.5 with weighted error (cost)

A	В	С	"+"	۰۰_۲۲
I	I	I	5	0
Η	Ι	Ι	0	20
I	Η	I	20	0
Η	Η	I	0	5
I	I	H	0	0
Η	I	Η	25	0
I	Η	H	0	0
Η	Η	Η	0	25

Start with a two level tree

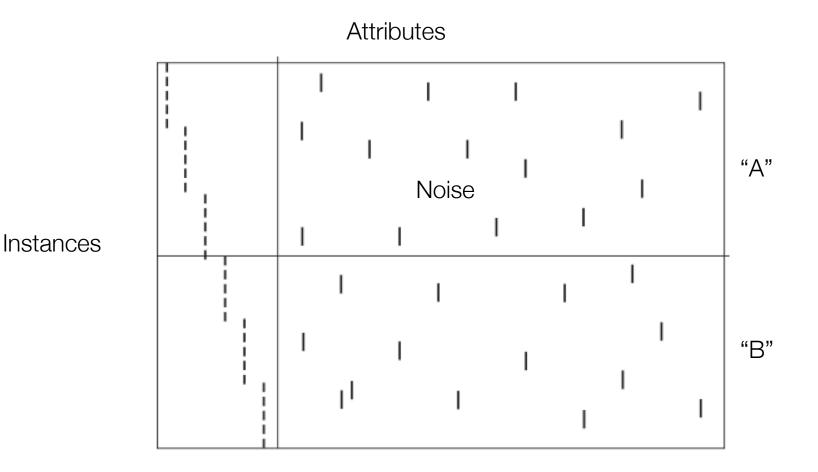
Is there an ideal two level tree?

Change our decision at the leafs according to the following cost matrix:

Predicted/GT	"+"	"_"
"+"	0	1
"_"	2	0

Noisy attributes

How will perform the kNN and DT?



Missing values

?,?,?,?,?,no,auto xstab,?,?,?,yes,noauto stab,LX,?,?,?,yes,noauto stab,XL,?,?,?,yes,noauto stab,MM,nn,tail,?,yes,noauto ?,?,?,OutOfRange,yes,noauto stab,SS,?,?,Low,yes,auto stab,SS,?,?,Medium,yes,auto stab,SS,?,?,Strong,yes,auto stab,MM,pp,head,Low,yes,auto

0

stab,MM,pp,tail,Low,yes,auto stab,MM,pp,tail,Medium,yes,auto stab,MM,pp,head,Strong,yes,noaut o stab,MM,pp,tail,Strong,yes,auto

Shuttle-landing-control

iPython notebook

Anaconda:

wget "http://repo.continuum.io/archive/Anaconda3-4.0.0-Linux-x86_64.sh" chmod +x Anaconda3-4.0.0-Linux-x86_64.sh ./Anaconda3-4.0.0-Linux-x86_64.sh source .bashrc conda update conda conda update anaconda

conda create -n jupyter-env python=3.5 anaconda
source activate jupyter-env

pip install <module_name>

Install packages:
pip install pandas
pip install chainer

iPython notebook

jupyter notebook --generate-config mcedit .jupyter/jupyter notebook config.py c.NotebookApp.port = 9992

If we will work on the server (I hope next week)

Port forward:

```
ssh -I 8888:Localhost:9992
<account>student.ilab.sztaki.hu
```

Final step:

Open in any browser localhost:8888.

Please bring your laptops Friday 😏

iPython notebook

Small example:

```
import numpy as np
import pandas as pd
```

```
v = np.random.random((3))
m = np.random.random((2,3))
```

```
v.dot(m.T) # why not v*m?
```

Notes:

- pd.read_csv()
- dataframe index és values
- for i in range(10):
 <work>
- np.linalg.norm(v1-v2) -> L2 distance
- np.argmax()

Nearest neighbour

On the web site: NN_data/

image_histograms.txt and sample_histogram.txt:

Input: image histograms 3x8 RGB

Goal: find the closest image to sample image

Read data

```
hist = pd.read_csv('NN_data/image_histograms.txt',sep=' ')
act = pd.read_csv('NN_data/sample_histogram.txt',sep=' ')
```


Read data

```
hist = pd.read_csv('NN_data/image_histograms.txt',sep=' ')
act = pd.read_csv('NN_data/sample_histogram.txt',sep=' ')
```

```
# distances-> numpy array
```

```
dist = np.zeros((len(hist.index)))
dist norm = np.zeros((len(hist.index)))
```


Read data

```
hist = pd.read_csv('NN_data/image_histograms.txt',sep=' ')
act = pd.read csv('NN data/sample histogram.txt',sep=' ')
```

```
# distances-> numpy array
```

```
dist = np.zeros((len(hist.index)))
dist norm = np.zeros((len(hist.index)))
```

```
# pandas dataframe -> numpy array
```

```
hist_vecs = np.array(hist.values[:,1:]).astype(np.float32)
hist_vecs_norm = np.copy(hist_vecs).astype(np.float32)
```

```
# Read data
```

```
img hists = pd.read csv('NN data/image histograms.txt', sep=' ')
act hist = pd.read csv('NN data/sample histogram.txt', sep=' ')
# distances -> numpy array
dist = np.zeros((len(hist.index)))
dist norm = np.zeros((len(hist.index)))
# pandas dataframe -> numpy array
hist vecs = np.array(hist.values[:,1:]).astype(np.float32)
hist vecs norm = np.copy(hist vecs).astype(np.float32)
# normalization (L2)
act vec = np.array(act.values[:,1:]).astype(np.float32)
act vec norm = act vec/np.linalg.norm(act vec).astype(np.float32)
for i in range(hist vecs[:,0].size):
    norm= np.linalg.norm(hist vecs[i])
    hist vecs norm[i] = hist vecs[i]/norm
```

Norm vs. distance?

compute distances

```
for i in range(hist_vecs[:,0].size):
    dist[i] = np.linalg.norm(hist_vecs[i]-act_vec)
    dist_norm[i] = np.linalg.norm(hist_vecs_norm[i]-act_vec_norm)
```

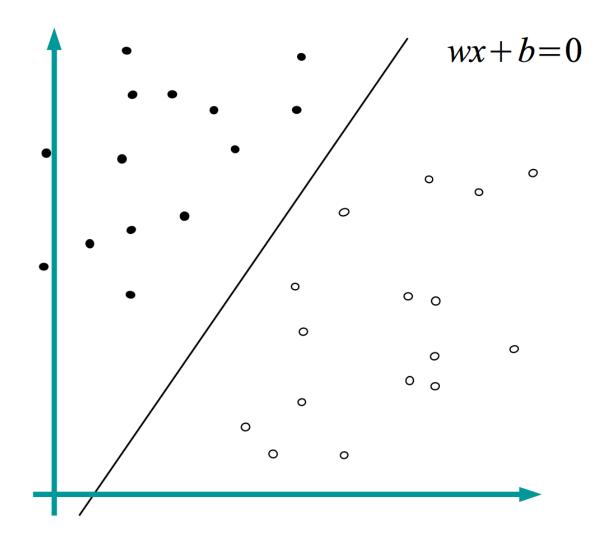
compute distances

```
for i in range(hist_vecs[:,0].size):
    dist[i] = np.linalg.norm(hist_vecs[i]-act_vec)
    dist_norm[i] = np.linalg.norm(hist_vecs_norm[i]-act_vec_norm)
# min, max
top = np.argmin(dist)
top_val = np.min(dist)
top_norm = np.argmin(dist_norm)
top_norm_val = np.min(dist_norm)
```

compute distances

```
for i in range(hist vecs[:,0].size):
    dist[i] = np.linalg.norm(hist vecs[i]-act vec)
    dist norm[i] = np.linalg.norm(hist vecs norm[i]-act vec norm)
# min, max
top = np.argmin(dist)
top val = np.min(dist)
top norm = np.argmin(dist norm)
top norm val = np.min(dist norm)
# evaluation
print('before normalization: %s,%s %f' % (act.values[0,0], hist.values[top,0],
top val))
print('after normalization: %s,%s %f' % (act.values[0,0], hist.values[top norm,0],
top norm val))
```


Linear separator



The problem of learning a half-space or a linear separator consists of n labeled examples $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ in d-dimensional space. The task is to find a d-dimensional vector \mathbf{w} , if one exists, and a threshold b such that

w·a_i > b for each a_i labelled+1
w·a_i < b for each a_i labelled -1

A vector-threshold pair, (w, b), satisfying the inequalities is called a linear separator.

Linear separator

If we add an extra dimension to each sample and our norm vector we can rewritten the above formula as

$$(\mathbf{w'} \cdot \mathbf{a'}_i) \mathbf{l}_i > 0$$

where $1 \le i \le n$ and $\mathbf{a'_i} = (\mathbf{a_i}, 1)$, $\mathbf{w'} = (\mathbf{w}, \mathbf{b})$.

Let
$$\mathbf{w} = l_1 \mathbf{a}_1$$
 and $|\mathbf{a}_i| = 1$ for each \mathbf{a}_i
while exists any \mathbf{a}_i with $(\mathbf{w} \cdot \mathbf{a}_i)l_i \le 0$
do
 $\mathbf{w}^{t+1} = \mathbf{w}^t + l_i \mathbf{a}_i$

If our problem linearly separable, $(\mathbf{w} \cdot \mathbf{a}_i) \mathbf{l}_i > 0$ for all i.

Linear regression

Hypothesis:

$$Y = X^T w$$

Cost (or loss, error) function:

$$error_{square}(f) = E[(Y - f(X))^2]$$

But our dataset is finite:

$$error(f) = \sum_{1}^{N} (y_i - x_i^T w_i)^2$$

Linear regression

SO:

error
$$(f) = \sum_{i=1}^{N} (y_i - x_i^T w_i)^2 = (y - Xw)^T (y - Xw)$$

There exist a minimum

$$-2X^{T}y+2X^{T}Xw=0$$
 $X^{T}(y-Xw)=0$

And if the determinant is non-zero (non singular):

$$w = (X^T X)^{-1} X^T y$$

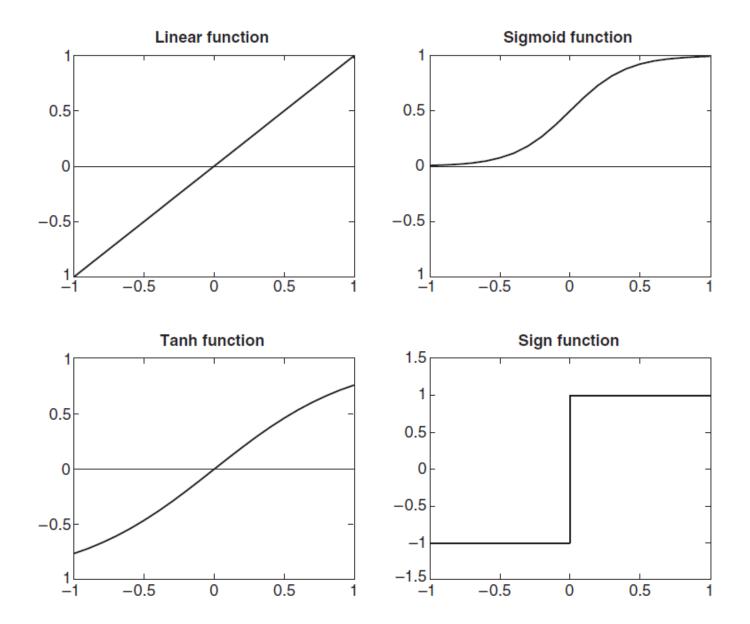
What are the obvious constrains of lin. reg.?

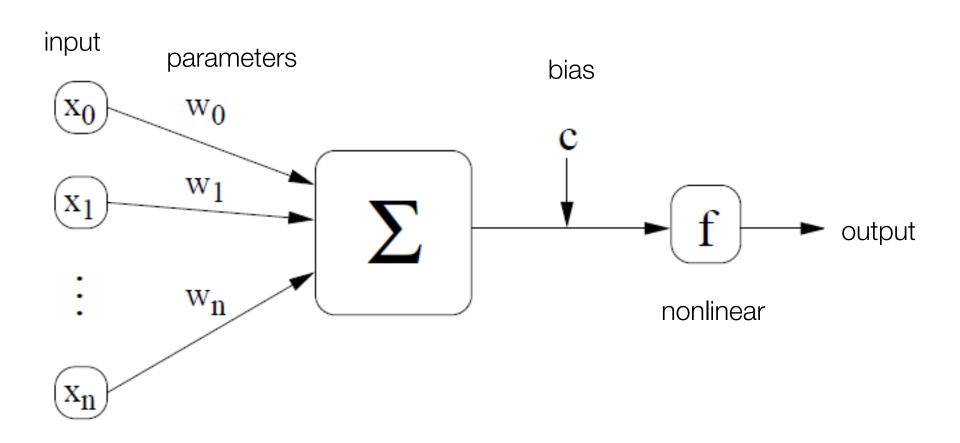
Our decision function was signum.

How about a more refined one:

$$y = x^{T} w - 0.5$$
$$f(y) = y_{osztály} = \frac{1 + sgn(y)}{2}$$

Activation functions





Optimization:

$$w_{opt} = argmax_w \sum ln(P(y_i | x_i, w))$$

In case of binary classification:

$$L(w) = \sum y_i \ln(P(y_i = 1 | x_i, w)) + (1 - y_i) \ln(P(y_i = 0 | x_i, w))$$

What is the gradient? Some exercise 😔

Optimization:

$$w_{opt} = argmax_w \sum ln(P(y_i | x_i, w))$$

In case of binary classification:

$$L(w) = \sum y_i \ln(P(y_i = 1 | x_i, w)) + (1 - y_i) \ln(P(y_i = 0 | x_i, w))$$

What is the gradient? Some exercise 😔

$$\Sigma \mathbf{x}_{ij}(\mathbf{y}_i - \mathbf{P}(\mathbf{y}_i | \mathbf{x}_{ij}, \mathbf{w}_j))$$

Or

$$\ln \frac{p(x)}{1 - p(x)} \approx x^T \omega + \omega_0$$

hence

$$p(x \mid \omega) = sigm(x \mid \omega) = rac{1}{1 + e^{-(x^T \omega + \omega_0)}}$$

The end is the same:

$$\begin{aligned} \frac{\partial \mathcal{L}(\omega \mid X)}{\partial \omega_i} &= \sum_{x_t \in X^{(+)}} \frac{\partial \ln p(x_t \mid \omega)}{\partial \omega_i} + \sum_{x_t \in X^{(-)}} \frac{\partial \ln(1 - p(x_t \mid \omega))}{\partial \omega_i} \\ &= \sum_{x_t \in X^{(+)}} (1 - p(x_t \mid \omega)) x_{ti} - \sum_{x_t \in X^{(-)}} p(x_t \mid \omega) x_{ti} \\ &= \sum_{x_t \in \{X^{(-)}, X^{(+)}\}} (y_t - p(x_t \mid \omega)) x_{ti} \end{aligned}$$

Linear separator (recap)

The problem of learning a half-space or a linear separator consists of n labeled examples a_1, a_2, \ldots, a_n in d-dimensional space. The task is to find a d-dimensional vector w, if one exists, and a threshold b such that

w·a_i > b for each a_i labelled+1
w·a_i < b for each a_i labelled -1

A vector-threshold pair, (w, b), satisfying the inequalities is called a linear separator.

Linear separator

If we add an extra dimension to each sample and our norm vector we can rewritten the above formula as

$$(\mathbf{w'} \cdot \mathbf{a'}_i) \mathbf{l}_i > 0$$

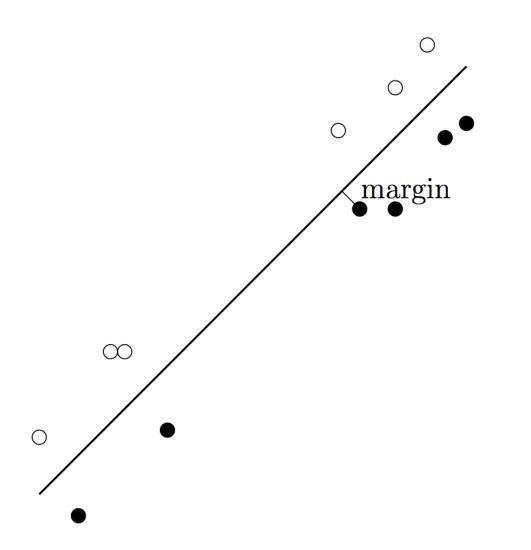
where $1 \le i \le n$ and $\mathbf{a'_i} = (\mathbf{a_i}, 1)$, $\mathbf{w'} = (\mathbf{w}, \mathbf{b})$.


```
Let \mathbf{w} = l_1 \mathbf{a}_1 and |\mathbf{a}_i| = 1 for each \mathbf{a}_i
while exists any \mathbf{a}_i with (\mathbf{w} \cdot \mathbf{a}_i)l_i \le 0
do
\mathbf{w}^{t+1} = \mathbf{w}^t + l_i \mathbf{a}_i
```

If our problem linearly separable, $(\mathbf{w} \cdot \mathbf{a}_i)l_i > 0$ for all i.

Definition: For a solution w, where $|\mathbf{a}_i| = 1$ for all examples, the margin is defined to be the minimum distance of the hyperplane $\{\mathbf{x} | \mathbf{w} \cdot \mathbf{x} = 0\}$ to any \mathbf{a}_i , namely,

$$\min_i rac{(\mathbf{w} \cdot \mathbf{a_i})l_i}{|\mathbf{w}|}$$

Theorem: Suppose there is a solution \mathbf{w}^* with margin $\delta > 0$. Then, the perceptron learning algorithm finds some solution \mathbf{w} with $(\mathbf{w} \cdot \mathbf{a}_i) |_i > 0$ for all i in at most $\frac{1}{\delta^2} - 1$ iterations. 

Maximizing the Margin

The margin of a solution **w** to $(\mathbf{w}^T \mathbf{a}_i) \mathbf{l}_i > 0$, $1 \le I \le n$, where $|\mathbf{a}_i| = 1$ is. By modifying the weight vector, we can convert the optimization problem to one with a concave objective function:

$$\delta = \min_i \frac{l_i(\mathbf{w}^T \mathbf{a_i})}{|\mathbf{w}|}$$

$$l_i\left(\frac{\mathbf{w}^T \mathbf{a_i}}{|\mathbf{w}|\delta}\right) > 1$$

for all **a**_i. Our modified model is

$$\mathbf{v} = rac{\mathbf{w}}{\delta |\mathbf{w}|}$$

Maximizing δ is equivalent to minimizing $|\mathbf{v}|$!

Our (almost) final optimization problem is

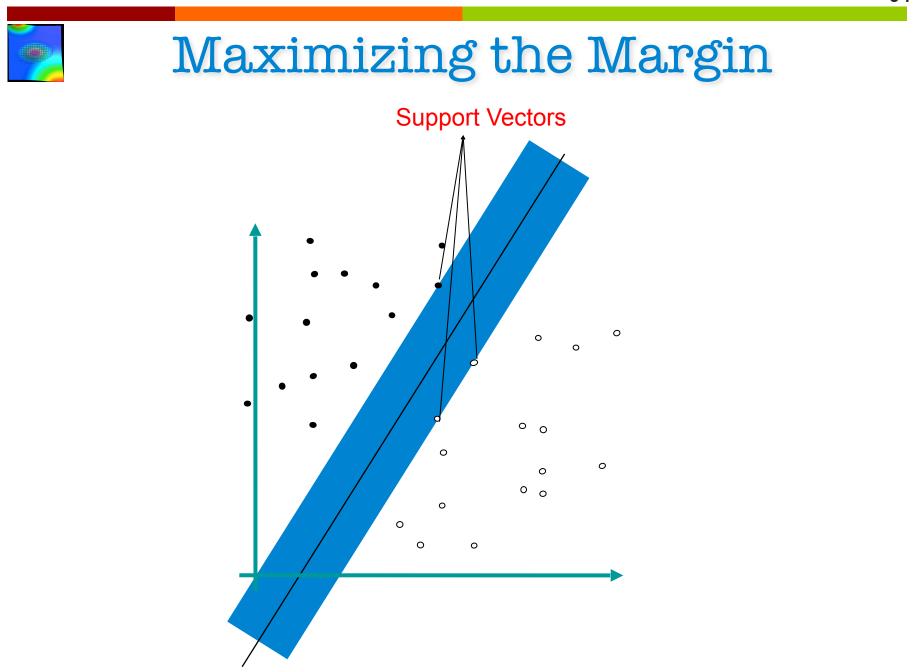
minimize $|\mathbf{v}|$ subject to $l_i(\mathbf{v}^T \mathbf{a}_i) > 1$, $\forall i$.

Because of nice properties of $|\mathbf{v}|^2$ we will optimize on that:

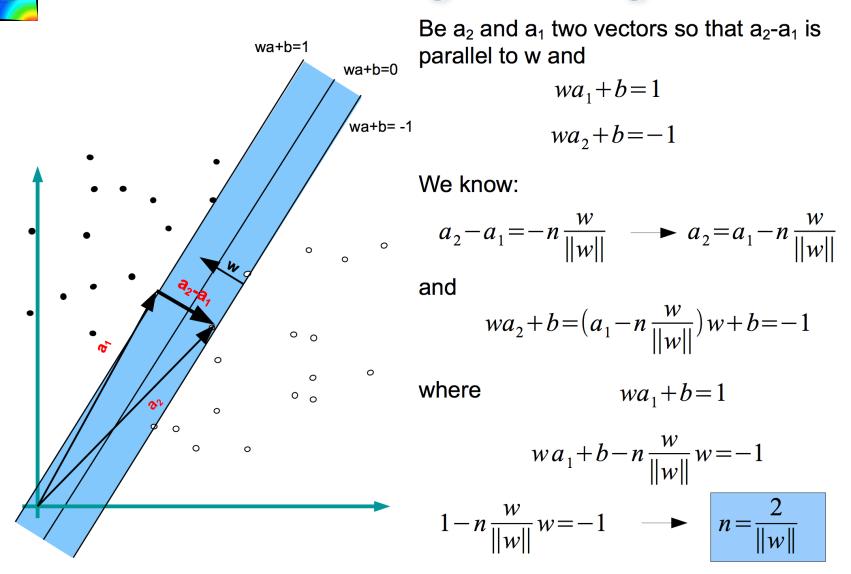
minimize $|\mathbf{v}|^2$ subject to $l_i(\mathbf{v}^T \mathbf{a}_i) \ge 1$, $\forall i$.

Let V be the space spanned by the examples \mathbf{a}_i for which there is equality, namely for which $l_i(\mathbf{v}^T \mathbf{a}_i) = 1$.

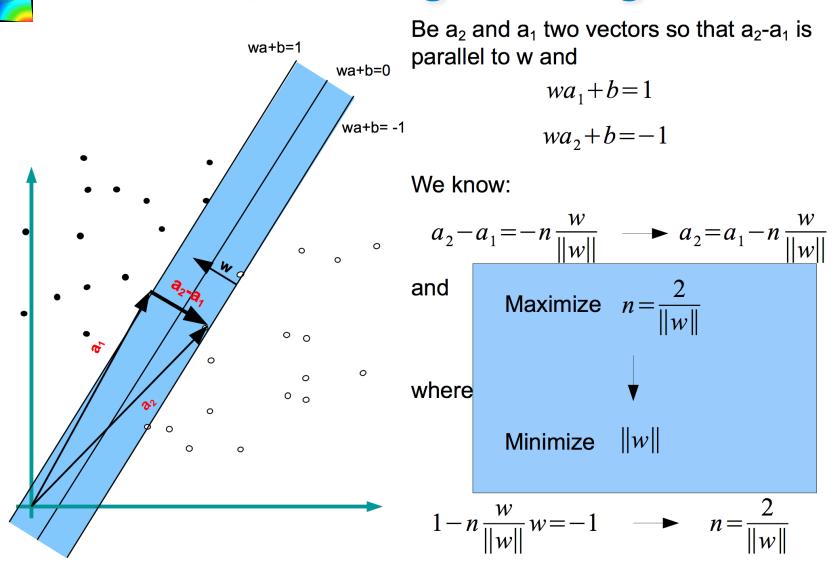
We claim that v lies in V. If not, v has a component orthogonal to V. Reducing this component infinitesimally does not violate any inequality, but contradicting our optimization.



Maximizing the Margin



Maximizing the Margin



It may happen that there are linear separators for which almost all but a small fraction of examples are on the correct side.

Our goal is to find a solution w for which at least $(1 - \varepsilon)n$ of the n inequalities are satisfied.

Unfortunately, such problems are NP-hard and there are no good algorithms to solve them.

First idea: Count the number of misclassified points ("loss"). Our goal is to minimize the "loss".

With a nicer loss function it is possible to solve the problem.

Let us introduce so called slack variables

$$y_i, i = 1, 2, ..., n$$

where y_i measures how badly the example a_i is classified.

Soft Margin

Now we can include slack variables in the original objective function:

minimize
$$|\mathbf{v}|^2 + c \sum_{i=1}^n y_i$$

subject to $(\mathbf{v} \cdot \mathbf{a_i}) l_i \ge 1 - y_i$
 $y_i \ge 0.$ $i = 1, 2, \dots, n$

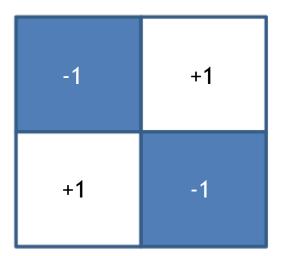
Let y_i be zero, if a_i classified correctly and 1 - l_i ($v^T a_i$) if not ->

$$|\mathbf{v}|^2 + c \sum_i (1 - l_i (\mathbf{v} \cdot \mathbf{a_i}))^+$$

where $x^+ = \begin{cases} 0 & x \leq 0 \\ x & \text{otherwise} \end{cases}$

Nonlinear separators

There are problems where no linear separator exists but where there are nonlinear separators. For example, there may be a polynomial $p(\cdot)$ such that $p(\mathbf{a}_i) > 1$ for all +1 labeled examples and $p(\mathbf{a}_i) < 1$ for all -1 labeled examples.



Solution: $p(\cdot) = x_1 x_2$

Assume:

There exist a polynomial p of degree at most D such that an example a has label +1 if and only if p(a) > 0

Each d-tuple of integers $(i_1, i_2, ..., i_d)$

$$i_1 + i_2 + \cdots + i_d \le D$$

leads to a distinct monomial:

$$x_1^{i_1}x_2^{i_2}\cdots x_d^{i_d}$$

By letting the coefficients of the monomials be unknowns, we can formulate a linear program in m variables whose solution gives the required polynomial

$$p(x_1, x_2, \dots, x_d) = \sum_{\substack{i_1, i_2, \dots, i_d \\ i_1 + i_2 + \dots + i_d \le D}} w_{i_1, i_2, \dots, i_d} x_1^{i_1} x_2^{i_2} \cdots x_d^{i_d}$$

For even small values of D the number of coefficients can be very large!

An example: suppose both d and D equal to 2. The number of possible monomials is 6,

 I_1, i_2 form a set {(0,0), (1,0), (0,1), (2,0), (1,1), (0,2)}

The (0,0) term is the bias (b), our polynomial has a form,

$$p(x_1, x_2) = b + w_{10}x_1 + w_{01}x_2 + w_{11}x_1x_2 + w_{20}x_1^2 + w_{02}x_2^2$$

For each example **a**_i

 $b + w_{10}a_{i1} + w_{01}a_{i2} + w_{11}a_{i1}a_{i2} + w_{20}a_{i1}^2 + w_{02}a_{i2}^2 > 0 \text{ if label of } i = +1 \\ b + w_{10}a_{i1} + w_{01}a_{i2} + w_{11}a_{i1}a_{i2} + w_{20}a_{i1}^2 + w_{02}a_{i2}^2 < 0 \text{ if label of } i = -1 \\ \end{cases}$

The approach above can be thought of as embedding the examples \mathbf{a}_{i} that are in d-space into a m-dimensional space:

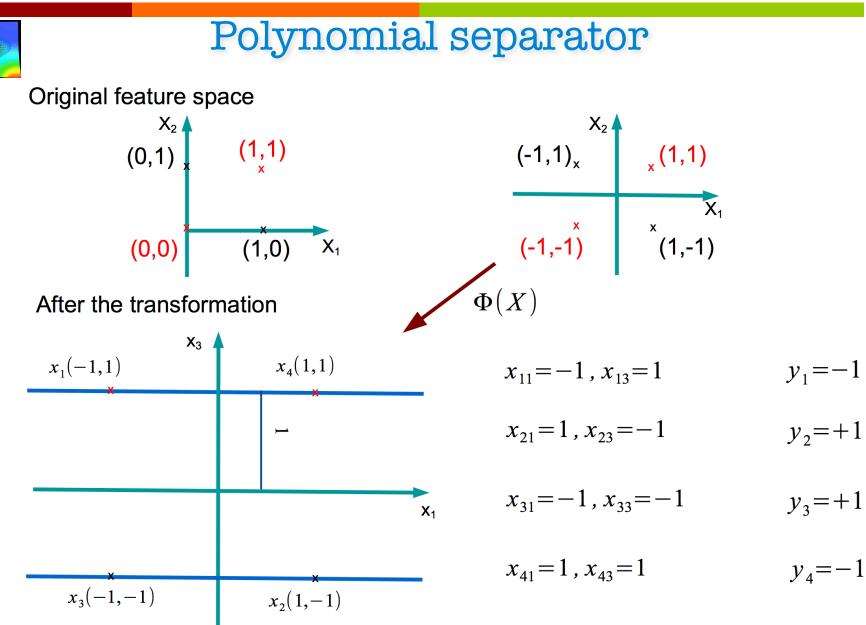
each i_1, i_2, \dots, i_d summing to at most D, and if

 ${\boldsymbol{\varphi}}(\mathbf{x}) \colon \mathsf{R}^{\mathsf{d}} wdots \mathsf{R}^{\mathsf{m}}$

$$\mathbf{a_i} = (x_1, x_2, \dots, x_d)$$
 \rightarrow $x_1^{i_1} x_2^{i_2} \cdots x_d^{i_d}$

If d=2 and D=2: $\varphi(\mathbf{x}) = (x_1, x_2, x_1^2, x_1 x_2, x_2^2)$ If d=3 and D=2:

$$\boldsymbol{\varphi}(\mathbf{x}) = (x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3, x_1^2, x_2^2, x_3^2)$$





We can use the previously defined objective function to find the coefficients

min $|\mathbf{w}|^2$ subject to $(\mathbf{w}^T \boldsymbol{\varphi}(\mathbf{a_i})) l_i \geq 1$ for all i

But how to avoid computing the transformed vectors?

Lemma: Any optimal solution w to the convex program above is a linear combination of the $\,\varphi(a_i)$

So
$$\mathbf{w} = \sum_{i} y_{i} \boldsymbol{\varphi} \left(\mathbf{a_{i}}
ight)$$
 and $\mathbf{w}^{T} \boldsymbol{\varphi} \left(\mathbf{a_{j}}
ight)$ can be

computed without actually knowing the transformed vectors.

Say,
$$\mathbf{w} = \sum\limits_i y_i oldsymbol{arphi}(\mathbf{a_i})$$

where the y_i are real variables.

Then

$$|\mathbf{w}|^2 = \left(\sum_i y_i \varphi(\mathbf{a_i})\right)^T \left(\sum_j y_j \varphi(\mathbf{a_j})\right) = \sum_{i,j} y_i y_j \varphi(\mathbf{a_i})^T \varphi(\mathbf{a_j})$$

And our optimization has a form

minimize
$$\sum_{i,j} y_i y_j \varphi(\mathbf{a_i})^T \varphi(\mathbf{a_j})$$

subject to $l_i \left(\sum_j y_j \varphi(\mathbf{a_j})^T \varphi(\mathbf{a_i}) \right) \ge 1 \quad \forall i.$

Kernel matrix

In the above formulation we do not need the transformed vectors, only the dot product for all i,j pairs.

Let us define the kernel matrix as

$$k_{ij} = \boldsymbol{\varphi}(\mathbf{a_i})^T \boldsymbol{\varphi}(\mathbf{a_j})$$

So we can rewrite once again our optimization as

minimize
$$\sum_{ij} y_i y_j k_{ij}$$
 subject to $l_i \sum_j k_{ij} y_j \ge 1$

This formulation is called as Support Vector Machine (SVM) Instead of m parameters we have n² entries.