List of Questions

- 1. Basic notions of graph theory: graph, simple graph, degree, isomorphism, complement, subgraph, walk, trail, circuit, path, cycle, connectedness, components. Breadth First Search, number of steps it makes.
- 2. Trees: basic properties^{**}, spanning trees, their existence^{**}. Minimum weight spanning trees, Kruskal's algorithm.
- 3. Euler trail and circuit, necessary and sufficient conditions for their existence^{**}. Hamilton path and cycle, necessary conditions^{**}, sufficient conditions: Dirac's^{**} and Ore's^{**} theorem.
- 4. Vertex coloring: the notion of $\chi(G)$ and its relationship to $\omega(G)^{**}$ and $\Delta(G)^{**}$. Zykov's construction**. Greedy coloring**. Interval graphs, their coloring**.
- 5. Bipartite graphs, relationship with odd cycles^{**}. Covering and independent vertices and edges, relations between them^{**}. Gallai's theorems^{**}.
- 6. Matchings in bipartite graphs. Augmenting paths. Theorems of König^{**}, Hall^{**} and Frobenius^{**}. Edge-chromatic number, its relation to $\Delta(G)^{**}$. Vizing's theorem, Shannon's theorem. König's theorem^{**} (about edge-chromatic number of bipartite graphs).
- 7. Network, flow, value of a flow, s-t cut, capacity of a cut, augmenting paths. Ford-Fulkerson theorem^{**}, Edmonds-Karp theorem.
- 8. Integrality lemma^{**}. Generalizations of flows. Menger's theorems about paths between pairs of points^{*}.
- 9. Higher connectivity and edge-connectivity in graphs. Menger's related theorems^{*}. The shortest path problem, conservative weighting^{*}. The Bellman-Ford algorithm.

Theorems and statements with an * were partially proved in the lecture. Theorems and statements with a ** were completely proved in the lecture.