List of Questions

- 1. Divisibility, prime numbers, fundamental theorem of arithmetic^{**}, d(n) function^{*}, greatest common divisor, least common multiple. Number of primes^{**}, gap between adjacent primes, prime number theorem (no proof).
- 2. Congruences, operations with congruences^{**}. Linear congruences, their solvability^{**} and methods for their solutions. Simultaneous congruence systems (example).
- 3. Euler's $\varphi(n)$ function^{*}, reduced residue system. Euler-Fermat theorem^{**}, little Fermat theorem^{**}. Euclidean algorithm^{*}, its application for solving linear congruences (example).
- 4. Polynomial algorithms. Number theoretic algorithms: basic operations, exponentiation. Primality testing*, public key criptography, RSA-encoding*.
- 5. Geometry of 3-space: equations of planes^{**}, lines^{**}; intersections. Dot product, cross product: definitions, properties, evaluation.
- 6. Definition of \mathbb{R}^n and subspaces of \mathbb{R}^n . Linear combination, spanned (generated) subspace, generating system, linear independence (2 definitions and their equivalence^{**}), exchange theorem^{**}, I-G inequality^{**}.
- 7. Basis, dimension^{**}. Standard basis, the dimension of \mathbf{R}^{n*} . Coordinate vector in a basis, its uniqueness^{**}. Existence of a basis in a subspace of \mathbf{R}^{n**} .
- 8. Systems of linear equations, Gaussian elimination. Row echelon form, reduced row echelon form. Conditions on consistency (solvability) and uniqueness**.
- 9. Determinant: definition, basic properties**, ways of evaluation, expansion theorem*.
- 10. Matrices, operations on matrices, their properties. Product theorem for determinants (no proof). Connections between systems of linear equations and matrix equations**.
- 11. Inverse of a matrix, necessary and sufficient condition for its existence^{**}, calculation of the inverse^{*}. Rank of a matrix: definitions, evaluation (no proof).
- 12. Linear maps: definition, basic properties, examples. Matrix of a linear map^{**}. Composition (product) of linear maps, its matrix^{*}. Inverse of a linear transformation^{**}.
- 13. Kernel and image of linear map^{**}, examples. Dimension theorem^{*}. Changing bases, the matrix of a linear transformation in a given basis^{**}.
- 14. Eigenvalues and eigenvectors of linear transformations and of matrices, their determination**, characteristic polynomial, examples. Diagonalisation**.

Theorems and statements with an * were partially proved in the lecture. Theorems and statements with a ** were completely proved in the lecture.