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Introduction
These notes are based on the lecture notes [10] written by Dávid Szeszlér in Hungarian and

cover the material of the course Introduction to the Theory of Computing I. given in every fall
semester at the Faculty of Electrical Engineering and Informatics of Budapest University of
Technology and Economics. The text follows closely the structure of the Hungarian version,
many parts of it are just translations of the original.

The material is divided into two chapters, the first one covers the basics of number
theory and also some applications. In the second one we discuss the basics of linear algebra.
We will only see a special case of a general theory, though this is without doubt the most
important special case. Not only that it provides a very useful tool in almost every branch
of mathematics, but it has a fundamental role in many parts of computer science.

I would like to thank Rita Csákány for reading these notes and making comments.
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1 Number Theory
Number theory is one of the oldest branches of mathematics. It investigates the properties

of the integers, many basic notions of it were defined and named by the ancient Greeks. It
provided many of the most famous problems of mathematics, some of them turned out to
be very challenging and deep. After hundreds and thousands of years there are still several
unsolved questions among them.

Despite all this there was no general interest towards number theory outside mathematics
until the first important application appeared in 1977, when Ronald Rivest, Adi Shamir and
Len Adleman discovered the so called RSA algorithm (what was named after the initials of
its creators). It is used to encrypt and decrypt messages with the help of public keys, i.e.
keys that can be given to anyone without endangering the privacy. The connection with
cryptography made this branch very important in computer science, especially in the age of
the internet. In this chapter we discuss the basics of number theory and describe some of its
applications, including the RSA algorithm.

1.1 Basic Notions and the Fundamental Theorem of Arithmetic

In this section we discuss the basic notions of number theory. Most of the definitions
and theorems should be familiar to anyone from high school, but here we also give the exact
proofs of the claims. Unless it is told otherwise, every variable denotes an integer in this
chapter.

Definition 1.1.1. If a, b ∈ Z are integers, then we say that a is a divisor of b (or a divides
b, b is a multiple of a) if there is an integer c ∈ Z such that b = ac. This is denoted by a | b.
If a does not divide b, then we write a - b. The number a is a proper divisor of b if a | b and
1 < |a| < |b| hold.

Note that other authors may not exclude the number 1 from the set of proper divisors.
One checks easily that 13 | 91, −7 | 63, 2 | 0 and −8 - −36 hold. At first sight it is maybe
surprising that 0 | 0 holds too since 0 = 0 · c for every c ∈ Z. But this does not mean that
the operation "dividing by zero" is defined. The divisors of 10 are ±1,±2,±5 and ±10 while
the proper divisors of 10 are ±2 and ±5.

Definition 1.1.2. The integer p ∈ Z is called prime if |p| > 1 and p does not have a proper
divisor. In other words: p = ab holds if and only if a = ±1 or b = ±1. If |p| > 1 and p is not
prime, then it is called a composite number . The numbers 0 and ±1 are neither prime nor
composite.

Examples of prime numbers are 3, 103 and −7. The negative primes are just the opposites
of the positive primes.

Remark. Many authors call the above defined numbers irreducibles and define the notion
of prime numbers by the property that if p | ab holds for a product, then p | a or p | b must
also hold. Since these two definitions give the same notion for integers, we do not follow this
practice. The reason why others do it is that number theory can be worked out in "larger
domains" and in general the two notions may differ. We will see such examples later but
aside from these we restrict ourselves to the set of integers and recommend the book [6] to
the interested reader.

5



The following theorem has a crucial role in number theory (which is reflected in its name)
and also shows the importance of primes:

Theorem 1.1.1 (Fundamental Theorem of Arithmetic). Every integer different from 0 and
±1 can be represented as a product of primes. This representation is unique up to the order
and the sign of the factors.

For example two different representations of the number 100 are 2·2·5·5 and (−5)·2·(−2)·5,
which shows that uniqueness cannot be achieved in the theorem without disregarding the or-
der and the sign of the prime factors. We can also see why it is useful to exclude the numbers
±1 from the set of primes. Otherwise the representation would not be unique since we could
write 4 = 2 · 2 = 1 · 2 · 2. On the other hand, the numbers 0 and ±1 can not be written
as product of primes, they must be excluded in the theorem. Note that prime numbers can
be considered as products that have only one factor and then the statement of the theorem
remains true for them too.

Proof of existence of the factorization in Theorem 1.1.1. We give a simple process which
provides the factorization for any n ∈ Z with |n| > 1. We will store a factorization all along,
initially this will be the number n itself (a product with one factor). Once we have a product
n = a1a2 . . . ak where all the ai’s are prime numbers we stop. If at least one of the factors,
say ai is composite, then it has a proper divisor. That is, we can choose some b, c ∈ Z with
|b| , |c| > 1 such that ai = bc. We replace the factor ai with bc in the product and proceed.
In every step we increase the number of factors by 1 and the absolute value of every factor
is at least 2. Hence after at most log2 |n| steps our procedure ends and gives the required
factorization. �

Before we complete the proof of the fundamental theorem, we make some remarks and
show some (counter)examples. First note that the (at this point still unproved) uniqueness
part is the "powerful" part of the fundamental theorem. Namely, it assures that the obtained
factorization gives the arithmetic structure of the numbers and this way it makes possible to
calculate all of their divisors, for example.

Although the fundamental theorem may seem evident, it is not too hard to give such
"domains" where it does not hold. For instance, let us forget about the odd numbers for a
moment. The set of even numbers is similar to the integers. By this we mean that the sum,
difference and product of two even numbers is also even. Moreover, the notion of divisibility
can be defined the same way as before. But here we do not have a unique factorization: for
example 36 = 2 · 18 = 6 · 6 and none of these representations can be split up further. The
reader may notice that our definition for the prime numbers is not applicable here, because
the number 1 is not an element of our set (i.e. it is not even). However, it is not hard to
modify the definition so that it yields the right notion.

A more sophisticated example is the set of complex numbers of the form a+ib
√
5, where a

and b are integers and i is the imaginary unit, i.e. i2 = −1. Again, this is closed under addition
and multiplication, but also contains the number 1. It is true that 9 = 32 = (2−i

√
5)(2+i

√
5)

but these factors do not have "proper divisors". Of course we should clarify what a proper
divisor means here, but we do not go into the details, we refer to the book [6] instead.

As a final remark, we mention that though these domains may seem artificial for the first
sight, still examples similar to the last one occur naturally in number theory. For example,
they play a major role in problems like Fermat’s Last Theorem which was formulated in 1637
and was proved by Andrew Wiles in 1994. The theorem states that for any exponent n ∈ N
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greater than 2 the equation xn + yn = zn does not have an integer solution. Many special
cases and similar problems can be treated relatively easily, but they are beyond the scope of
these notes.

Proof of uniqueness of the factorization in Theorem 1.1.1. It is clearly enough to show that
every positive integer greater than 1 can be written uniquely (up to order) as a product of
primes. So assume that n ∈ N, n > 1. We prove by induction. The assertion is true for
every prime, in particular for n = 2, so assume that n > 2 is composite and the assertion is
true for every 1 < n′ < n. If n = p1 . . . pr = q1 . . . qs such that the pi’s and qj’s are primes,
then r, s ≥ 2 (since n is not a prime). If pi = qj holds for some i and j, then dividing n
by this prime we get two non-empty products giving a smaller number n′. By induction the
remaining primes on the two sides of the equality differ by order only, hence the same holds
for the original products.

It remains to handle the case when pi 6= qj for every i and j. After a possible relabeling
we may assume that p1 ≤ pi and p1 ≤ qj hold for every i and j. Let us define then
n′ = (q1 − p1)q2 . . . qs. We have assumed q1 ≥ p1 and q1 6= p1, hence n > n′ > q1 − p1 ≥ 1
follows (since s ≥ 2). We now show n′ has a factorization which contains p1 and another one
without p1. This contradicts our hypothesis and this contradiction shows that this case is
impossible and the theorem is proved. If q1 − p1 = 1, then we can simply omit this factor
from the product to obtain an appropriate representation of n′. Otherwise q1 − p1 can be
written uniquely (up to order) as a product of primes by induction. Replacing this factor by
this product in the definition of n′ above we get a factorization of n′. Since p1 - q1 (because
q1 is prime) we also have that p1 - q1 − p1. So p1 does not occur among the primes in the
factorization of q1− p1. Recall that p1 6= qj is also true, hence we get a factorization without
the prime p1.

Finally,

n′ = (q1 − p1)q2 . . . qs = q1q2 . . . qs − p1q2 . . . qs
= p1p2 . . . pr − p1q2 . . . qs = p1(p2 . . . pr − q2 . . . qs).

Replacing p2 . . . pr − q2 . . . qs by an optional prime factorization of it or simply omit this fac-
tor in the case when it equals 1 we get a prime factorization of n′ including p1. This is a
contradiction, and the proof of the theorem is now complete. �

The fundamental theorem was proved for the set of integers, but then it follows also for
the natural numbers: every positive integer greater than 1 has a prime factorization which
is unique up to order. This makes it possible to define the canonical representation of the
positive integers. We obtain this by collecting the identical primes in the factorization into
powers and by ordering the powers by the magnitude of the bases. That is, we get the form
n = pα1

1 . . . pαkk , where p1 < p2 < · · · < pk are primes and α1, . . . , αk are positive integers.
Observe that this canonical representation is unique, though many times we only require that
the prime bases in this representation are pairwise different (and not necessarily ordered by
magnitude). Hopefully this causes no confusion in the future. As an example, the canonical
representation of the number 600 is 23 · 31 · 52 (of course we often omit the exponent 1).

Many times it is useful to allow the exponent zero in the representation. For example it
makes possible to use the same primes in the representations of two different numbers, as in
the following
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Proposition 1.1.2. Let us assume that p1, . . . , pk are pairwise different positive primes and
n = pα1

1 . . . pαkk , where α1, . . . , αk are non-negative integers. Then the positive integer m
divides n if and only if m = pβ11 . . . pβkk , where 0 ≤ β1 ≤ α1, . . . , 0 ≤ βk ≤ αk are integers.

Proof. If m is of the form given in the proposition, then n = ml, where l = pα1−β1
1 . . . pαk−βkk ,

hence m | n.
Now assume that m | n and that the canonical representation of m is qγ11 . . . qγss . Then

n = ml for some l ∈ Z. We can get a factorization of n by multiplying the factorization of m
and l. But then by the uniqueness part of the fundamental theorem every qi must coincide
with some pj. This means that m can be written as pβ11 . . . pβkk where some of the exponents
may be 0. Assume that an exponent, say βi is strictly bigger than αi, then

pβi−αii | n
pαi

= pα1
1 . . . p

αi−1

i−1 p
αi+1

i+1 . . . pαkk ,

where βi−αi ≥ 1. The same way as before we get that pi must coincide with some pj, j 6= i.
But this is impossible, since the primes p1, . . . , pk are pairwise distinct.

This last result makes it possible to give a formula for the number of divisors. For a
positive integer n the number of its divisors is denoted by d(n) (note that other notations
like ν(n), τ(n) and σ0(n) are also common).

Corollary 1.1.3. If n > 1 is an integer and its canonical representation is n = pα1
1 . . . pαkk ,

then
d(n) = (α1 + 1) . . . (αk + 1).

Proof. The product given in the statement is the number of products of the form pβ11 . . . pβkk ,
where 0 ≤ β1 ≤ α1, . . . , 0 ≤ βk ≤ αk. By the previous proposition these products give all the
divisors of n, and by the uniqueness of the prime factorization they give every divisor only
once.

Proposition 1.1.2 also helps us to determine the greatest common divisor and the least
common multiple of two numbers. Although these notions are basically defined by their
names, we give the formal definitions:

Definition 1.1.3. If n,m ∈ Z are integers and at least one of them is non-zero, then their
greatest common divisor (often abbreviated by gcd) is the largest positive integer which
divides both n and m. The greatest common divisor of n and m is denoted by (n,m) or
gcd(n,m). The integers n and m are called co-prime if (n,m) = 1 holds.

Definition 1.1.4. If n,m ∈ Z \ {0} are non-zero integers, then their least common multiple
(abbreviated by lcm) is the smallest positive number that is divisible by both n and m. The
least common multiple of n and m is denoted by [n,m] or lcm(n,m).

Note that if n is and integer, then the divisors and multiples of n and −n are the same,
hence we have (n,m) = (|n| , |m|) and [n,m] = [|n| , |m|]. Also, for any positive integer n we
have (n, 0) = n. Hence for the rest of this section we restrict ourselves to the case when n
and m are positive integers.

Now we are going to use the prime factorization of the numbers to compute their greatest
common divisor and least common multiple (we will address the effectiveness of this method
later).
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Proposition 1.1.4. If p1, . . . , pk are pairwise different positive primes, n = pα1
1 . . . pαkk and

m = pβ11 . . . pβkk , where α1, . . . , αk, β1, . . . , βk are non-negative integers, then

(n,m) = p
min{α1,β1}
1 . . . p

min{αk,βk}
k ,

[n,m] = p
max{α1,β1}
1 . . . p

max{αk,βk}
k .

Before the proof we show an example. If n = 600 and m = 84, then their canonical
representations are 600 = 23 · 31 · 52 and 84 = 22 · 31 · 71. Observe that there are different
primes in these factorizations, hence to apply the previous proposition we have to write them
differently, using all the primes that occur in the two products. That is, 600 = 23 · 31 · 52 · 70
and 84 = 22 · 31 · 50 · 71. Of course, unlike in the case of the canonical representation
here it is necessary to allow the exponent zero. Now the formulae above are applicable:
(600, 84) = 22 · 31 · 50 · 70 = 12 and [600, 84] = 23 · 31 · 52 · 71 = 4200.

Proof of Proposition 1.1.4. By Proposition 1.1.2, for any positive integer d the properties
d | n and d | m hold simultaneously if and only if d = pγ11 . . . pγkk , where 0 ≤ γi ≤ αi and
0 ≤ γi ≤ βi, i.e. 0 ≤ γi ≤ min{αi, βi} for every i. This holds also for (n,m), and since (n,m)
is the greatest among the positive divisors, we must have equality in the previous inequalities,
otherwise we could get a greater divisor by increasing an exponent. The proof of the other
claim is similar and left to the reader. �

Note that this proof gives more. Namely, the greatest common divisor of two numbers
has the following special property:

Corollary 1.1.5. Let n,m ∈ N+ be positive integers. Then the common divisors of n and m
are the divisors of their greatest common divisor, i.e. d | n and d | m holds simultaneously if
and only if d | (n,m).

Proof. The greatest common divisor of n and m divides both numbers, i.e. n = (n,m) · c1
and m = c2 · (n,m) for some c1, c2 integers. If d | (n,m), then (n,m) = de, so n = d(ec1) and
m = d(ec2), that is, both d | n and d | m hold.

On the other hand, if both d | n and d | m hold, then the formula for (n,m) in the
previous statement and the first sentence of the previous proof together with Proposition
1.1.2 give that d | (n,m).

Exercise 1.1.1. Assume that n,m ∈ N+ are positive integers and let 〈n,m〉 denote the least
positive integer for which both n | m · 〈n,m〉 and m | n · 〈n,m〉 hold. Give a formula for
〈n,m〉 that is similar to the ones in Proposition 1.1.4.

We close this section by a basic theorem about the number of primes:

Theorem 1.1.6. The number of primes is infinite.

Proof. It is enough to prove that there are infinitely many positive primes. So in the proof
every prime is assumed to be positive.

Assume on the contrary that the number of primes is finite, say k. Let p1, . . . , pk be the
list of all primes. Then N = p1 . . . pk +1 is bigger than 1, hence it has a prime factorization.
Since N is not divisible by any of the primes p1, . . . , pk, every prime in the factorization of
N must be different from them, and this is a contradiction.
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1.2 Congruences

The set of integers is closed under addition, subtraction and multiplication, but this is
not the case with the fourth basic operation. The result of a division is not always an integer
(and we cannot divide by 0 at all). What we can do is division with remainders. Namely,
for every a, b ∈ Z, b 6= 0 there exist integers q, r such that a = qb+ r where 0 ≤ r ≤ |b| − 1.
This is obvious since if we regard the integers below a (and also a itself), then we can find
one within the distance |b| − 1 which is divisible by b. Since among |b| consecutive numbers
there is exactly one which is divisible by b, we get that the number r (and then also q) is
determined uniquely. The number r is called the remainder (and q is the quotient). For
example, if we divide −30 by 9, then the remainder is 6 (since −30 = (−4) · 9 + 6). This
makes it possible to define the congruence relation:

Definition 1.2.1. Let a, b,m ∈ Z be integers and m 6= 0. We say that a and b are congruent
(or a is congruent to b) modulo m if they give the same remainder when we divide them by
m. This is denoted by a ≡ b (mod m) or a ≡ b (m). The number m is called the modulus of
the congruence.

For example, 17 ≡ 52 (mod 7) (because both of them gives the remainder 3) and 33 ≡ −30
(mod 9) (here the remainder is 6). The notation of the congruence resembles the notation of
equality, and this is not a coincidence. It expresses that we consider a and b the same when
we count with the remainders. The following equivalent definition of the congruence is often
useful:

Proposition 1.2.1. If a, b,m ∈ Z, m 6= 0, then a ≡ b (mod m) if and only if m | a− b.

Proof. Let us denote the remainder of a modulo m by ra. Similarly, let rb be the remainder
of b. Then a = qam + ra and b = qbm + rb for some qa, qb integers. If ra = rb, then
m | a − b = (qa − qb)m. On the other hand, if ra 6= rb, then a − b = (qa − qb)m + ra − rb,
where 0 6= |ra − rb| < m, and hence m - a− b (because the distance between two multiples of
m is at least m).

The following proposition shows why using the congruence relation makes the computa-
tions often easier:

Proposition 1.2.2. Assume that a ≡ b (mod m) and c ≡ d (mod m) hold for some integers
a, b, c, d,m ∈ Z, m 6= 0 and let k ∈ Z be an arbitrary integer. Then the following hold:

(i) a+ c ≡ b+ d (mod m),

(ii) a− c ≡ b− d (mod m),

(iii) ac ≡ bd (mod m),

(iv) ak ≡ bk (mod m).

Proof. By the previous proposition our assumption is equivalent to the conditions m | a− b
and m | c − d. From these we get that m | (a − b) + (c − d) = (a + c) − (b + d), which
means that a + c ≡ b + d (mod m) (again, by the previous proposition). Similarly, we have
m | (a− b)− (c− d) = (a− c)− (b− d), hence a− c ≡ b− d (mod m) hold. This proves (i)
and (ii).
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To show (iii) we note that if m | a− b, then m | c(a− b) = ac− bc follows. The same way,
we get from m | c− d that m | b(c− d) = bc− bd. But the sum of numbers divisible by m is
again divisible by m, hence we have m | ac− bc+ bc− bd = ac− bd, and this is equivalent to
ac ≡ bd (mod m).

Finally, (iv) follows from (iii): if we set c = a and d = b, then (iii) gives a2 ≡ b2 (mod m).
Now we apply (iii) to the latter congruence and to a ≡ b (mod m), and this way we obtain
a3 ≡ b3 (mod m). Continuing this way we get ak ≡ bk (mod m) after k − 1 steps.

We often use the previous statements in the special case when c = d. As obviously c ≡ c
(mod m), we get that if a ≡ b (mod m), then also a± c ≡ b± c (mod m) and ac ≡ bc (mod
m). But the analogous claim does not hold for the division. Of course to be able to divide a
congruence by a number c we must have integers on both sides which are divisible by c. But
one has to be careful even in that case, for example 40 ≡ 64 (mod 12), but dividing by 8 we
get 5 ≡ 8 (mod 12), which is false. The right form of the division rule is the following:

Theorem 1.2.3. Let a, b, c,m ∈ Z be integers, m 6= 0 and d = (c,m) (the greatest common
divisor of m and c). Then ac ≡ bc (mod m) if and only if a ≡ b (mod m

d
).

Proof. If c′ = c
d
and m′ = m

d
, then c′ and m′ are integers since d is a common divisor of c

and m. Moreover (c′,m′) = 1, otherwise the number d · (c′,m′) would be a common divisor
of m and c which is bigger than d, and this contradicts the definition of the greatest common
divisor.

Now ac ≡ bc (mod m) if and only if m | ac− bc = c(a− b) by Proposition 1.2.1. That is,
we have c(a − b) = mk for some integer k. Dividing both sides by d we get the equivalent
equation c′(a− b) = m′k. If m′ - a− b, then at least one prime divisor of m′ must divide c′ by
the fundamental theorem, but since m′ and c′ are co-prime (which means that their greatest
common divisor is 1), this is impossible. It follows that m′ | a− b, i.e. a ≡ b (mod m′).

On the other hand, if a ≡ b (mod m′), then m′ | a−b and hence m′ | c′(a−b). This means
that c′(a − b) = m′k for some integer k, and we have already seen that this is equivalent to
ac ≡ bc (mod m).

Corollary 1.2.4. Assume that a, b, c,m ∈ Z, m 6= 0 and (m, c) = 1 (that is, c and m are
co-prime). Then ac ≡ bc (mod m) if and only if a ≡ b (mod m).

Exercise 1.2.1. What is the remainder when we divide

a) 100100 by 11; b) 654321 by 655; c) 11141 by 35?

Solution. We use the properties of the congruence relation that are given in Proposition
1.2.2.

a) Since 11 | 99 we have 100 ≡ 1 (mod 11). Raising both sides to the power 100 and using
property (iv) we get that 100100 ≡ 1100 = 1 (mod 11) (and hence the remainder is 1).

b) Observe that 654 ≡ −1 (mod 655), hence 654321 ≡ (−1)321 = −1 (mod 655) by
property (iv). The remainder of 654321 is then 654.

c) First note, that 111 ≡ 6 (mod 35), so 11141 ≡ 641 (mod 35). At this point the result is
not clear, but notice that 62 ≡ 1 (mod 35). From this we obtain that 640 = (62)20 ≡ 120 = 1
(mod 35), and then 641 = 640 · 6 ≡ 1 · 6 (mod 35), i.e. the remainder is 6. �
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1.3 The Euler-Fermat Theorem

The aim of this section to show that for appropriate values of a, m and k the congruence
ak ≡ 1 (mod m) holds. We make use of this later in the RSA algorithm. One must be careful
though, since if (a,m) = d > 1, then of course d - ak − 1 for any integer k > 0 (because
d | ak). On the other hand, in the case when a and m are co-prime we can find an appropriate
k which depends only on m and not on a. To be able to formulate the precise statement we
will need a tool which we introduce below.

1.3.1 Euler’s Phi Function

Two numbers that are congruent to each other behave similarly from many points of view.
The following statement says that even their greatest common divisor with m agrees:

Proposition 1.3.1. Assume that a, b,m ∈ Z and m 6= 0. If a ≡ b (mod m) holds, then
(a,m) = (b,m).

Proof. Assume that a ≡ b (mod m), i.e. m | a − b. This means that b = a + km for some
k ∈ Z. If d = (a,m), then since d | a and d | km, we get that d | a + km = b. In other
words, d is a common divisor of b and m. It follows that d = (a,m) ≤ (b,m), because the
latter number is the greatest among the positive common divisors. Since the role of a and b
is symmetric, we have (b,m) ≤ (a,m) as well, and the claim follows.

Corollary 1.3.2. If a ≡ b (mod m), then (a,m) = 1 if and only if (b,m) = 1.

Definition 1.3.1. If n ≥ 1, then we denote by ϕ(n) the number of those integers in the
interval [1, n] which are co-prime to n, that is,

ϕ(n) = |{k ∈ N : 1 ≤ k ≤ n, (k, n) = 1}| .

The function ϕ is called Euler’s phi function.

The congruence relation modulo n divides the set of integers into disjoint classes, these
are called residue classes modulo n. Two integers belong to the same class if and only if they
are congruent. The system of residue classes modulo n is complete in the sense that every
integer belongs to a class. Since every class contains exactly one element in the interval [1, n],
we get by the previous Corollary that ϕ(n) is the number of the residue classes modulo n
which contain numbers that are co-prime to n.

We determine the value of ϕ(10). Among the numbers 1, 2, . . . , 10 the even numbers and
the multiples of 5 have a common divisor with 10 greater than 1, but the remaining numbers
are co-prime to 10. These are 1, 3, 7 and 9, hence ϕ(10) = 4. If n = p is prime, then all the
numbers 1, . . . , p−1 are co-prime to p, so ϕ(p) = p−1. It is also easy to determine the value
of ϕ for prime powers:

Lemma 1.3.3. If p is a prime and α ≥ 1 is a positive integer, then ϕ(pα) = pα − pα−1.

Proof. The numbers among 1, . . . , pα that are co-prime to pα are the ones which are not
divisible by p. So we exclude the numbers kp, where k is a positive integer and kp ≤ pα, i.e.
k ≤ pα−1. This proves the claim.

The computation of ϕ based on the definition becomes tiresome for a general composite
number. However, we can use the following lemma and the canonical form of the number to
give a formula for ϕ(n).
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Lemma 1.3.4. If a and b are co-prime positive integers, then ϕ(ab) = ϕ(a)ϕ(b).

Remark. A function defined on the set of positive integers is called multiplicative if it has
the property described in the lemma. As co-prime numbers have no common primes in their
canonical representations, it follows easily from Corollary 1.1.3 that the function d(n) defined
in the first section is multiplicative. To learn more about multiplicative arithmetic functions
see e.g. [5].

We postpone the proof of the lemma and first apply it to give a formula for ϕ(n):

Theorem 1.3.5. If n > 1 is a positive integer with canonical representation n = pα1
1 . . . pαkk ,

then
ϕ(n) = (pα1

1 − pα1−1
1 ) . . . (pαkk − p

αk−1
k ).

Proof. First note that form the previous lemma if follows by induction that if a1, . . . , ak are
pairwise co-prime numbers (i.e. (ai, aj) = 1 for every 1 ≤ i, j ≤ k, i 6= j), then ϕ(a1 . . . ak) =
ϕ(a1) . . . ϕ(ak). Indeed, the lemma gives this for k = 2. Assume that k > 2 and the statement
is true for k − 1. If a1, . . . , ak are pairwise co-prime numbers, then (a1 . . . ak−1, ak) = 1,
because if a prime divides both ak and the product, then this prime occurs in the canonical
representation of some ai where 1 ≤ i ≤ k − 1. But this is impossible since (ai, ak) = 1
holds. Then ϕ(a1 . . . ak−1ak) = ϕ(a1 . . . ak−1)ϕ(ak) by the previous lemma, and using the
assumption for k − 1 numbers we get the claim.

Now we apply this for the numbers ai = pαii which are pairwise co-prime, and hence
ϕ(n) = ϕ(pα1

1 ) . . . ϕ(pαkk ) holds. Finally, applying Lemma 1.3.3 we get the statement of the
theorem.

Proof of Lemma 1.3.4. First note that for the positive integers x, a, b ∈ N+ (x, ab) = 1 holds
if and only if both (x, a) = 1 and (x, b) = 1 hold. Indeed, we get the prime factorization of
ab by multiplying the factorizations of a and b, so if a prime divides x and ab, then it divides
a or b. That is, if (x, ab) > 1, then (x, a) > 1 or (x, b) > 1 must hold. On the other hand, if
x and a or x and b have a common prime divisor, then it divides ab as well. It follows that
ϕ(ab) is the number of those integers between 1 and ab that are co-prime to both a and b.

We write the numbers 1, 2, . . . , ab in a table so that the intersection of the ith row and
jth column contains the number mij = (i− 1)b+ j, where 1 ≤ i ≤ a, 1 ≤ j ≤ b. In this table
we will search for numbers that are co-prime to both a and b. The following table shows the
case a = 3 and b = 8.  1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24


First note that mi,j = (i− 1)b + j ≡ j (mod b) for every i, j, hence by Proposition 1.3.1

we have that (mij, b) = (j, b). In particular, (mij, b) = 1 holds if and only if (j, b) = 1. This
means that the numbers in the table that are co-prime to b are those which lie in the jth
column for some j co-prime to b. This narrows down the scope of our search to ϕ(b) columns.

Now we are going to count the numbers in the jth column that are co-prime to a. In
fact, we show that any two different numbers in the jth column are not congruent to each
other modulo a, and since there are a rows in our table, it follows that the numbers in he jth
column form a complete residue system modulo a and hence there are ϕ(a) numbers among
them that are co-prime to a. Putting this and the result of the previous paragraph together
we get the claim.
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So assume that mij = (i−1)b+ j ≡ mkj = (k−1)b+ j (mod a) for some 1 ≤ i, k ≤ a. By
property (ii) in Proposition 1.2.2 we can subtract j from both sides, and since (a, b) = 1, it
follows from Corollary 1.2.4 that we can divide the congruence by b. We get that i−1 ≡ k−1
(mod a), that is, i ≡ k (mod a). But since 1 ≤ i, k ≤ a, we have i = k, i.e. mij = mkj. This
completes the proof of the lemma. �

1.3.2 Residue Systems

Every residue class modulo m can be represented by any one of its members. That is,
any member of a class identifies it. We often represent a class by the smallest non-negative
integer which belongs to the class, i.e. every class modulo m can be represented by an integer
0 ≤ c ≤ m − 1. Moreover, these non-negative integers represent every class exactly once.
The subsets of integers with this property are called complete residue systems . We introduce
another important residue system. Recall that if a residue class modulo m contains a number
which is co-prime to m, then every member of that class has the same property by Corollary
1.3.2. We have seen that the number of these classes is ϕ(m). If each of these classes is
represented exactly once, then we call the system reduced.

Definition 1.3.2. The system R = {c1, . . . , ck} of integers is called a reduced residue system
modulo m if the following hold:

(i) (ci,m) = 1 hold for every 1 ≤ i ≤ k,

(ii) ci 6≡ cj (mod m) for any 1 ≤ i, j ≤ k, i 6= j,

(iii) k = ϕ(m).

The systems {1, 3, 7, 9}, {21, 43, 67, 89} and {1,−1, 3,−3} are reduced modulo 10.

Proposition 1.3.6. Assume that R = {c1, . . . , ck} is a reduced residue system modulo m
and a ∈ Z is an arbitrary integer with (a,m) = 1. Then R′ = {ac1, . . . , ack} is also a reduced
residue system modulo m.

Proof. We are going to show that the properties (i), (ii) and (iii) in the previous definition
hold for R′. To see (i) we set di = (aci,m). If p | di is a prime, then it occurs in the prime
factorization of both m and aci. As we get the prime factorization of aci by multiplying the
factorization of a and ci, p must divide at least one of them (and alsom). But this contradicts
the assumption (a,m) = (ci,m) = 1, and it follows that (aci,m) = 1.

Assume now that aci ≡ acj (mod m) for some 1 ≤ i, j ≤ k. Then by Corollary 1.2.4 this
is equivalent to ci ≡ cj (mod m), because (a,m) = 1 holds. Since R is a reduced residue
system, this can hold if and only if i = j, so property (ii) is proved.

Finally, the number of the elements of the systems R′ and R is the same, hence (iii)
follows for R′.

1.3.3 The Euler-Fermat Theorem

After this preparation we are in the position to state and prove the so called Euler-Fermat
theorem:

Theorem 1.3.7 (Euler-Fermat theorem). If a,m ∈ Z are integers, m 6= 0 and (a,m) = 1,
then aϕ(m) ≡ 1 (mod m) holds, where ϕ is Euler’s phi function.
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Proof. Let R = {c1, . . . , ck} be an arbitrary reduced residue system modulom. Since (a,m) =
1, we have by Proposition 1.3.6 that R′ = {ac1, . . . , ack} is also a reduced residue system
modulo m. For every remainder 0 ≤ r ≤ m− 1 with (r,m) = 1 there is exactly one number
in both R and R′ which is congruent to r. Hence we can pair the numbers in R and R′ so
that the pairs are congruent to each other. Then by property (iii) in Proposition 1.2.2 we
can multiply the numbers in R and R′ and this way we still get numbers that are congruent
to each other:

c1 . . . ck ≡ (ac1) . . . (ack) = aϕ(m)c1 . . . ck (mod m),

where we used that k = ϕ(m). Since (ci,m) = 1, it follows from Corollary 1.2.4 that we can
divide the previous congruence by ci for every 1 ≤ i ≤ k. After doing this for every i we get
the statement of the theorem.

Corollary 1.3.8 (Fermat’s little theorem). If p is a positive prime and a ∈ Z is an arbitrary
integer, then ap ≡ a (mod p).

Proof. If p | a, then p | ap also holds, hence ap ≡ 0 ≡ a (mod p). If p - a, then (a, p) = 1,
because p is a prime. Then by the previous theorem we have aϕ(p) = ap−1 ≡ 1 (mod p).
Multiplying both sides by a we get the statement.

Exercise 1.3.1. What is the remainder when we divide a) 11111 by 63 b) 514132 by 140?

Solution. a) Since (11, 63) = 1, we can apply the Euler-Fermat theorem, which gives that
11ϕ(63) = 1136 ≡ 1 (mod 63) (as ϕ(63) = (71 − 70)(32 − 3) = 6 · 6 = 36). Now we apply
property (iv) of Proposition 1.2.2 for k = 3. That is, we raise both sides to the 3rd power to
get that (1136)3 = 11108 ≡ 13 = 1 (mod 36). That is, 11111 = 11108 · 113 ≡ 1 · 113 (mod 63),
so it remains to determine the remainder of 113. As 112 = 121 ≡ −5 (mod 63), we obtain
that 113 = 112 · 11 ≡ (−5) · 11 = −55 ≡ 8 (mod 63), and hence the remainder is 8.

b) We will apply the Euler-Fermat theorem for the numbers a = 51 and m = 140. This
can be done since 51 = 3 · 17 and 140 = 22 · 5 · 7, and hence (51, 140) = 1. We also have that
ϕ(140) = (22 − 2)(5 − 1)(7 − 1) = 2 · 4 · 6 = 48, so 5148 ≡ 1 (mod 140) holds by the Euler-
Fermat theorem. Maybe it is not clear at first sight how this can be used in this situation.
But as before, we have 5148k ≡ 1k = 1 (mod 140) for every k ≥ 1. Although the exponent is
not of the form 48k we still can divide it by 48 with a remainder. That is, we are looking for
the smallest non-negative integer r such that 4132 ≡ r (mod 48). Luckily, (41, 48) = 1 holds,
hence we can apply the Euler-Fermat theorem again. As ϕ(48) = (24 − 23)(3− 1) = 16, we
have 4116 ≡ 1 (mod 48) and hence (4116)2 = 4132 ≡ 1 (mod 48). This can be written as
4132 = 48k+1 for some integer k, and then 5141

32
= 5148k+1 = 5148k · 51 ≡ 51 (mod 140), i.e.

the remainder is 51. �

1.4 Linear Congruences

In this section we address the following question: if a, b,m ∈ Z, m 6= 0 are given, then
what are the numbers for which the congruence ax ≡ b (mod m) holds? This problem is
called a linear congruence, because we have information about the first power of the unknown
number x.

First we note, that if a linear congruence has a solution x0, then ax0 ≡ ax1 (mod m) holds
for every x1 which is congruent to x0 modulo m. In other words, if x0 is a solution, then
every number in its residue class modulo m is also a solution. Hence the set of the solutions
is a union of residue classes, and we will give the solutions by giving only one representative
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from each class which contains solutions, that is, we will write x ≡ x0 (mod m) (and give
this way the whole class of x0).

For example, let us examine the congruence 3x ≡ 2 (mod 5). Multiplying by 2 we get
6x ≡ 4 (mod 5). But 6x ≡ x (mod 5), hence the only option for the solution is the class
x ≡ 4 (mod 5). This is indeed a solution since 3 · 4 ≡ 12 ≡ 2 (mod 5).

Let us try to solve the congruence 10x ≡ 5 (mod 30). If we look at this congruence, we
may observe that a number of the form 10x has a zero in the end when we write it in the
decimal system. On the other hand, if a number gives the remainder 5 when we divide it by
30, then it must end with the digit 5. This means that this congruence has no solutions.

In this section we determine the conditions that are sufficient and necessary for a linear
congruence or a system of linear congruences to have a solution. We will also determine
the number of the solutions. We give a method in the next section, which determines the
solutions "efficiently". The word "efficiently" will also get a more or less precise meaning in
the next section.

1.4.1 Existence of solutions

In the last example above we did not have a solution for a linear congruence, and the true
reason for this is that the modulus and the coefficient of x had a common divisor which did
not divide the right hand side. We formalize this in the following

Theorem 1.4.1. The linear congruence ax ≡ b (mod m) is solvable if and only if (a,m) | b.
If this condition holds, then (a,m) is the number of the different residue classes which contain
all the solutions.

We usually say briefly that the number of solutions modulo m is (a,m).

Proof. First we show that if the congruence is solvable, then d := (a,m) | b. Let x0 be a
solution of the congruence. Then m | ax0 − b holds, and as d | m, we have that d | ax0 − b.
But d | a | ax0 holds as well, hence d | ax0 − (ax0 − b) = b follows.

Next we show that if (a,m) = 1, then the congruence is solvable. We set x0 = aϕ(m)−1b,
then by the Euler-Fermat theorem we get that ax0 = aϕ(m)b ≡ b (mod m), i.e. x0 is indeed
a solution.

Now assume that d = (a,m) | b and set a′ = a/d, b′ = b/d and m′ = m/d. Then a′, b′ and
m′ are integers, and (a′,m′) = 1 (otherwise (a′,m′) · d would be a common divisor of a and
m which is greater than d). By Theorem 1.2.3 the congruence ax ≡ b (mod m) is equivalent
to a′x ≡ b′ (mod m′), and by the previous paragraph this latter congruence has a solution,
and hence so does the original congruence.

Now we turn to the number of solutions. Assume that x1 is an arbitrary solution of the
congruence. Now x2 is another one if and only if ax1 ≡ b ≡ ax2 (mod m). By Theorem 1.2.3
this is equivalent to x1 ≡ x2 (mod m′). So every solution is of the form x1 + km′ for some
k ∈ Z, and any of these numbers is a solution. Now x1 + k1m

′ ≡ x1 + k2m
′ (mod m) holds

if and only if k1 ≡ k2 (mod m/m′), and as m/m′ = d, this means that the solutions of the
original congruence come from d distinct residue classes modulo m.

Note that the last paragraph of the proof gives the set of all solutions once we have found
one single solution. Namely, if x1 is a solution, then x1 + km′ (k = 0, 1, . . . , (a,m) − 1) are
the representatives of all distinct residue classes modulo m which contain the solutions, each
of them is represented only once.
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One may observe that the second and third paragraph of the proof also gives a method to
determine a first solution, however this is not useful in practice, because it is often hopeless to
make the calculations fast. But the first part of this method is important from the practical
point of view. Namely, given a congruence ax ≡ b (mod m) with d = (a,m) | b, we only have
to solve the equivalent congruence a′x ≡ b′ (mod m′), where a′ = a/d, b′ = b/d, m′ = m/d
and (a′,m′) = 1. The solution of this congruence will be a solution of the original one as
well.

Exercise 1.4.1. Solve the following congruences:

a) 68x ≡ 12 (mod 98), b) 59x ≡ 4 (mod 222).

Solution. a) Both sides of the congruence are divisible by 4, and (4, 98) = 2, so this
congruence is equivalent to

17x ≡ 3 (mod 49)

by Theorem 1.2.3. That is, we divided both sides by 4, but we had to divide the modulus by
the greatest common divisor of 4 and 98 as well. Now we multiply both sides by 3 to obtain

51x ≡ 9 (mod 49).

Observe that 51 ≡ 2 (mod 49) and hence 51x ≡ 2x (mod 49) holds. Also, 9 ≡ 58 (mod 49),
so from the previous congruence we infer

2x ≡ 58 (mod 49),

and dividing both sides by 2 we have

x ≡ 29 (mod 49).

There are two residue classes modulo 98 which contain numbers that are congruent to 29
modulo 49, namely the class of 29 and the class of 29+49 = 78. One checks easily that these
numbers satisfy the the original congruence (and then so does every number in their classes).
So the solutions are x ≡ 29 and x ≡ 78 (mod 98).

One may observe that all steps that we made gave an equivalent form of the former
congruence (and not just a consequence of the former ones). We emphasized this at the first
step, but then we multiplied and divided by a number which was co-prime to the modulus,
so the result was equivalent to the former congruence. Hence it is fact superfluous to check
our solutions, all of them must satisfy the original congruence. Also note that Theorem 1.4.1
gives us the number of solutions modulo 98 at the beginning, there are (98, 68) = 2 of them.
We could also refer to this, and then if we get only two possibilities for the solutions, then
both of them must be correct.

b) First we multiply the congruence by 4 to get

236x ≡ 16 (mod 222),

and since 236 ≡ 14 (mod 222), we can write this as

14x ≡ 16 (mod 222).

Dividing by 2 (and using Theorem 1.2.3) we get that

7x ≡ 8 (mod 111).
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Now we multiply this last congruence by 16:

112x ≡ 128 (mod 111),

and since 112 ≡ 1 and 128 ≡ 17 (mod 11), we conclude

x ≡ 17 (mod 111).

We get two classes modulo 222, one of them is represented by 17 while the other one by 128.
However, a computation shows that 59 · 128 ≡ 4 (mod 222) holds but 59 · 17 ≡ 115 (mod
222). How is this possible? Did we make a mistake? We can find the answer at the first step.
It was right in the sense that 236x ≡ 16 (mod 236) follows from the original congruence but
it is not equivalent to it. But this latter congruence is equivalent to 59x ≡ 4 (mod 111) by
Theorem 1.2.3, and the set of the solutions of this latter one is larger (because here 59x− 4
must be divisible only by 111 and not by 222). Also, Theorem 1.4.1 tells us that the number
of solutions modulo 222 is (59, 222) = 1, so if we somehow obtain more possibilities, then
only one of them can solve the original congruence. Note that this phenomenon occurs every
time when we make a non-equivalent transformation at some of the steps. �

1.4.2 Simultaneous Congruences

In many applications of number theory we are faced with problems where many congru-
ences must hold simultaneously. In the remaining part of the section we handle this problem.
We start by solving two congruences at the same time.

Theorem 1.4.2. The system of congruences x ≡ a1 (mod m1) and x ≡ a2 (mod m2) is
solvable if and only if (m1,m2) | a1− a2. If this condition holds, then solutions form a single
residue class modulo [m1,m2] (where [m1,m2] is the least common multiple of m1 and m2).

Proof. The system of congruences is solvable if and only if there is an x of the form m2y+a2
such that m2y + a2 ≡ a1 (mod m1). This is equivalent to the solvability of the congruence
m2y ≡ a1− a2 (mod m1). By Theorem 1.4.1 this is solvable if and only if (m1,m2) | a1− a2.

Now assume that this latter condition holds, then the congruence m2y ≡ a1 − a2 (mod
m1) has (m1,m2) different solutions modulo m1. If y0 is a solution, then the other solutions
modulo m1 are y0 + km1/d, where d = (m1,m2) and 0 ≤ k ≤ m1 − 1. This means that
the solutions form exactly 1 residue class modulo m1/d, so they are of the form y0 + km1/d,
where k ∈ Z. Then the solutions of the original system are of the form m2(y0+km1/d)+a2 =
m2y0 + km1m2/d + a2, that is, they form a residue class modulo m1m2/d = [m1,m2]. This
last equality is an easy consequence of Proposition 1.1.4.

Corollary 1.4.3 (Chinese remainder theorem). Assume that m1, . . . ,mk are pairwise co-
prime integers, then the system of congruences x ≡ a1 (mod m1), . . . , x ≡ ak (mod mk) is
solvable, and the solutions form a single residue class modulo m1 . . .mk.

Proof. We prove the statement by induction. For k = 2 this is a special case of the previous
theorem (because (m1,m2) = 1). Assume that k > 2 and the statement is true for k−1. Then
the system that consists of the first k − 1 congruences is equivalent to a single congruence
x ≡ a0 (mod m1 . . .mk−1). Together with x ≡ ak (mod mk) this forms a system which is
solvable by the previous theorem, and there is exactly 1 solution modulo m1 . . .mk. Here we
used that (m1 . . .mk−1,mk) = 1, this follows the same way like the analogous claim in the
proof of Theorem 1.3.5.

18



Exercise 1.4.2. Solve the following system of congruences:

x ≡ 11 (mod 42) and x ≡ 10 (mod 199).

Solution. Since (42, 199) = 1, we get from the previous theorem that there is one single
solution modulo 42 · 199 = 8358. By the first congruence we can write x = 42y + 11 for
some integer y. Substituting this in the second congruence we get 42y + 11 ≡ 10 (mod 199),
that is, 42y ≡ −1 ≡ 198 (mod 199). We can divide by 6 because (6, 199) = 1. We obtain
7y ≡ 33 ≡ 630 (mod 199). Finally, dividing this by 7 we get y ≡ 90 (mod 199). Since
we made the transformations of the congruences in every step so that the latter congruence
was equivalent to the former one, we get that y must be of the form 199z + 90. Then
x = 42y + 11 = 42(199z + 90) + 11 = 8358z + 3791, i.e. x ≡ 3791 (mod 8358) is the only
solution modulo 8358. �

1.5 Number-theoretic Algorithms

1.5.1 Efficiency of Algorithms

At the design of an algorithm one of the first questions which has to be dealt with is the
expected running time of an implementation. This question is not always easy to answer,
different running times are acceptable for different tasks. Sometimes every millisecond mat-
ters while in other cases the program can run for days. Of course the running time always
depends on the hardware, but what is more important that in general a program runs longer
for a bigger input. Here we regard the running time as a function of the size of the input.

As a first example we examine the following task which we call prime factorization: the
input is an integer N and we are looking for its prime factorization. There is a simple
method which gives the result: starting from 2 we try to divide N by every integer, and if
we find a divisor p, then we continue the procedure for the number N/p (and it is enough
to start searching from the number p). Note that every divisor that we find this way will
be a prime number. When N is composite, then N = ab for some 1 < a ≤ b, and hence
a2 ≤ ab = N . This means that N has a divisor which is at most

√
N , so if we do not find

a divisor until
√
N , then N is prime. This procedure clearly gives the expected result, it is

easy to perform it for small numbers even without a calculator, but computers can determine
the prime factorization this way for numbers with 10-20 digits. This may look satisfactory
for the first sight, but in practice we often work with much larger numbers. For example if N
has 81 digits in its decimal representation, then N ≥ 1080, so

√
N ≥ 1040. This means that

if N is a prime, then our program makes at least 1040 divisions before it terminates. The
fastest supercomputer today makes less than 1018 elementary floating point operations in one
second, which means than it would take more time for that computer to run this algorithm
than the age of the universe.

Of course this does not mean that it is impossible to give an algorithm for this task which
has an acceptable running time - but unfortunately no one was able to find one yet. The
situation changes a lot when we only want to decide if our number is prime. That is, the
output here is "prime" or "composite", and we may have no information about the divisors
in the latter case. We will learn about algorithms which solve this problem for numbers with
several hundred digits in a reasonable time.

Now we try to describe what an "efficient" algorithm is. There is a definition which is
more or less satisfactory both for theory and applications (leaving many questions unanswered
though): we consider an algorithm efficient if it has polynomial running time.
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Definition 1.5.1. For an algorithm A the size of its input is the number of bits that are
used to store the input. The algorithm A is said to be of polynomial (running) time (or
shortly: polynomial) if its running time (i.e. the number of steps of A) can be bounded from
above by a polynomial of the size of its input, that is, if there exist a positive real number
c ∈ R+ and a positive integer k ∈ N+ such that for every input of size n ≥ 1 the algorithm
A terminates after at most cnk steps.

One may observe that the definition above is not precise from a mathematical point of
view. First of all, it is not clear what we mean by a step of an algorithm (even the notion
of algorithm is undefined). Also, the memory of a computer is not a mathematical object,
so the size of an input is not accurately defined. For now, we work with this somewhat
intuitive definition and leave the precise work for a later course. We will give an algorithm
by a pseudocode or by a C programming code. We will also assume that executing a line
of our code means a series of bit operations made by the processor of the computer and the
number of these operations is called the number of steps then.

Let us return to our prime factorization algorithm. What can we say about its running
time? Of course there are cases when the algorithm finds the prime divisors fast, for example
when N is a power of 2. But a polynomial algorithm must run in polynomial time for every
input. The size of the input is the number of digits of N written in the numeral system of
base 2. This is exactly n = blog2Nc+1, and hence 2n−1 ≤ N holds. If N is a prime number,
then our algorithm makes b

√
Nc divisions. Now

b
√
Nc ≥ b(

√
2)n−1c ≥ (

√
2)n−1 − 1 ≥ 0.7 · 1.4n

if n is big enough (here we used that
√
2 > 1.4 and (

√
2)−1 > 0.7). That is, the number of

steps can be bounded from below by an exponential function of the input size when N is a
prime. Since there are infinitely many primes by Theorem 1.1.6, there are arbitrary large N ’s
for which this bound holds. As an exponential function grows faster than any polynomial
function, this algorithm cannot be polynomial.

This method will be applied many times when we show that an algorithm is not polyno-
mial. Namely, in many cases one can give a lower bound for the number of steps in terms
of the input size which grows faster than any polynomial. In these notes we will always use
exponential lower bounds for this purpose, but of course in general there are cases when other
type of functions are needed.

In this chapter the input of an algorithm is always a set of integers so the size of the
input is the sum of the number of digits of these numbers (represented in the binary system).
As we have already seen, for a single number N this is blog2Nc + 1. But since log2N =
log2 10 · log10N , the notion of polynomial algorithm does not change if we regard the size of
the input as the number of digits in the decimal representation. Moreover, this holds for a
numeral system of any base, though we usually work with the binary or the decimal system.
In short: an algorithm is polynomial in terms of the number of decimal digits if and only if
it is polynomial in the sense of Definition 1.5.1.

As a final remark of this introductory section we mention that although from a theoretical
point of view an algorithm with input size n and running time cnk is polynomial and hence
said to be "effective" for any c ∈ R+ and k ∈ N+, in practice the exponent is required to
be small (e.g 1 or 2), otherwise the algorithm becomes too slow for the applications even for
relatively small inputs.

Exercise 1.5.1. The following pseudocode gives an algorithm which computes the least com-
mon multiple of the numbers a, b > 0. Decide if it is polynomial or not.
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1 x← a
2 while b - x do
3 x← x+ a
4 end while
5 print "The least common multiple=",x

1.5.2 Basic Arithmetic Operations

For those who have some experience with programming languages it may seem evident
that the basic arithmetic operations are built into the languages or even into the hardwares.
Still we elaborate on this topic, since there are algorithms behind these built-in operations
as well, and what is more important, the number-theoretic algorithms of this chapter often
have inputs with thousands of digits, and usually there are no built-in functions that treat
such large numbers - we may have to write them.

By basic arithmetic operations we mean the addition, subtraction and multiplication of
two numbers, and the division of them with a remainder. Fortunately we know effective
algorithms for these tasks, namely the ones that we learned in elementary school, when we
performed these operations by hand.

First we take a closer look at the addition. Assume that the number of digits of a and
b are k and l, respectively where k ≥ l (we can assume this, because in the other case we
can interchange a and b), so the size of the input is k + l. For simplicity we may write b as
a k-digit number (writing k − l zeros at the beginning of the number). Then we can carry
out the addition in one loop. We go along the digits of the numbers from right to left and
do the same operations in the body of the loop, namely we add the actual digits and the
remainder carried over from the previous run of the body (this remainder is set to be zero
at the beginning), fill the actual digit in the result and overwrite the remainder. This sum
can be stored in a table (as the summands and the remainder are bounded), so the body of
the loop only makes at most c bitwise operations for some constant c. We repeat the loop
k times, so the procedure stops after at most ck ≤ cn steps. This means that the algorithm
is polynomial, moreover, it is very efficient even among the polynomial algorithms, because
the exponent of the input size in the bound is 1. The algorithms with this property are said
to be of linear running time.

The subtraction can be implemented similarly and we also get a linear running time.
After the previous example it is not hard to see that the multiplication can be accomplished
via k multiplications of a number by a one-digit number and k − 1 additions. This yields at
most c(k + l)2 = cn2 steps, so the multiplication is also polynomial (though this algorithm
is not linear but quadratic). Note that there are faster algorithms for this task. These
are more complicated and in practice one saves time only for large inputs, but in many
applications, especially in cryptography they are useful. Historically the first one of these
was Karatsuba’s algorithm which terminates after at most cnlog2 3 ≈ cn1.58 steps. There are
even (asymptotically) faster methods, see e.g. the Toom-Cook algorithm or the Schönhage-
Strassen algorithm. We just mention that the division can also be done in at most cn2 steps
by the usual algorithm that we use when calculating by hand. We leave the details to the
reader.
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1.5.3 Modular Exponentiation

It is easy to see that one cannot raise to powers in polynomial running time. Indeed, if
the exponent is (not fixed, but) also part of the input, then even the number of the digits
of the result is bigger than any polynomial of the input size, and hence the result cannot be
written down in polynomial time. For example, if a = 2 and b has k decimal digits, then the
number of digits of ab = 2b is greater than

log10 2
b = b · log10 2 ≥ 10k−1 · log10 2 > 0.03 · 10k.

That is, the number of digits of 2b is bounded from below by an exponential function of the
input size.

Although we cannot determine the power itself, for the RSA algorithm it is essential to
calculate the remainder of powers modulo m. This task is called modular exponentiation.
Here inputs are positive integers a, b,m ∈ N+, and the output is the remainder of ab modulo
m. Then at least the output size cannot be an exponential function of the input size, since
the output is smaller than m. As we cannot calculate ab and then divide it by m, we could
try to calculate first the remainder of a and then multiply it by a and calculate the remainder
of a2, and continuing this way, we could obtain the remainder of the numbers a3, a4, . . . , ab.
This requires the calculation of b remainders, which means that the number of steps is still
exponential.

Instead of this we apply repeated squaring , that is, we only determine the remainders of the
powers a2k for some k’s, and then multiply some of them. Before the precise description we
show an example. We calculate the remainder of 1353 modulo 97. In the following calculation
we always square the congruence in the previous row:

131 ≡ 13 (mod 97),
132 ≡ 169 ≡ 72 (mod 97),

134 = (132)2 ≡ 722 = 5184 ≡ 43 (mod 97),(1)
138 = (134)2 ≡ 432 = 1849 ≡ 6 (mod 97),
1316 = (138)2 ≡ 62 = 36 (mod 97),
1332 = (1316)2 ≡ 362 = 1296 ≡ 35 (mod 97).

It is not necessary to continue, since 1364 is already greater than 1353. Now we use the binary
representation of the exponent 53 = 1101012 = 32 + 16 + 4 + 1, and we write the original
power as a product: 1353 = 131 · 134 · 1316 · 1332. Multiplying the remainders of these factors
we get the remainder of the original power:

135 = 131 · 134 ≡ 13 · 43 = 559 ≡ 74 (mod 97),
1321 = 135 · 1316 ≡ 74 · 36 = 2664 ≡ 45 (mod 97),
1353 = 1321 · 1332 ≡ 45 · 35 = 1575 ≡ 23 (mod 97).

Note that we could do the last 3 steps in parallel with the determination of the remainders
of the powers in (1), and then it is not necessary to store these remainders.

Now we describe the algorithm for the general positive integers a, b,m. As a first step
we may calculate the remainder of a modulo m, so it is enough to give the algorithm for
integers 0 < a < m, 0 < b (if the remainder is 0, then so is the remainder of the power). We
store the remainder of a product modulo m, which is set to be 1 initially (the value of the
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empty product). We calculate the remainders of a2k for the exponents k = 0, 1, . . . , blog2 bc.
In parallel we multiply the stored product by the actual remainder modulo m if b has a digit
1 in the (k+1)th place (from the right) in its binary representation. We do not assume that
the binary representation of b is given, it will be determined along the way. We use that the
first digit of the binary form of a number b is its remainder modulo 2 and the other digits
form the binary representation of

⌊
b
2

⌋
. So the algorithm is the following:

MODULAR EXPONENTIATION
Input: the positive integers a, b and m with 0 < a < m, 0 < b

1 c← 1
2 while true do
3 if b is odd, then
4 c← c · a mod m
5 b←

⌊
b
2

⌋
6 if b = 0, then
7 print "ab mod m=",c; stop
8 a← a2 mod m
9 end while

Now we show that this algorithm gives us the right result. Let a0 and b0 denote the
numbers a and b, respectively, and we also set c0 = 1. For a positive integer k > 0 let ak,
bk and ck be the value of the variables a, b and c, respectively after the kth run of the body
of the loop. The remainder of ab modulo m will be denoted by r. We are going to show by
induction that abkk ck ≡ r (mod m) holds for every k ∈ N. This is obviously true for k = 0.
Now assume that k > 0 and that the congruence holds for k − 1. If bk−1 is even, then

r ≡ a
bk−1

k−1 ck−1 = (a2k−1)
bk−1

2 ck−1 ≡ abkk ck (mod m)

as bk = bk−1/2 and ck = ck−1 in this case, and ak ≡ a2k−1 (mod m) holds independently from
the parity of bk−1. On the other hand, if bk−1 is odd, then bk = (bk−1−1)/2 and ck = ak−1ck−1,
hence

r ≡ a
bk−1

k−1 ck−1 = (a2k−1)
bk−1−1

2 ak−1ck−1 ≡ abkk ck (mod m).

The algorithm stops in the kth loop when bk = 0, then bk−1 = 1, and the output is ck. But
we have just proved that r ≡ a

bk−1

k−1 ck−1 (mod m) holds, moreover, abk−1

k−1 ck−1 = ak−1ck−1 = ck,
so we are done.

Finally, we prove that the algorithm is polynomial. Let j, k and l denote the number of
digits of a, b and m, respectively. Then the size of the input is n = j + k + l. In the body of
the loop we do at most 2 multiplications with inputs less than m, 2 divisions with remainder
with inputs less than m2, and we calculate the half of a number which is at most b. So if
we use the algorithms of the previous section (in the following we will always do so), then it
follows that in the body of the loop we make at most c1(l2 + k) steps for some constant c1,
and it runs blog2 bc + 1 times. This latter number is the number of the digits in the binary
representation of b, hence it is at most c2k for some constant c2. Then the number of steps
if at most c1c2(l2 + k)k ≤ c1c2n

3. Hence this is indeed a polynomial algorithm, but it is
important to note that is is still too slow for the applications in cryptography. There are
faster variants of this method, but we do not give any details here.
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1.5.4 The Calculation of the Greatest Common Divisor

Proposition 1.1.4 gives us a formula for the greatest common divisor using the canonical
representation of the numbers. As we have seen earlier, is hard to determine the prime
factorization in general, so this formula is not applicable in practice. Luckily, there is a much
more effective method for this task: the so-called Euclidean algorithm. It is contained in the
book "Elements" which was written by the ancient Greek mathematician Euclid ca. 300 BC.

In this task the input consists of the numbers a andm, and we can assume that 0 < a < m
holds (the cases when a = 0 or a = m can be handled easily). To determine (a,m) we are
going to make repeated divisions with remainders: first we divide m by a, then in the next
step we divide a by the remainder taken from the first step, and in the ith step we divide the
remainder from the (i − 2)th step by the remainder from the (i − 1)th step. We stop when
we get 0 as a remainder, and the output will be the last non-zero remainder (or a if we stop
in the first step). First we show an example: we calculate the greatest common divisor of
567 and 1238.

(1) 1238 = 2 · 567 + 104,

(2) 567 = 5 · 104 + 47,

(3) 104 = 2 · 47 + 10,

(4) 47 = 4 · 10 + 7,

(5) 10 = 1 · 7 + 3,

(6) 7 = 2 · 3 + 1,

(7) 3 = 3 · 1 + 0.

The result is the last non-zero remainder, that is (567, 1238) = 1. Now we write the previous
steps with a general m and a (assuming that a - m):

(1) m = q1a+ r1 (0 < r1 < a),

(2) a = q2r1 + r2 (0 < r2 < r1),

(3) r1 = q3r2 + r3 (0 < r3 < r2),

(4) r2 = q4r3 + r4 (0 < r4 < r3),

...
...

...
(k) rk−2 = qkrk−1 + rk (0 < rk < rk−1),

(k + 1) rk−1 = qk+1rk + 0,

Here the output is rk (i.e. the last non-zero remainder).

Proposition 1.5.1. The output of the previous algorithm is (a,m).

Proof. The statement holds obviously when a | m, so we assume that this is not the case.
By the first step we have that m ≡ r1 (mod a), and hence (m, a) = (r1, a) by Proposition
1.3.1. The second step gives similarly that (a, r1) = (r2, r1). Continuing this way we get

(m, a) = (a, r1) = (r1, r2) = · · · = (rk−1, rk) = (rk, 0) = rk,

and this proves the claim.
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For the computation of ri we only have to store ri−1 and ri−1, which makes the imple-
mentation simpler. Here is a pseudocode for the algorithm:

EUCLIDEAN ALGORITHM
Input: the positive integers a and m with 0 < a < m

1 while true do
2 r ← m mod a
3 if r = 0, then
4 print "(a,m)=",a; stop
5 m← a; a← r
6 end while

In every step the remainder is always less than the number we divide by. That is, we have
a > r1 > r2 > . . . , hence the algorithm terminates after at most a loops. However, this does
not show that the number of steps is polynomial, since a can be exponential in terms of the
input size (note that this is not always the case, if a is small and m is big enough, then the
last statement does not hold, but the point is that there is such a case when the size of a is
comparable to the size of the input). But in fact the sequence of the remainders decreases
faster, namely the following statement hods:

Proposition 1.5.2. The Euclidean algorithm stops after a most 2dlog2 ae loops.

Proof. For making the notation simpler, we set r−1 = m and r0 = a. Then in every loop
we make a division with a remainder: ri−2 = tiri−1 + ri, where ri−2 > ri−1 > ri. Since
ri−2 > ri−1 holds, we must have ti ≥ 1 (because ti is a non-negative integer). It follows that
ri−2 ≥ ri−1 + ri > 2ri. If the algorithm does not stop after the 2kth step, then we have

a = r0 > 2r2 > 4r4 > · · · > 2kr2k ≥ 2k · 1,

i.e. k < log2 a. In other words, it is impossible that we do not stop after 2dlog2 ae steps.

After this preparation we are in the position to show that the Euclidean algorithm is
polynomial. If m has k digits and a has l digits, then the size of the input is n = k+ l. Since
a < m and hence every ri < m, we perform every division on numbers with at most k digits,
so we make at most c1k2 steps in the body of the loop. By the previous proposition we run
the loop at most 2dlog2 ae ≤ c2k times, so the total number of steps is at most ck3 ≤ cn3.

As a final remark we note that the least common multiple can also be determined in
polynomial time using the formula (a,m) · [a,m] = am.

1.5.5 Solution of Linear Congruences

By Theorem 1.4.1 we know that the linear congruence ax ≡ b (mod m) is solvable if and
only if d = (a,m) | b, and that the number of solutions modulo m is d. Hence we can use
the Euclidean algorithm to decide if a congruence is solvable. We also determined all the
solutions using an arbitrary one, so it remains to find the first solution. By Theorem 1.2.3
we only have to solve the equivalent linear congruence a′x ≡ b′ (mod m′), where a′ = a/d,
b′ = b/d and m′ = m/d, and here a′ and m′ are co-prime. So in this section we are going to
assume that (a,m) = 1.
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It turns out that a modification of the Euclidean algorithm can be used for solving a
linear congruence. We illustrate this on an example, we are going to solve the congruence
567x ≡ 123 (mod 1238). First we write down the congruence 1238x ≡ 0 (mod 1238) which
is obviously true for all integers and will be denoted by (A). After that we write down the
original congruence 567x ≡ 123 (mod 1238), this will be denoted by (I) (expressing that this
is the input). Now we repeat the steps of the Euclidean algorithm, we divide 1238 by 567
with a remainder, and subtract from (A) the congruence (I) multiplied by the quotient. This
way we get a linear congruence, where the coefficient of x is the remainder. We calculate the
smallest remainder modulo 1238 on the right hand side to keep the numbers bounded during
the process. Continuing this way, after the 6th step the coefficient of x will be the greatest
common divisor, namely 1.

(A) 1238x ≡ 0 (mod 1238)
(I) 567x ≡ 123 (mod 1238)

(A)− 2 · (I) : (1) 104x ≡ −246 ≡ 992 (mod 1238) [1238 = 2 · 567 + 104]

(I)− 5 · (1) : (2) 47x ≡ −4837 ≡ 115 (mod 1238) [567 = 5 · 104 + 47]

(1)− 2 · (2) : (3) 10x ≡ 762 (mod 1238) [104 = 2 · 47 + 10]

(2)− 4 · (3) : (4) 7x ≡ −2933 ≡ 781 (mod 1238) [47 = 4 · 10 + 7]

(3)− 1 · (4) : (5) 3x ≡ −19 ≡ 1219 (mod 1238) [10 = 1 · 7 + 3]

(4)− 2 · (5) : (6) x ≡ −1657 ≡ 819 (mod 1238) [7 = 2 · 3 + 1]

[3 = 3 · 1 + 0]

Now we repeat this for the general congruence ax ≡ b (mod m), where (a,m) = 1, and add
the congruence mx ≡ 0 (mod m) in the beginning (which is true for every m 6= 0). It is
clear, that in this case the last non-zero remainder in the Euclidean algorithm is rk = 1 for
some k. Observe, that because of this we get a congruence of the form x ≡ ck (mod m) in
the kth step, which gives us the solution of the original linear congruence.

(A) mx ≡ 0 (mod m)
(I) ax ≡ b (mod m)

(A)− q1 · (I) : (1) r1x ≡ −q1b ≡ c1 (mod m) [m = q1a+ r1]

(I)− q2 · (1) : (2) r2x ≡ b− q2c1 ≡ c2 (mod m) [a = q2r1 + r2]

(1)− q3 · (2) : (3) r3x ≡ c1 − q3c2 ≡ c3 (mod m) [r1 = q3r2 + r3]

(2)− q4 · (3) : (4) r4x ≡ c2 − q4c3 ≡ c4 (mod m) [r2 = q4r3 + r4]

...
...

...
(k) x ≡ ck−2 − qkck−1 ≡ ck (mod m) [rk−2 = qkrk−1 + rk = qkrk−1 + 1]

[rk−1 = qk+1rk + 0]

In every step we get a congruence which follows from the previous ones and hence from
ax ≡ b (mod m). Thus, if x0 is a solution of this congruence, then x0 ≡ ck (mod m) must
hold, i.e. we get the modulo m unique solution. Note though that the congruences that we
obtain during the process are not necessarily equivalent to the original one. For example the
congruence 104x ≡ 992 (mod 1238) in the example above has 2 different solutions modulo
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1238 (while the original congruence has only 1). Also, in the ith step we compute the least
positive remainder modulo m (this is denoted by ci) keeping the occurring numbers bounded
by m.

By Proposition 1.5.2 we get to the last congruence after at most 2dlog2 ae divisions. Note
that after determining the remainders of a and b modulo m we can reach 0 < a < m and
0 < b < m, and then every further number that occurs during the process is bounded by cm2

for some constant c. Using all this it is not hard to see that the algorithm is polynomial, the
details are left to the reader.

We give this algorithm also by a pseudocode:

EUCLIDEAN ALGORITHM FOR THE SOLUTION OF A CONGRUENCE
Task: solution of the congruence ax ≡ b (mod m) with (a,m) = 1

Input: the positive integers a, b and m with 0 < a, b < m

1 M ← m; c← 0; d← b
2 while true do
3 q ←

⌊
m
a

⌋
; r ← m mod a

4 if r = 0, then
5 print "The solution is x ≡", d (mod M); stop
6 t← c− qd mod M
7 m← a; a← r; c← d; d← t
8 end while

The variables m and a store the previous remainders (and initially m and a, respectively),
while c and d store the right hand sides of the previous two congruences (which are 0 and
b at the beginning, respectively). We also store the value of m in the variable M , because
we need it in every loop (in line 5 and 6). Finally, we make the code readable by storing the
quotient in the variable q since we need it in line 6 (though this is not necessary).

1.5.6 Primality tests

We have mentioned in Section 1.5.1 that even though we do not know an efficient algorithm
which determines the prime factorization of a number, we can still decide if a number is prime
or not. It is maybe surprising that this creates a situation which makes the application of
some cryptographic techniques possible, as we will see in the next section.

The Fermat test

One of the simplest primality tests is based on the Euler-Fermat theorem (Theorem 1.3.7):
if m is prime and 1 ≤ a ≤ m − 1 is an integer, then ϕ(m) = m − 1 and am−1 ≡ 1 (mod
m). This means that if we are able to find an a such that am−1 6≡ 1 (mod m), then m is not
prime. The so-called Fermat test works the following way: it generates numbers between 1
and m − 1 randomly and computes the remainder of am−1 modulo m. If this remainder is
not 1, then either (a,m) > 1 holds, or (a,m) = 1 but ϕ(m) 6= m− 1. No matter which case
applies, m cannot be prime. Note that we can calculate (a,m) fast, so if we are lucky enough
to have the former case, even a divisor of m can be determined.

Of course it can happen that we pick an a such that am−1 ≡ 1 (mod m) even for a
composite modulus (and then (a,m) = 1). If m is composite, then such an a is called a
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Fermat liar . On the other hand, if (a,m) = 1 and am−1 6≡ 1 (mod m), then a is called a
Fermat witness for the compositeness of m. So if a is a liar, then we may repeat the test
several times and hope for finding a witness. It is still not obvious that we find a witness with
high probability, but the following theorem assures this if there exists at least one witness:

Theorem 1.5.3. If m ∈ N+ is composite and it has a Fermat witness (i.e. a number a
between 1 and m which is co-prime to m and for which am−1 6≡ 1 (mod m) holds), then at
least half of the numbers co-prime to m between 1 and m are witnesses.

Proof. Let a be a witness of m and assume that c1, . . . , ck are all the liars of m between 1
and m (that is, (ci,m) = 1 and cm−1i ≡ 1 (mod m) for every i). Let ai be the least positive
number for which ai ≡ aci (mod m) holds. We show that a1, . . . , ak are pairwise different
witnesses of m, and hence the number of witnesses between 1 and m is at least the number
of liars in this interval. Since all the ci’s are co-primes to m, the statement follows.

First observe that since (a,m) = 1 and (ci,m) = 1 for every 1 ≤ i ≤ k, it follows from
the fundamental theorem of arithmetic that (aci,m) = 1. Then aci ≡ ai (mod m) and
Proposition 1.3.1 implies that (ai,m) = (aci,m) = 1, that is, every ai is co-prime to m.
Moreover, if we raise the congruence ai ≡ aci (mod m) to the (m− 1)th power, then we get

am−1i ≡ (aci)
m−1 = am−1cm−1i ≡ am−1 6≡ 1 (mod m),

since ci is a liar and a is a witness. That is, we have proved that ai is a witness for every
1 ≤ i ≤ k.

It is left to show that the numbers a1, . . . , ak are pairwise different. So assume that
ai = aj for some 1 ≤ i, j ≤ k, and then aci ≡ acj (mod m). Dividing both sides by a we
get that ci ≡ cj (mod m), where the modulus does not change because (a,m) = 1. Since
1 ≤ ci, cj ≤ m holds, we must have ci = cj. But the ci’s are pairwise different, so i = j
follows.

Assume that we give the output "m is prime" if after 100 tests we do not find a witness.
If m is composite and it has a witness, then we go wrong with probability at most 2−100.
Although this number is positive, it is so small, that it is negligible in practice. But there is
a bigger problem: there are numbers which do not have any witnesses.

Definition 1.5.2. The positive integer m ∈ N+ is called a Carmichael number if it is
composite and for every integer a ∈ N+ with 1 ≤ a ≤ m and (a,m) = 1 the congruence
am−1 ≡ 1 (mod m) holds.

If we run the test for a Carmichael number 100 times, then we get that m is prime with
very high probability. We get the output "m is composite" only if we pick a proper divisor of
m at least once out of 100 tries, but this is very unlikely. And even though the Carmichael
numbers are rare (the smallest one is 561, the next one is 1105, and there are only 43 below
one million), unfortunately there are infinitely many of them (see [2]).

There are modifications of this method that solve this problem, among them the most
popular is the so-called Miller-Rabin test (see below). We also note that there exists a pri-
mality test with polynomial running time which does not use randomness (it is deterministic,
i.e. it always gives the right result). This was shown in [1] by Agrawal, Kayal and Saxena in
2002. However, their method is too slow for applications and hence it is not used in practice.
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The Miller-Rabin test

The Miller-Rabin test is similar to the Fermat test in structure, only a few modifications
are needed. The criterion am−1 ≡ 1 (mod m) will be substituted by a stricter one. We will
use the following simple observation:

Proposition 1.5.4. Assume that m is prime, then x2 ≡ 1 (mod m) holds if and only if
x ≡ ±1 (mod m).

Proof. If x ≡ ±1 (mod m), then squaring this congruence we have x2 ≡ 1 (mod m), and this
is true for every m.

Now assume that m is prime and x2 ≡ 1 (mod m) holds, i.e. m | x2− 1 = (x− 1)(x+1).
Then by the fundamental theorem of arithmetic we must have m | x− 1 or m | x+ 1, which
is equivalent to x ≡ ±1 (mod m).

In the following we may assume that m > 2 is odd (and then m − 1 is even), otherwise
m is composite. In the test we choose an integer a in the interval [1,m] which is co-prime
to m, and check if am−1 ≡ 1 (mod m) holds. If not, then m cannot be prime. But unlike in
the Fermat test, now we do not say that a is a liar right away in the other case. Instead, we
check if the congruence a

m−1
2 ≡ ±1 (mod m) holds. If this is not true, then by the previous

proposition we get that m is composite. Now if m−1
2

is odd or if a
m−1

2 ≡ −1 (mod m), then
we choose another a and start the test from the beginning. However, if m−1

2
is even and

a
m−1

2 ≡ 1 (mod m), then the previous proposition gives that a
m−1

4 ≡ ±1 (mod m) must
also hold. If not, then we get that m is composite. Otherwise we say that a is a liar if the
exponent m−1

4
is odd or the remainder is −1. From here we continue the same way with the

exponents m−1
8
, m−1

16
, . . . until we get an odd exponent or a remainder different from 1. If this

remainder is also different from −1, then m is composite, otherwise we choose another a.
An integer a co-prime to m is called a Miller-Rabin witness if choosing a in the test above

we conclude that m is composite. Observe that if a is a Fermat witness, then of course it
is automatically a Miller-Rabin witness, since the first step of the test is the same. Then it
follows immediately from Theorem 1.5.3 that if m is composite and it is not a Carmichael
number, then at least the half of the numbers co-prime to m in the interval [1,m] are Miller-
Rabin witnesses. The advantage of this method is that there are no Carmichael number-type
exceptions here, moreover, we can be sure that there are even more witnesses than in the
case of the Fermat test. Namely, the following is true:

Theorem 1.5.5. If m > 4 is an integer, then at least three-quarters of the integers in the
interval [1,m− 1] are either Miller-Rabin witnesses or not co-prime to m.

The proof of this theorem can be found for example in [9]. We also note that it is
conjectured that the least witness is relatively small. More precisely, if the so-called Extended
Riemann Hypothesis is true, then we can find an integer 1 ≤ a ≤ 2(lnm)2 so that either
(a,m) > 1 holds or a is a Miller-Rabin witness of m. If this was true, then it would also give
a deterministic polynomial algorithm for this task, because it would be enough to run the
test for the least 2(lnm)2 positive integers. For the details see [3].

Generation of primes

Finally, we say a few words about the generation of prime numbers. This is important
because big primes play a crucial role in public key cryptography, as we will see in the
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next section. A simple method for this task is that we generate numbers randomly and use a
primality test to check if they are primes. It can be shown that there are enough primes among
the integers so that this algorithm finds a prime number within a reasonable time. However,
this requires advanced techniques, but some basic theorems are proved about the number of
primes for example in [5]. This book is recommended for the interested reader because it uses
only limited tools and contains the "elementary" proof of the following theorem (elementary
means that it does not use the theory of analytic functions, but the argument is involved
nonetheless). For a positive number x let π(x) denote the number of positive primes that are
at most x. For example π(5) = 3, π(10) = 4.

Theorem 1.5.6 (Prime number theorem).

lim
x→∞

π(x)
x

lnx

= 1.

Roughly speaking: π(n) ≈ n
lnn

, i.e. among the positive integers below n every (lnn)th
number is prime. This statement is very far from being precise, but we do not give further
details here.

1.5.7 Public Key Cryptography

The method that is described in this section is based on the following: if p and q are big
primes (e.g. with 300 digits) and their product N = pq is public (but p and q are not), then
no one is able to calculate the factors p and q within a reasonable time.

One of the main tasks of cryptography is to give methods that assure secure communica-
tion. Security means basically the following: a message sent between some participants must
be readable for them but should be left hidden for anyone else who is able to read (some part
of) the information that goes through the channel which connects the participants. In other
words, the sender has to encrypt the message so that only the receiver can decrypt it. En-
crypting and decrypting a message means nothing else than the application of two functions
that are inverses to each other: the message x is encrypted with the function E giving the
data E(x) which is decrypted by the inverse function D of E, that is, D(E(x)) = x. Our
goal is to find the appropriate functions E and D.

In a version of this method the functions E and D are kept secret, only the participants
know them. A drawback of this that in this case they have to share these functions with
each other, and many times this is inconvenient if not impossible. Public key cryptography
solves this problem the following way: the function E is made public while the function D is
kept secret. If for example A wants to send a message to B, then A can encrypt it with the
encryption function EB that is made public by B, while B decrypts it with the function DB

(which is known only for B). On the other hand, if B wants to answer this message, then
the function EA is used (the one that is made public by A), and A decrypts the answer with
the functions DA (that is kept secret by A).

How is it possible that the function E is known, but one cannot determine its inverse
D = E−1? The situation is similar to the following example: given a text in German and
an English-German dictionary. Theoretically it is possible to translate the text with the
help of this dictionary, but it is quite tedious work the find all the German words, simply
because it is ordered alphabetically by the letters of the English words. Returning to the
functions: the domain of E (and D) will be a set of integers {0, 1, . . . , N − 1} for some N .
The number N can be chosen so big (e.g. bigger than 10600), that it takes billions of years
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even for supercomputers to go through its elements and calculate all the function values. So
the formula for E can be made public as long as the values of E and D can be calculated
easily while it is practically impossible to determine a formula for the inverse function D
from the public formula of E.

It is not obvious to give such functions that work. We describe an example below: the
RSA algorithm, which was invented by Rivest, Shamir and Adleman. For this we need the
following

Proposition 1.5.7. If p and q are distinct positive primes and N = pq then for every x ∈ Z
integer and k ∈ N+ positive integer we have xkϕ(N)+1 ≡ x (mod N).

Proof. This follows easily from the Euler-Fermat theorem (Theorem 1.3.7) in the case when
x is co-prime to N , since then we have xϕ(N) ≡ 1 (mod N), so raising this congruence to the
kth power and multiplying by x we get the statement.

If (x,N) 6= 1, then p | x or q | x. If both divisions hold, then N | x and hence xkϕ(N)+1 ≡
0 ≡ x (mod N). So assume for example that p - x and q | x (in the other case the
proof is practically the same). Then (p, x) = 1, since p is a prime, and by the Euler-
Fermat theorem we get that xϕ(p) = xp−1 ≡ 1 (mod p). We raise this congruence to the
k(q−1)th power and multiply both sides by x. Using that ϕ(N) = (p−1)(q−1) we get that
xkϕ(N)+1 = xk(p−1)(q−1)+1 ≡ x (mod p). But since q | x, this congruence holds modulo q as
well. Finally, as p | xkϕ(N)+1−x and q | xkϕ(N)+1−x hold, we obtain that pq = N | xkϕ(N)+1−x
because p and q are distinct primes.

As the first step of the RSA algorithm we choose two primes p and q with (for example)
300 digits. We set N = pq and choose also a c with (c, ϕ(N)) = 1. Then the encryption
function will be the following: E(x) = xc mod N . The values of E can easily be calculated
with repeated squaring. Moreover, it turns out that the inverse D of E is of the same form:
D(y) = yd mod N for some integer d. As D is the inverse of E, we must have

x = D(E(x)) ≡ E(x)d ≡ xcd (mod N)

for every 0 ≤ x ≤ N − 1. By the previous proposition it is enough to find a d for which
cd = kϕ(N) + 1 for some positive integer k. In other words, we have to solve the congruence
cx ≡ 1 (mod ϕ(N)). This congruence is solvable since (c, ϕ(N)) = 1 by the choice of c. The
solution can be calculated efficiently with the methods described in the previous sections.

Observe that we need the value of ϕ(N) = (p − 1)(q − 1) to determine the value of d,
and for this we need the prime factorization of N . Hence if we keep p, q, d and ϕ(N) secret,
then we can make c and N public, and one cannot determine the function D, at least by the
method described above.

It could happen that someone determines the function D in some other form (based on
c and N only), or that someone finds an efficient algorithm for the factorization of integers.
However, this seems very unlikely, and the experience of decades shows that this method
is safe. But many problems must be handled by the implementation of the algorithm. For
example, the system can be attacked by analyzing the time of the encryption and decryption
or by measuring the energy consumption of the computer. Also, the number N and c must
be chosen carefully. Just to mention one difficulty: there are such numbers that can be
factorized easier than a general N . But we do not address these questions, these topics are
beyond the scope of these notes.
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2 Linear Algebra
Linear algebra is undoubtedly one of the most important branches of mathematics. It is

hard to give an exhausting list of its applications inside and outside mathematics. It provides
a basic tool also in computer science, and from the countless problems whose solutions require
the usage of this theory we address the solution of systems of equations in this chapter to
give an introduction to this topic. We also get a glimpse of the connection of linear algebra
with geometry through linear transformations. Finally, we are going to introduce the notions
of eigenvectors and eigenvalues. All these play a crucial role for example in image processing
and visualization, just to mention two evident examples.

We emphasize that in these notes we introduce only one basic example of a more gen-
eral algebraic structure, although evidently the most important one. But while for many
applications this suffices, there are plenty of them which require deeper understanding of the
theory. There are countless books and notes in this topic, and many of them build upon some
knowledge in abstract algebra. Instead of that we give here a more elementary introduction
and recommend some other books for the interested reader. It is important to note that
an abstract notion can be understood much easier via examples which makes our approach
advantageous. For further reading we recommend the book [7] which still concentrates on
important special cases of the general theory. For an introduction to abstract algebra we
recommend for example the book [4].

2.1 Analytic Geometry in the Space

Analytic geometry in the plane can be familiar from high school. It uses algebraic tools
to handle geometric objects: points, lines and different curves. This introductory section
extends this theory to the space, where we use triples instead of pairs to describe the points.
We restrict ourselves to the description of lines and planes, one can read more in [7] about
methods which allow us to handle other surfaces.

2.1.1 The Coordinate System

On the plane one fixes two orthogonal lines, a positive direction and a unit on each of the
lines to obtain a unique representation of every point. One can extend this method to the
space where we fix three pairwise orthogonal lines - the axes x, y and z - which intersect in
one point and determine the point of origin O this way. We also fix a point different from O
on each axis and these points determine three segments whose other endpoint is the origin
and also three directions from the origin towards the selected points. For simplicity we may
choose a unit segment so that length and distance can be measured in the space, and in this
section we assume that each of the three segments above has length 1. In other words, we fix
three unit vectors on the axes which together with O form a coordinate system. Note that
we can still choose their directions on the lines. Then every point P of the space determines
uniquely a (maybe degenerate) rectangular cuboid whose edges are parallel to the three unit
vectors and the section OP is its diagonal (by a degenerate cuboid we mean that its vertices
are co-planar). As the directed units are fixed on each of the three axes, we can measure the
signed length of the edges of the cuboid and obtain the coordinate triple (x0, y0, z0) for the
point P (so that x0, y0 and z0 are the signed length of the edges parallel to the lines x, y
and z, respectively). Note that this is a one-to-one correspondence between the points of the
space and the ordered triples of real numbers.
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The coordinate system can be oriented in two different ways, right or left. It is said to
be right-oriented if once the right thumb points along the z axis in the positive direction,
then the right index finger points along the x axis and the middle finger points along the
y axis, both of them in the positive direction. Otherwise the coordinate system is called
left-oriented . Note that we usually use right-oriented systems.

We used the word "vector" when we fixed the units on the axes. Now we give its precise
meaning: similarly as on the plane, by a space vector we mean a directed line segment in the
space so that any two segments with the same length and direction are considered to be the
same vector. If the initial point and the endpoint of the segment coincide, then we get the
zero vector whose direction is not determined (but its length is 0). If a coordinate system
is fixed, then any vector can be given by its coordinates, that is, by the coordinates of the
point which is the endpoint of the representative whose initial point is the origin. Such a
representative is called a position vector . Vectors are usually denoted by underlined lower
case letters or by the triples of their coordinates, e.g. v = (7, 2, 3) denotes a space vector. We
also use another notation: if a vector (or more precisely a representative of it) points from A

to B where A and B are some points of the space, then this vector can be denoted by
−→
AB.

We have seen that once a coordinate system is chosen, the set of space vectors can be
identified with the ordered triples of real numbers. By ordered we mean that the order of
numbers is fixed (but they are not necessarily ordered by magnitude). The set of triples is
denoted by R3. Here we mention that in analytic geometry we usually write the triples in
a row (at least we do so in this section), while in later sections the elements of R3 will be
written in a column. Hopefully this will not be confusing in the following.

Vector operations

We can define the addition, subtraction and scalar multiplication of vectors like one does in
the case of plane vectors. If u and v are space vectors, then u+v is defined the following way:
we first take an arbitrary representative of u and then the representative of v whose initial
point and the endpoint of the representative of u agree (we also say somewhat inaccurately
that we translate the vector v to the endpoint of u). Then the sum is determined by the
representative which points from the initial point of (the representative of) u to the endpoint
of (the representative of) v.

Also, if λ ∈ R is a non-zero real number and v is a non-zero space vector, then we define
λv the following way: we multiply the length of v by |λ| and the direction of the product will
be the same if λ > 0 and the opposite if λ < 0. If λ = 0 or v = 0 is the zero vector, then
the result is the zero-vector. In this situation λ is called a scalar and this operation is called
scalar multiplication. Finally, the difference of u and v is defined by u− v := u+ (−1) · v.

Like in the case of the plane, the basic properties of these operations remain true. The
proofs of the following claims are basically the same as the ones of the analogous statements
for plane vectors.

Theorem 2.1.1. If u, v and w are space vectors, then

(i) (u+ v) + w = u+ (v + w) (the addition is associative),

(ii) u+ v = v + u (the addition is commutative),

(iii) u+ 0 = u,

(iv) there is an additive inverse for any vector, namely u+ (−1) · u = 0 holds.
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Moreover, if λ, µ ∈ R, then

(v) λ(u+ v) = λu+ λv,

(vi) (λ+ µ)u = λu+ µu,

(vii) λ(µu) = (λµ)u,

(viii) 1u = u.

If we fix a coordinate system, then we can easily connect these operations with the
coordinates of the vectors. As before, we omit the proof of the following theorem and refer
to the case of the plane instead.

Theorem 2.1.2. If u = (u1, u2, u3) ∈ R3 and v = (v1, v2, v3) ∈ R3 are space vectors and
λ ∈ R is a scalar, then

(i) u+ v = (u1 + v1, u2 + v2, u3 + v3),

(ii) u− v = (u1 − v1, u2 − v2, u3 − v3),

(iii) λu = (λu1, λu2, λu3).

For the next definition we need to introduce a notation: the length of the vector u is
denoted by |u|. If u and v are non-zero vectors, then their scalar product is defined by
u ·v = |u| · |v| ·cosϕ, where ϕ is the angle of the vectors (i.e. the angle of the lines determined
by some representatives of the vectors). If any one of the vectors are zero, then the scalar
product is defined to be zero.

The scalar product can be used to decide if two non-zero vectors are orthogonal. Namely,
if u and v are non-zero, then u · v = |u| · |v| · cosϕ = 0 holds if and only if cosϕ = 0,
i.e. ϕ = 90◦. What makes this latter observation useful is that the scalar product can be
expressed easily with the help of the coordinates:

Theorem 2.1.3. If u = (u1, u2, u3) ∈ R3 and v = (v1, v2, v3) ∈ R3 are space vectors, then
u · v = u1v1 + u2v2 + u3v3.

Again, the proof of this theorem is basically the same as the analogous one about plane
vectors.

2.1.2 Equations of a Line

A line on the plane is determined by one of its points and a vector which is parallel or
orthogonal (perpendicular) to it. In the space the situation is different: if we fix a point of
a line and a vector which is orthogonal to it, then this does not determine the line uniquely.
Indeed, if we rotate the line around the axis which is parallel to the vector and contains the
point, then we obtain other lines with the same property, and the union of these lines is a
plane which is orthogonal to the vector.

But the other option still works, so assume that l is a line of the space, then we fix a point
P0(x0, y0, z0) ∈ l and a non-zero vector v = (a, b, c) which is parallel to l. We are going to
construct all the points of the line. Assume that P (x, y, z) is an arbitrary point of the space,
then it lies on l if and only if the vector

−−→
P0P is parallel to v or it is the zero vector. To avoid

many cases we say that the zero vector is parallel to every vector. If p
0
is the vector that
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points from the origin to P0, and similarly, p is the vector that points from the origin to P ,
then

−−→
P0P = p − p

0
. Now two vectors are parallel to each other if and only if they have the

same or the opposite direction, or if one of them is zero. We obtain that P ∈ l holds if and
only if p− p

0
= λv for some λ ∈ R, or equivalently, p = p

0
+ λv. By Theorem 2.1.2 we have

that p
0
+ λv = (x0 + λa, y0 + λb, z0 + λc), hence our condition is equivalent to

x = x0 + λa,

y = y0 + λb,(2)
z = z0 + λc,

where λ ∈ R is an appropriate real number. These equations are called the parametric
equations of the line l. When the parameter λ runs through the set of real numbers, the
triples (x, y, z) run through the points of l.

While these equations give exactly the points of l, they are inconvenient when we want
to decide if a given point P (x, y, z) is on l, because we first have to compute the parameters
for which the first, second and third equation of (2) are true. If the same λ suits for all of
them, that means that the point P is on l. However, this argument gives another description,
which is often better for our goals. We summarize this in the following

Theorem 2.1.4. Assume that l is a line in the space parallel to the vector v = (a, b, c), and
the point P0(x0, y0, z0) lies on l. Then an arbitrary point P (x, y, z) lies on l if and only if

a) a 6= 0, b 6= 0 and c 6= 0, and

x− x0
a

=
y − y0
b

=
z − z0
c

, or

b) a 6= 0, b 6= 0 and c = 0, and

x− x0
a

=
y − y0
b

, and z = z0,

or an analogous condition holds if exactly one of a, b and c is 0, or

c) a = b = 0 and c 6= 0, and
x = x0, y = y0,

or an analogous condition holds if exactly one of a, b and c is non-zero.

Proof. We already have that P ∈ l holds if and only if the equations in (2) hold simultaneously
for some λ ∈ R. If a 6= 0, b 6= 0 and c 6= 0, then we can express λ from the equations and we
get that this system of equations is solvable if and only if the condition in a) holds.

If a 6= 0 and b 6= 0 but c = 0, then the third equation in (2) gives z = z0 while expressing
λ from the first two equations we get the same value if and only if the system is solvable.
This gives the condition in b). The cases where exactly one of a, b and c is zero can be
handled the same way.

Finally, if a = b = 0 and c 6= 0, then the first first two equations of (2) give x = x0 and
y = y0, while the third equation holds automatically for λ = z−z0

c
and hence it does not give

further restrictions, so we get the condition in c). The cases where exactly one of a, b and c
is non-zero can be handled the same way.
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2.1.3 Equation of a Plane

We have already seen that a point and a vector determine the plane that contains the
point and orthogonal to the vector. Now we describe this plane, i.e. we give a condition
which can be used to decide if a point is contained in the plane. Given a plane S, a vector
n 6= 0 is called a normal vector of S if it is orthogonal to it. Note that a normal vector of a
plane is not unique, every non-zero scalar multiple of it is also a normal vector of the same
plane, moreover, we obtain all normal vectors of the plane this way.

Theorem 2.1.5. Let S be a plane which contains the point P0(x0, y0, z0) and assume that
n = (a, b, c), n 6= 0 is a normal vector of S. Then an arbitrary point P (x, y, z) lies on S if
and only if ax+ by + cz = ax0 + by0 + cz0 holds.

Proof. Let p = (x, y, z) and p
0
= (x0, y0, z0) be the vectors that point from the origin to P

and P0, respectively. Now P ∈ S is and only if
−−→
P0P = p − p

0
= (x − x0, y − y0, z − z0) is

parallel to S and hence orthogonal to n. That is, we have the equivalent condition

0 = (p− p
0
) · n = a(x− x0) + b(y − y0) + c(z − z0)

by Theorem 2.1.3. Reordering this equation we get the statement of the theorem.

It follows also that every equation of the form ax+ by+ cz = d determines a plane, where
a, b, c, d ∈ R are real numbers and at least one of a, b and c is non-zero. Indeed, assume for
example that a 6= 0, the other cases are similar. Now the plane which contains the point
(d/a, 0, 0) and orthogonal to the vector (a, b, c) is given by the equation above.

2.2 The Space Rn

In this section we generalize the notion of the plane and the space. While it is hard two
visualize more than three pairwise orthogonal lines, the identification of the points with the
set of coordinate tuples provides an appropriate starting point for this work.

2.2.1 The Notion of Rn

In the case of the plane and the space we used pairs and triples of real numbers to describe
the points. In the following step we forget about the geometric background (at least for a
while) and proceed in the following way: we are going to work with n-tuples for a general
positive integer n. The points represented vectors before, and accordingly we call the n-tuples
vectors and use the analogues of the formulae in Theorem 2.1.2 to define operations on them:

Definition 2.2.1. Let n ≥ 1 be a positive integer, then the set of n-tuples (i.e. sequences
of length n) of real numbers is denoted by Rn. We write the elements of Rn in columns, and
define the addition operation and the scalar multiplication for a scalar λ ∈ R by the following
formulae:

x1
x2
...

xn

+


y1
y2
...

yn

 =


x1 + y1
x2 + y2

...
xn + yn

 , and λ ·


x1
x2
...

xn

 =


λx1
λx2

...
λxn

 .

The elements of Rn are called vectors , and they are often denoted by underlined lower case
letters. The numbers that form the n-tuples are called the coordinates of the vectors.
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From now on by a vector we do not mean a directed segment, they are simply columns
of numbers. The terms "plane vector" and "space vector" are used to refer to the geometric
objects.

As before, we define the difference of the vectors u and v by u − v := u + (−1)v, which
means coordinate-wise difference. The vector with only zero coordinates are called the zero
vector and it is often denoted by 0. The statement of the following theorem is basically the
same as the statement of Theorem 2.1.1:

Theorem 2.2.1. If u, v, w ∈ Rn and λ, µ ∈ R, then
(i) (u+ v) + w = u+ (v + w) (the addition is associative),

(ii) u+ v = v + u (the addition is commutative),

(iii) u+ 0 = u,

(iv) there is an additive inverse for any vector, namely u+ (−1) · u = 0 holds.

(v) λ(u+ v) = λu+ λv,

(vi) (λ+ µ)u = λu+ µu,

(vii) λ(µu) = (λµ)u,

(viii) 1u = u.

Proof. All these properties follow easily from the properties of the addition and multiplication
of real numbers. We prove (v) as an example and leave the proof of the other statements to
the reader. So assume that λ ∈ R, u, v ∈ Rn,

u =


x1
x2
...

xn

 and v =


y1
y2
...

yn

 .

Then

λ(u+ v) = λ ·




x1
x2
...

xn

+


y1
y2
...

yn


 = λ ·


x1 + y1
x2 + y2

...
xn + yn



=


λ(x1 + y1)
λ(x2 + y2)

...
λ(xn + yn)

 =


λx1 + λy1
λx2 + λy2

...
λxn + λyn



=


λx1
λx2

...
λxn

+


λy1
λy2

...
λyn

 = λ ·


x1
x2
...

xn

+ λ ·


y1
y2
...

yn

 = λu+ λv.
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Remark. Observe that the previous theorem and Theorem 2.1.1 contain the same statement
about completely different objects. That is, here we talk about column vectors while in
Section 2.1.1 we worked with directed line segments. But these theorems enlighten that
these object are very similar from the algebraic point of view. We say that they form a
vector space over R. This means simply that they satisfy the statement of these theorems.
We just want to point out that although we will work with Rn in this section, we have already
seen another example of a vector space, and the truth is that this kind of structures occur
many times in many different situations, in fact we will see some other examples in this
chapter. We also mention that in Section 2.1.1 we identified the set of space vectors with R3

after we fixed a coordinate system. This example foreshadows the important role of Rn, but
we still cannot say that the set of space vectors and R3 are basically the same, because we
have to choose a coordinate system for the identification. In other words, the coordinates of
a space vector look different for different choices of the coordinate system. Speaking loosely,
we can reach that the space vectors look like R3 but they do not look like R3 naturally. It is
probably very hard to understand this concept at first sight, but in fact it is not necessary,
since we do not lean on the the notion of vector space later, we concentrate only on some
special cases (like Rn) instead and recommend the book [7] for the interested reader.

2.2.2 Subspaces of Rn

In geometry it is clear that a plane contains infinitely many copies of a line and the space
contains infinitely many copies of a plane. They are in some sense "smaller", but we can still
restrict the vector operations to these subsets. In the following we are going to study the
subsets of Rn which have this property.

Definition 2.2.2. Assume ∅ 6= V ⊆ Rn is a non-empty subset if Rn. We say that V is a
subspace of Rn if the following hold:

(i) if u, v ∈ V , then u+ v ∈ V ,

(ii) if u ∈ V and λ ∈ R, then λu ∈ V .

If V is a subspace of Rn, then this is denoted by V ≤ Rn.

In other words, V is a subspace of Rn if it is non-empty and closed under addition and
scalar multiplication. The subsets V = Rn and V = {0} satisfy these conditions and hence
they are subspaces. They are called the trivial subspaces of Rn. We also get that 0 ∈ V for
every subspace V . Indeed, if u ∈ V is an arbitrary vector (note that there is a u in V since
V is non-empty), then by property (ii) we have 0u = 0 ∈ V .

Exercise 2.2.1. Decide if the the following sets of R2 are subspaces or not:

a) V1 =
{(

x
y

)
∈ R2 : x ≥ 0, y ≥ 0

}
,

b) V2 =
{(

x
y

)
∈ R2 : x = y

}
,

c) V3 =




x
y
z
w

 ∈ R4 : x+ y + z + w = 0

.
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Solution. a) If the coordinates of the vector u =

(
x
y

)
∈ R2 are positive, then u ∈ V1, but

−x < 0 and −y < 0, so (−1)u /∈ V1. Hence V1 is not closed under scalar multiplication,
so it is not a subspace of R2. Note that V1 is still closed under addition, since the sum of
non-negative numbers is non-negative.

b) If u, v ∈ V2, then u =

(
x
x

)
and v =

(
y
y

)
for some x, y ∈ R, and hence their sum

is
(
x+ y
x+ y

)
, which is also in V2. Also, for any λ ∈ R the product λu =

(
λx
λx

)
is in V2,

hence V2 is a subspace of R2.
c) If u, v ∈ V3, where

u =


x1
y1
z1
w1

 and v =


x2
y2
z2
w2

 ,

then wi = −xi − yi − zi for i = 1, 2. Hence

u+ v =


x1 + x2
y1 + y2
z1 + z2
w1 + w2

 ∈ V3,
since w1 +w2 = −(x1 + x2)− (y1 + y2)− (z1 + z2). Similarly, if λ ∈ R, then λu ∈ V3, because
λw1 = −λx1 − λy1 − λz1. Thus, V3 is a subspace of R4. �

Exercise 2.2.2. Show that the lines in R2 that contain the origin are subspaces of R2. Show
that the lines and planes in R3 that contain the origin are subspaces of R3.

It will turn out later that these are the only subspaces of R2 and R3 beside the trivial ones.

2.2.3 Generated Subspace

It is a well-known fact that if two plane vectors are not parallel, then all plane vectors
can be expressed from them with the vector operations. The analogue of this fact holds also
in the space:

Proposition 2.2.2. If a, b ∈ R3 are space vectors that are not parallel to each other and lie
on the plane S which contains the origin, then every vector v ∈ R3 that lies on S can be
expressed in the form αa+ βb.

If a, b, c ∈ R3 are space vectors such that they do not lie on a plane that contains the
origin, then every vector v ∈ R3 can be expressed in the form v = αa+ βb+ γc.

Proof. Assume first that S ≤ R3 is a plane that contains the origin (note that S is a subspace
by Exercise 2.2.2), and a, b ∈ S are vectors in S that are not parallel to each other (and hence
both of them are non-zero). If v =

−→
OP ∈ S, where O is the origin, then let e be the line

which goes through O and parallel to the vector a, and let f be the line which goes through
P and parallel to b. Since the lines e and f lie on the same plane, they intersect each other in
a point Q. Then v =

−→
OQ+

−→
QP , and since

−→
OQ and

−→
QP are parallel to a and b, respectively,
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we have that
−→
OQ = αa and

−→
QP = βb for some α, β ∈ R, hence the first claim of the theorem

follows.
For the second part let a, b, c ∈ R3 be vectors that do not lie on a plane. Then none of

them is zero, and the origin together with the endpoints of any two of them determines a
plane. So if v ∈ R3 is an arbitrary vector, then let S be the plane going through the origin
which is spanned by a and b. The line which goes through P and is parallel to c intersects
S in the point R (because it is not parallel to S). Now v =

−→
OR +

−→
RP , where

−→
RP = γc

for some γ ∈ R (since it is parallel to c) and
−→
OR = αa + βb for some α, β ∈ R by the first

paragraph.

The following definition generalizes the expression αa+βb+γc that occurs in the previous
theorem:

Definition 2.2.3. If v1, v2, . . . , vk ∈ Rn are vectors and λ1, λ2, . . . , λk ∈ R are scalars, then
the linear combination of the vectors v1, v2, . . . , vk with the scalars λ1, λ2, . . . , λk is the vector
λ1v1 + λ2v2 + · · ·+ λkvk.

Note that in the definition above the number of the vectors and scalars can be 1, that is,
for a vector v and a scalar λ the vector λv is a linear combination of v. Moreover, we also
define the linear combination of an empty set of vectors to be the zero vector 0.

Now the statement of Proposition 2.2.2 can be rephrased the following way: if three
vectors in R3 do not lie on a plane, then every vector in R3 can be written as a linear
combination of those vectors.

Theorem 2.2.3. Let v1, v2, . . . , vk ∈ Rn be arbitrary vectors for some k ∈ N. If W ⊂ Rn is
the set of vectors that can be expressed as a linear combination of the vectors v1, . . . , vk, then
W is a subspace in Rn.

Proof. If k = 0, then the only vector which is a linear combination of the empty set of vectors
is 0, hence W = {0}, which is indeed a subspace. So assume that k ≥ 1. We have to show
that W 6= ∅ and that it is closed under addition and scalar multiplication. First note that
taking (for example) the linear combination 0v1 + 0v2 + · · · + 0vk = 0 we have that 0 ∈ W
and hence W 6= ∅. Now assume that w1, w2 ∈ W , then by the definition of W we have that

w1 = α1v1 + · · ·+ αkvk and w2 = β1v1 + · · ·+ βkvk

for some α1, . . . , αk, β1, . . . , βk ∈ R scalars. Now using the properties of the vector operations
in Theorem 2.2.1 we get that

w1 + w2 = (α1 + β1)v1 + · · ·+ (αk + βk)vk ∈ W,

hence it is a linear combination of the vectors v1, . . . , vk. Similarly, for every λ ∈ R we have

λw1 = (λα1)v1 + · · ·+ (λαk)vk,

which is again a linear combination of the vectors v1, . . . , vk and hence it is in W . This
completes the proof of the theorem.

Definition 2.2.4. If v1, . . . , vk ∈ Rn are arbitrary vectors, then the subspaceW that consists
of the linear combinations of these vectors are called the span of v1, . . . , vk and it is denoted
by W = span {v1, . . . , vk}. We also say that W is spanned or generated by the vectors
v1, . . . , vk, and we call the vectors v1, . . . , vk a generating system of W .
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We can rephrase the statement of Proposition 2.2.2 again: if three vectors of R3 do not
lie on a plane, then they span the whole space R3, or R3 is generated by them. Note that the
vectors v1, . . . , vk are also in the space spanned by them, since for every 1 ≤ i ≤ k we have

vi = 0v1 + · · ·+ 0vi−1 + 1vi + 0vi+1 + · · ·+ vk.

Remark. The notation span {v1, . . . , vk} expresses that the subspace is spanned by the
elements of the set S = {v1, . . . , vk}. For an arbitrary set S ⊂ Rn one can define the
subspace spanS to be the set of all linear combinations of finitely many vectors from S. One
can show similarly as in the proof of the previous theorem that spanS is indeed a subspace
for every (not necessarily finite) subset S of Rn. Also, it is easy to see that this new definition
gives the same subspace for a finite set S = {v1, . . . , vk} as Definition 2.2.4, since every linear
combination of some elements of S can be completed to a linear combination of all of its
elements by adding the missing vectors multiplied by 0. We also note that span ∅ = {0}.

Exercise 2.2.3. Describe the subspace span {u, v} ≤ R3, where

a) u =

 1
0
5

 , v =

 0
1
−2

 , b) u =

 1
6
1

 , v =

 3
4
−1

 .

Solution. a) A linear combination of u and v with the scalars α, β ∈ R is

α

 1
0
5

+ β

 0
1
−2

 =

 α
β

5α− 2β

 .

If a vector

 x
y
z

 can be expressed in this form, then we have to choose the scalars α = x and

β = y, and then 5x− 2y = z must hold. Also, if this relation holds between the coordinates,
then the vector can be expressed as a linear combination of u and v choosing α = x and
β = y. Reordering this equation we get that the subspace spanned by u and v is nothing else
than the plane 5x− 2y − z = 0.

b) This problem can be handled like part a), but now we show another method. Since we
are in R3, 3-dimensional geometry can be applied (and in this solution we write the vectors
in a row again). Since u and v are not parallel, they span a plane S by Proposition 2.2.2.
We are going to determine a normal vector n = (a, b, c) of S using the scalar product. A
normal vector is orthogonal to every vector on S, in particular to u and v. We have seen in
the previous section that this is equivalent to n · u = 0 and n · v = 0. By Theorem 2.1.3 this
gives that

a+ 6b+ c = 0,

3a+ 4b− c = 0.

If we express c from the second equation and substitute in the first one, then we obtain
4a+ 10b = 0. Then a = 5 and b = −2 is a solution of this, and the vector (5,−2, 7) satisfies
both equations, hence it is a normal vector of S. Using that 0 ∈ S we get by Theorem 2.1.5
that the equation of the plane is 5x− 2y + 7z = 0. �
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2.2.4 Linear Independence

It can happen that among the vectors that span a subspace W there are "superfluous"
elements, which means that some of the vectors may be omitted while the spanned subspace
remains the same. Assume for example that a, b ∈ Rn and c is the linear combination of a
and b, i.e. c = λa+ µb for some λ, µ ∈ R. Then every vector in span {a, b, c} is of the form

αa+ βb+ γc = αa+ βb+ γ(λa+ µb) = (α + γλ)a+ (β + γµ)b,

which is a linear combination of a and b. It follows that span {a, b, c} ⊂ span {a, b}. On the
other hand, every linear combination of a and b can be written as a linear combination of a,
b and c, since αa+ βb = αa+ βb+ 0c. Then span {a, b} ⊂ span {a, b, c}, and hence

span {a, b} = span {a, b, c}.

If there is no superfluous vector in he above sense, then we say that the vectors are indepen-
dent:

Definition 2.2.5. The collection of vectors v1, v2, . . . , vk ∈ Rn is called linearly independent ,
if no one of them can be written as a linear combination of the others. If there is a vector
among them, which is a linear combination of the others, then the collection of vectors
v1, . . . , vk is said to be linearly dependent .

Note that the empty set is defined to be linearly independent. If k = 1, then the definition
above gives that a single vector is linearly independent if and only if it is not the linear
combination of the empty set, i.e. if and only if it is non-zero. For k = 2 we get that two
vectors are linearly dependent if and only if one of them is the scalar multiple of the other.
Note that if the zero vector is among the vectors, then they are linearly dependent, since
multiplying any other vector by 0 we get the zero vector as a linear combination of the others.

If a, b, c ∈ R3 are space vectors such that they do not lie on a plane that contains the
origin, then none of them can be written as a linear combination of the other two. Indeed,
any two of them generates a plane which goes through the origin by Proposition 2.2.2, and
the third one cannot lie on it. For the same reason we get that if a, b and c lie on a plane
which contains the origin, then they are linearly dependent.

It is important to note that the linear independence or dependence is the property of
the whole collection and not of the single vectors. We use the word "collection" instead of
"set" in the definition to handle the situation when a vector appears more then once among
v1, . . . , vk, because a vector can be an element of a set only once. Note that in the above case
this collection will be dependent automatically, because if vi = vj for some i 6= j, then both
of them are linear combinations of the other vectors. For example, to express vi we choose
the scalar 1 as the coefficient of vj and multiply the other vectors by 0. On the other hand, if
the vectors are pairwise distinct (e.g. when they are linearly independent), then they form a
set, so we may say that a set of vectors is independent or dependent. Also, we may omit the
word collection or set, and simply say (somewhat loosely) that the vectors are independent or
dependent. It follows immediately from the definition that if a set of vectors is independent,
then any subset of them is also independent.

The following theorem gives an equivalent condition to the linear independence. It is
particularly useful when one wants to decide if a collection of vectors is independent. Note
that many authors use it to define linear independence.
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Theorem 2.2.4. The collection of the vectors v1, . . . , vk ∈ Rn is linearly independent if and
only if the equation λ1v1 + · · ·+ λkvk = 0 holds only for the scalars λ1 = λ2 = · · · = λk = 0.

Proof. Assume first that λ1v1 + · · · + λkvk = 0 holds only in the case λ1 = · · · = λk = 0. If
one of the vectors, say vi can be expressed as the linear combination of the others, then

vi = α1v1 + · · ·+ αi−1vi−1 + αi+1vi+1 + · · ·+ αkvk

for some α1, . . . , αi−1, αi+1, . . . , αk ∈ R, and by reordering the equation we get that

α1v1 + · · ·+ αi−1vi−1 − 1vi + αi+1vi+1 + · · ·+ αkvk = 0,

which contradicts our assumption (since the coefficient of vi is nonzero), so the collection of
the vectors must be independent.

Now assume that the collection of the vectors v1, . . . , vk is linearly independent. Now if
λ1v1 + · · ·+ λkvk = 0 holds for some λ1, . . . , λk ∈ R such that not all of them are zero, then
we choose the index i such that λi 6= 0. But then

vi = −
λ1
λi
v1 − · · · −

λi−1
λi

vi−1 −
λi+1

λi
vi+1 − · · · −

λk
λi
vk

contradicting the linear independence (since vi can be expressed as a linear combination of
the other vectors). This means that λ1v1+· · ·+λkvk = 0 can hold only if all of the coefficients
are 0.

The linear combination 0v1+0v2+ · · ·+0vk = 0 is called the trivial linear combination of
the vectors v1, . . . , vk. The previous statement gives that a collection of vectors is independent
if and only if there is no linear combination of the vectors which gives the zero vector other
than the trivial one.

Exercise 2.2.4. Decide if the following sets of vectors are linearly independent or not.

a)


1
2
2
0

 ,


1
2
2
5

 ,


0
0
3
1

 ,


0
4
0
1

 , b)


1
2
2
0

 ,


1
2
2
5

 ,


0
0
3
1

 ,


2
4
0
1

 .

Solution. a) Let us denote the vectors in order by a, b, c and d. We are going to use the
previous theorem, that is, we have to decide if the equation αa + βb + γc + δd = 0 has a
non-trivial solution (i.e. different from α = β = γ = δ = 0). Substituting the vectors and
using the definitions of the vector operations we get that

αa+ βb+ γc+ δd =


α + β

2α + 2β + 4δ
2α + 2β + 3γ
5β + γ + δ

 .

This linear combination gives the zero vector if and only if the following equations hold:

α + β = 0,

2α + 2β + 4δ = 0,

2α + 2β + 3γ = 0,

5β + γ + δ = 0.
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If we multiply the first equation by 2 and subtract it from the the second and third equation,
the we obtain 4δ = 0 and 3γ = 0, which means that δ and γ must be 0. Substituting this
in the fourth equation we have 5β = 0, i.e. β = 0, and then α = 0 follows from the first
equation. It follows that the vectors are linearly independent.

b) We can start the same way as in part a) and infer the system of equations

α + β + 2δ = 0,

2α + 2β + 4δ = 0,

2α + 2β + 3γ = 0,

5β + γ + δ = 0.

Comparing this to the system in part a) one can notice that only the first equation changed.
Also, in this case we get the second equation if we multiply the first one by 2. Hence we get
an equivalent system if we omit (for example) the first one. Now we can take the difference
of the first two equations in the new system to obtain 3γ = 4δ, i.e. δ = 3

4
γ. Substituting this

in the last equation we get β = − 7
20
γ, and then α = −β − 3

2
γ = ( 7

20
− 3

2
)γ = −23

20
γ. We have

no other information about the variables. Indeed, if we express every other variable in terms
of γ and substitute them in the equations, then the coefficient of γ becomes 0. This means
simply that the value of γ can be chosen freely, and then the other values are determined.
That is, we do have a non-trivial solution of the system (e.g. α = −23, β = −7, γ = 20,
δ = 15), and hence the vectors are dependent. �

2.2.5 The I-G Inequality

In this section we prove a result which will have a crucial role in the following. We have
already seen that 3 vectors in R3 can form a generating system of R3 (see Proposition 2.2.2)
but 2 vectors cannot. Also, 3 vectors of R3 can be independent if they do not lie on a plane
containing the origin, and it is easy to see that 4 space vectors cannot be independent. That
is, a set of independent vectors contains at most as many elements as a generating system.
This latter statement holds in general (not only in R3):

Theorem 2.2.5 (I-G inequality). Let V ≤ Rn be a subspace. If f
1
, . . . , f

k
∈ V is a set of

independent vectors and g
1
, . . . , g

m
∈ V is a generating system in V , then k ≤ m.

For the proof we will use the following lemmas:

Lemma 2.2.6. Assume that f
1
, f

2
, . . . , f

k
, f

k+1
∈ Rn such that the collection f

1
, f

2
, . . . , f

k
is linearly independent, while the collection f

1
, f

2
, . . . , f

k
, f

k+1
is linearly dependent. Then

f
k+1
∈ span {f

1
, . . . , f

k
} (i.e. f

k+1
can be expressed as the linear combination of the other

vectors).

Proof. As the vectors f
1
, . . . , f

k
, f

k+1
are linearly dependent, by Theorem 2.2.4 we have

scalars λ1, . . . , λk, λk+1 ∈ R such that at least one of them is non-zero and

λ1f 1
+ · · ·+ λkfk + λk+1fk+1

= 0.

Here λk+1 6= 0 must hold, otherwise 0 would be a non-trivial linear combination of the vectors
f
1
, . . . , f

k
contradicting the linear independence of this them. Reordering this equation we

obtain
f
k+1

= − λ1
λk+1

f
1
− · · · − λk

λk+1

f
k
,

and the statement is proved.
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Lemma 2.2.7 (The exchange lemma). Assume that V ≤ Rn is a subspace. If the collection
f
1
, . . . , f

k
∈ V is linearly independent and g

1
, . . . , g

m
is a generating system of V , then for

every 1 ≤ i ≤ k we can find a 1 ≤ j ≤ m such that the vectors f
1
, . . . , f

i−1, gj, f i+1
, . . . , f

k

are linearly independent.

Proof. After a possible renumbering we may assume i = k. Let us replace f
k
with g

j

for some 1 ≤ j ≤ m. If the collection f
1
, . . . , f

k−1, gj is independent, then we are done.
On the other hand, if it is linearly dependent, then we get by the previous lemma that
g
j
∈ span {f

1
, . . . , f

k−1} (since the vectors f
1
, . . . , f

k−1 are independent because they form
a subset of a set of independent vectors).

Assume that we get a dependent collection for every j in the previous paragraph. This
means that g

1
, . . . , g

m
∈ span {f

1
, . . . , f

k−1}, and hence every linear combination of the g
j
’s

is in this span, since it is closed under addition and scalar multiplication. But every element
of V is a linear combination of the g

j
’s, because they span V . As f

k
∈ V , we obtain

that f
k
∈ span {f

1
, . . . , f

k−1}, and this is impossible, because the vectors f
1
, . . . , f

k
are

independent. This contradiction completes the proof of the lemma.

Proof of Theorem 2.2.5. We apply the previous lemma first to f
1
and get the set g

j
, f

2
, . . . , f

k

of independent vectors for some 1 ≤ j ≤ m. In the next step we apply the exchange lemma
for this set and the generating system g

1
, . . . , g

m
, and replace f

2
with some g

j
still obtaining

an independent set g
j
, g

l
, f

3
, . . . , f

k
for some 1 ≤ l ≤ m. Continuing this way we can replace

all the f
i
’s such that the result is and independent collection of k vectors consisting of some of

the g
j
’s. Moreover, in this collection the vectors are different, because they are independent.

Since the cardinality of the set {g
1
, . . . , g

m
} is m, we must have k ≤ m. �

2.2.6 Basis and Dimension

The triples of vectors in R3 that do not lie on a plane containing the origin have a special
property: they are independent and also span the whole space R3. The sets of vectors with
this property have an important role.

Definition 2.2.6. Assume that V ≤ Rn is a subspace. The set of the vectors b1, . . . , bk ∈ V
is called a basis of V if it is linearly independent and spans V .

Theorem 2.2.8. Assume that V ≤ Rn is a subspace. If b1, . . . , bk and c1, . . . , cm are bases
in V , then k = m.

Proof. We apply the I-G inequality (Theorem 2.2.5) for the independent set b1, . . . , bk and
the generating system c1, . . . , cm in V and obtain that k ≤ m. Changing the roles of the two
bases and applying the I-G inequality again we get m ≤ k and the assertion follows.

Definition 2.2.7. Let b1, . . . , bk be a basis in the subspace V ≤ Rn. Then the number k is
called the dimension of V . The dimension of the subspace V is denoted by dimV .

Theorem 2.2.8 assures that the previous definition is correct, since if there is a finite basis
in a subspace, then the number of the vectors in it is uniquely determined. But at this point
we do not know if there is always a basis in a subspace. Luckily this is the case, i.e. every
subspace of Rn has a dimension (which is finite), but for the proof we need some preparation.
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The standard basis

Notation. In the following we use the notation ei ∈ Rn for the vector whose coordinates are
0 except for the ith one which is 1.

Proposition 2.2.9. The set of the vectors e1, . . . , en is a basis of Rn.

Proof. First we write down the linear combination of the vectors e1, . . . , en with the scalars
λ1, . . . , λn:

λ1e1 + · · ·+ λnen = λ1


1
0
0
...
0

+ λ2


0
1
0
...
0

+ · · ·+ λn


0
0
0
...
1

 =


λ1
λ2
λ3
...
λn

 .

It follows immediately that if this linear combination gives the zero vector, then every λi
must be zero, hence the ei’s are independent. Also, if v ∈ Rn, then we can choose λi to be
the ith coordinate of v, and this way the linear combination above gives the vector v, i.e. the
ei’s span Rn.

Definition 2.2.8. The basis e1, . . . , en ∈ Rn defined above is called the standard basis of Rn.
It is denoted by En or E (if n is clear from the context).

It follows immediately that dimRn = n. This is in accordance with our intuition, as one
calls the space R3 three-dimensional. The reason for this that in R3 there are 3 independent
directions, often represented by the directions of the axes which correspond to the vectors
e1, e2 and e3 defined above. Though R3 is three-dimensional also in the sense of Definition
2.2.7, it is still not quite right to call it the three-dimensional space, since in general there
are other subspaces with this property (note that despite that we are going to do so in some
cases).

Exercise 2.2.5. Show that Rm has an n-dimensional subspace for every 0 ≤ n ≤ m.

Exercise 2.2.6. Let V ≤ R4 be the subspace of R4 which consists of the vectors in R4 for
which the sum of their coordinates is zero (see part c) of Exercise 2.2.1). Give a basis in V .

Solution. If

b1 =


1
0
0
−1

 , b2 =


0
1
0
−1

 , b3 =


0
0
1
−1

 ,

then b1, b2, b3 ∈ V . We show that these vectors form a basis in V . Now as in the previous
proof, we have that

λ1b1 + λ2b2 + λ3b3 =


λ1
λ2
λ3

−λ1 − λ2 − λ3


for every λ1, λ2, λ3 ∈ R. So if this linear combination gives the zero vector, then clearly
λ1 = λ2 = λ3 = 0 must hold, hence the bi’s are independent.
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On the other hand, if


x
y
z
w

 ∈ V , then w = −x − y − z, hence we get this vector as a

linear combination of the bi’s by choosing the coefficients λ1 = x, λ2 = y, λ3 = z. That is,
the bi’s span V and hence they form a basis in V . �

Existence of a basis in subspaces

Theorem 2.2.10. If V ≤ Rn is a subspace, then there exists a basis of V .

Proof. If V = {0}, then the empty set is a basis of V , since it is independent and the
zero vector is a linear combination of the empty set by definition (and hence dimV = 0).
Otherwise there is a non-zero vector 0 6= v ∈ V , which constitutes a linearly independent set
(with 1 element). Hence the statement follows from the next theorem.

Theorem 2.2.11. Assume that V ≤ Rn is a subspace. If f
1
, . . . , f

k
is an independent set of

vectors in V (where k is a non-negative integer), then it can be completed to a basis of V by
adding finitely many (possibly zero) elements.

Proof. If W = span {f
1
, . . . , f

k
}, then W ⊂ V , because V is a subspace, so every linear

combination of the f
i
’s must be in V (note that for k = 0 we have W = {0}). If W = V ,

then we are done. Otherwise there is a v ∈ V \W . Then by Lemma 2.2.6 the collection
f
1
, . . . , f

k
, v must be independent, otherwise v would be in the span of the f

i
’s. If this larger

set already generates V , then we are done. Otherwise we continue the same way.
It remains to show that this procedure stops after finitely many steps. But this is true,

since by Proposition 2.2.9 there is a generating system in Rn with n elements, and hence a
set of independent vectors in Rn can contain at most n elements by the I-G inequality.

Corollary 2.2.12. Assume that V ≤ Rn is a subspace with dimV = k. If the vectors
f
1
, . . . , f

k
∈ V are linearly independent, then they constitute a basis in V .

Proof. By the previous theorem the set of the vectors f
1
, . . . , f

k
can be completed to a basis

by adding finitely many (possibly zero) elements. But since dimV = k, every basis has
exactly k elements, so the vectors above form a basis.

An analogous statement holds with a generating system instead of independent vectors:

Theorem 2.2.13. Assume that V ≤ Rn is a subspace with dimV = k. If the vectors
g
1
, . . . , g

k
∈ V span V , then they constitute a basis in V .

Proof. As dimV = k, there are vectors f
1
, . . . , f

k
∈ V which form a basis, and hence they are

linearly independent. If we repeat the proof of Theorem 2.2.5 with the f
i
’s as independent

vectors and the g
j
’s as the vectors that span the subspace, we get the statement.

Exercise 2.2.7. Let V be the subspace of those vectors in R4 for which the sum of their
coordinates is zero (we have seen in Exercise 2.2.6 that this is indeed a subspace). Give a

basis of V which contains the vector f =


1
2
3
−6

.
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Solution. We have seen in Exercise 2.2.6 that dimV = 3, so by Corollary 2.2.12 it is
enough to give 3 independent vectors in V such that one of them is f . We are going to add b1
and b2 from the solution of Exercise 2.2.6. Note that the two vectors f, b1 form an independent
set since they are not the scalar multiples of each other. Every linear combination of them
is of the form

αf + βb1 = α


1
2
3
−6

+ β


1
0
0
−1

 =


α + β
2α
3α

−6α− β

 .

It is easy to see that b2 /∈ span {f, b1}. Indeed, in the other case we would have 2α = 1
and 3α = 0, which is impossible. Then by Lemma 2.2.6 we get that the vectors f, b1, b2 are
independent, because otherwise b2 would be the linear combination of the other two vectors.
As we mentioned above, it follows from this that they form a basis. �

Coordinate Vectors

If b1, . . . , bk is a basis in the subspace V , then it spans V , that is, every vector can be
expressed as a linear combination of the basis vectors. What makes bases special among the
generating systems of V is that this representation of the vectors is unique:

Theorem 2.2.14. Assume that V ≤ Rn is a subspace. Then the vectors b1, . . . , bk ∈ V form
a basis of V if and only if every v ∈ V can be expressed uniquely as a linear combination of
them (i.e. if v = λ1b1+ · · ·+λkbk = µ1b1+ · · ·+µkbk holds, then λi = µi for every 1 ≤ i ≤ k).

Proof. Assume first, that every vector in V can be written uniquely as the linear combination
of the bi’s. Then of course the bi’s generate V . Moreover, since the trivial linear combination
of them gives the zero vector (which is in V ), no other linear combination can be the zero
vector by our assumption, which means by Theorem 2.2.4 that the vectors b1, . . . , bk are
independent, i.e. they form a basis in V .

Now assume that the bi’s form a basis in V . Then they span V by definition, so every
v ∈ V is a linear combination of them. Assume that for a v ∈ V we have

v = λ1b1 + · · ·+ λkbk = µ1b1 + · · ·+ µkbk,

then reordering this equality we get that

0 = (λ1 − µ1)b1 + · · ·+ (λk − µk)bk.

But since the bi’s are linearly independent, we obtain by Theorem 2.2.4 that all of the
coefficients above are zero, that is, λi = µi for every 1 ≤ i ≤ k.

Now we can fix a basis B = {b1, . . . , bk} in any subspace V ≤ Rn. We remark that this
notation is somewhat misleading since it suggests that this basis is a set. Which is true of
course, but here the order of the basis vectors will also be important for us (and not just
the elements of the set B). From now on, once we say that we fix a basis we mean that we
fix an ordered basis, i.e. the set B and the order of the vectors in B. Still we stick to this
(unprecise) notation above since it is common in the literature.

Once a(n ordered) basis is fixed in a subspace V , one can represent every vector of V
uniquely as a linear combination of the basis elements, and the coefficients of the basis
vectors can be assigned to the vector that is represented. That is, every basis determines a
"coordinate system" in Rn. The n coefficients can be written as a column vector, i.e. as an
element of Rn:
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Definition 2.2.9. Assume that V ≤ Rn is a subspace, v ∈ V and B = {b1, . . . , bk} is a basis
in V . If v = λ1b1 + · · ·+ λkbk (and then the coefficients λ1, . . . , λk are determined uniquely),
then the vector

[v]B :=


λ1
λ2
...

λk

 ∈ Rk

is called the coordinate vector of v relative to B.

If V = Rn and B = En is the standard basis, then v = [v]B for every v ∈ V (this follows
easily from the proof of Proposition 2.2.9). On the other hand, for any other basis B the
coordinate vector relative to B can be different from the vector as we are going to see in the
next example.

Exercise 2.2.8. Let

B =

b1 =
 1

6
1

 , b2 =

 3
4
−1

 , b3 =

 1
−8
2

 ⊂ R3, v =

 3
4
9

 ∈ R3.

Show that B is a basis in R3 and determine the coordinate vector [v]B.

Solution. At this point we have plenty of available tools, so we show three different
solutions for the first part of the exercise (and mention a fourth way). In the first two
solutions we show that B spans R3. Since there are 3 elements in B and dimR3 = 3, we
obtain by Theorem 2.2.13 that B is a basis.

One can observe that 1
7
(2b2 + b3) = e1, so e1 ∈ span {b1, b2, b3} = V . As the spanned

subspace V is closed under addition and scalar multiplication, we have that 1
10
(b1+b2−4e1) =

e2 ∈ V , and then b1 − e1 − 6e2 = e3 ∈ V . So every linear combination of e1, e2, e3 is in V ,
but this is the standard basis of R3, hence span {e1, e2, e3} = R3 ⊂ V ⊂ R3, i.e. V = R3.

One can show this using 3-dimensional geometry. In Exercise 2.2.3 we calculated the
equation of the plane that is spanned by b1 and b2. This equation is 5x − 2y + 7z = 0, and
substituting the coordinates of b3 we see that it is not on this plane, hence by Proposition
2.2.2 the vectors in B span R3. Note that we could also use the method that was shown in
part a) of Exercise 2.2.3 to show that B spans the whole space.

Now we apply Corollary 2.2.12 to show that B is a basis. Again, because of the cardinality
of B it is enough to show that the vectors b1, b2 and b3 are linearly independent. As in Exercise
2.2.4, we have to solve the following system of equations:

α + 3β + γ = 0,

6α + 4β − 8γ = 0,

α− β + 2γ = 0.

Multiplying the last equation by 4 and adding it to the second one we get that 10α = 0,
i.e. α = 0. Substituting this in the third equation we obtain β = 2γ, while from the first
equation we infer γ = −3β = −6γ, and hence β = γ = 0, so the vectors in B are linearly
independent by Theorem 2.2.4 and hence form a basis.

49



It remains to calculate the coordinate vector of v relative to B. For this we have to solve
the equation αb1 + βb2 + γb3 = v, which leads us (by equating the coordinates on the two
sides) to the system

α + 3β + γ = 3,

6α + 4β − 8γ = 4,

α− β + 2γ = 9.

Again, we multiply the last equation by 4 and add it to the second one to get 10α = 40, i.e.
α = 4. Substituting this in the first and the third equation we get that

3β + γ = −1,
−β + 2γ = 5.

Now we multiply the second equation by 3 and add it to the first one to obtain 7γ = 14, that
is, γ = 2, and then β = −1. Hence the coordinate vector of v is

[v]B =

 4
−1
2

 .

�

2.3 Systems of Linear Equations

In the previous section we encountered systems of equations several times. Namely, every
time we wanted to express a vector as a linear combination of some other vectors we got linear
equations by equating the coordinates of the linear combination and the vector in question.

By a linear equation we mean an equation of the form a1x2+a2x2+ · · ·+anxn = b, where
x1, x2, . . . , xn are variables, and the coefficients a1, a2, . . . , an and the constant term b are real
numbers. A system of linear equations consists of finitely many linear equations, where the
same variables (say x1, . . . , xn) occur in every equation. By a solution of this system we mean
the real numbers y1, . . . , yn that satisfy all the equations at the same time when substituted
in the place of the variables.

These kind of systems occur in many applications (beside the one that we have already
seen), so we give a general algorithm for their solution called the Gaussian elimination. With
the help of this algorithm we will be able to decide if a system of linear equations is solvable,
and if it is, then the algorithm will give all of its solutions in a manageable way. Our method
will also make it possible for us to prove general statements about systems of equations.

2.3.1 Examples of Gaussian Elimination

Before describing the general algorithm we give some examples as an introduction. Let
us consider the following system of linear equations with 3 variables and 4 equations (in the
left column):

2x1− x2+ 6x3 =12 x1− 1
2
x2+ 3x3 =6 x1− 1

2
x2+3x3 =6

2x1+2x2+ 3x3 =24 → 2x1+2x2+ 3x3 =24 → 3x2−3x3 =12

6x1− x2+17x3 =46 6x1− x2+17x3 =46 2x2− x3 =10

4x1− x2+13x3 =32 4x1− x2+13x3 =32 x2+ x3 =8
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For the elimination of the first variable x1 from the last three equations we first divide the
first equation by 2 and hence the coefficient of x1 becomes 1, while the other equations are
left unchanged (this can be seen in the middle column above). Then we subtract a suitable
multiple of the (new) first equation from the others so that x1 does not occur in the resulting
equations (see the third column).

Now we can repeat these steps for the system of the last three equations, where the number
of the variables is less than in the original system (since x1 has already been eliminated).
But before this we rewrite the steps above in a form which is practical for storing this kind of
data. Namely, the names of the variables and the signs of the operations are superfluous (at
least for the computer). Hence we omit them and write the coefficients and the constant term
on the right hand sides in a so-called augmented coefficient matrix . This is nothing else than
a table of numbers where every row belongs to an equation and we write the coefficients of
the variables in the (fixed) order of the variables in every row, while we separate the constant
term in the end of every line by a vertical line. Here are the 3 matrices for the original system
and for the ones after the first two steps:

2 −1 6 12
2 2 3 24
6 −1 17 46
4 −1 13 32

 ∼


1 −1
2

3 6
2 2 3 24
6 −1 17 46
4 −1 13 32

 ∼


1 −1
2

3 6
0 3 −3 12
0 2 −1 10
0 1 1 8


Observe that the multiplication of an equation by a number α (i.e. the division by 1/α)

corresponds to the multiplication of the elements in a row by α in the augmented coefficient
matrix. Similarly, adding (or subtracting) a multiple of an equation to another corresponds to
adding (or subtracting) a scalar multiple of a row to another, where we make the operations
element-wise (like in the case of column vectors).

Now we continue the elimination using this notation. In the next step we divide the
second row by 3 (i.e. multiply it by 1/3), then we subtract from the third and the fourth row
the (new) second row multiplied by 2 and 1, respectively:

∼


1 −1

2
3 6

0 1 −1 4
0 2 −1 10
0 1 1 8

 ∼


1 −1
2

3 6
0 1 −1 4
0 0 1 2
0 0 2 4

 ∼


1 −1
2

3 6
0 1 −1 4
0 0 1 2
0 0 0 0


In the third row of the resulting matrix the first non-zero number is 1, so we only subtract
2 times this row from the last one. This way every number in the last row becomes 0, and
this row corresponds to the equation 0x1 + 0x2 + 0x3 = 0. This equation holds regardless of
how the values of the variables x1, x2 and x3 are chosen. Hence the solutions of the system
remain the same if we omit this equation:

∼

 1 −1
2

3 6
0 1 −1 4
0 0 1 2


The result above is called the row echelon form of the system: there is a non-zero element

in every row before the vertical line, and the first one among these is 1 (in every row).
Moreover if i < j, then the first non-zero number in the jth row is on the right of the first
non-zero element in the ith row. The first non-zero element in a row on the left side of the
vertical line is called the leading coefficient of that row. Observe that one may read the
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solution of the equation from this. The last row corresponds to 0x1 + 0x2 + 1x3 = 2, i.e.
x3 = 2. From the second row we get x2 − x3 = 4, hence x2 = 4 + x3 = 6. We get similarly
from the first row that x1 = 3.

Instead of this we can continue the process, and eliminate all non-zero numbers in the
matrix above the leading coefficient. That is, we add the last row to the second one and
subtract 3 times the last row from the first one. Note that this does not effect the first two
columns of the matrix, because the first two elements in the last row are zero. Finally, we
add 1

2
times the (new) second row to the first one (effecting only the second and the last

column, because every other element in the second row is 0):

∼

 1 −1
2

0 0
0 1 0 6
0 0 1 2

 ∼
 1 0 0 3

0 1 0 6
0 0 1 2


The result above is the so-called reduced row echelon form: it is a row echelon form (and

hence the leading coefficient of every row is 1) and every other element in the column of the
leading coefficients is zero. One can read the solution of the system from it directly: the last
column contains the values of x1, x2 and x3 in this order.

Let us change the right hand side of the last equation in the original system to 33. If
we repeat the steps that we made above until we got the identically zero last row, here we
obtain the following matrix: 

1 −1
2

3 6
0 1 −1 4
0 0 1 2
0 0 0 1


Here the last row corresponds to the equation 0x1 + 0x2 + 0x3 = 1, which does not hold for
any values of x1, x2, x3. As this equation follows from the original ones, this means that
the system is inconsistent , i.e. it has no solution. Hence our algorithm can stop whenever a
row occurs where every element is zero except the last one (we may call this a forbidden row).

We show another example for the Gaussian elimination, where the steps that we made
above cannot always be accomplished and we need a refinement of our method. Also, in this
case we will have infinitely many solutions. So let us consider the system

x1+ x2+ 2x3+2x4+ x5 =−1,
4x1+4x2+ 8x3+9x4+ x5 =−7,
2x1+5x2+13x3+ x4+26x5 =10,

x1+3x2+ 8x3+2x4+11x5 =1,

2x1+ x2+ x3+2x4+ 3x5 =3.

First we make the augmented coefficient matrix of the system. The boxed element of the
matrix will indicate the current phase of the process. These boxed elements will be set to 1
and these will be the leading coefficients of the rows. The first coefficient of the first row is
1 originally, so we do not need to multiply this row, we only change the numbers below it to
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0 by adding an appropriate multiple of the first row to the other rows:
1 1 2 2 1 −1
4 4 8 9 1 −7
2 5 13 1 26 10
1 3 8 2 11 1
2 1 1 2 3 3

 ∼


1 1 2 2 1 −1
0 0 0 1 −3 −3
0 3 9 −3 24 12
0 2 6 0 10 2
0 −1 −3 −2 1 5


Now we change the position of the box: we step to the next row and then to the next

column. But in this example we cannot continue as before, because the boxed element is
zero and hence we cannot multiply the row so that this number becomes 1. But this problem
can be solved easily: we may swap the second and the third rows (equations) - and leave the
position of the box unchanged:

∼


1 1 2 2 1 −1
0 0 0 1 −3 −3
0 3 9 −3 24 12
0 2 6 0 10 2
0 −1 −3 −2 1 5

 ∼


1 1 2 2 1 −1
0 3 9 −3 24 12
0 0 0 1 −3 −3
0 2 6 0 10 2
0 −1 −3 −2 1 5


Now we continue as above: we divide the second row by 3 and add an appropriate multiple

of the (new) second row to the others below it such that every number below the leading
coefficient of the second row becomes zero:

∼


1 1 2 2 1 −1
0 1 3 −1 8 4
0 0 0 1 −3 −3
0 2 6 0 10 2
0 −1 −3 −2 1 5

 ∼


1 1 2 2 1 −1
0 1 3 −1 8 4
0 0 0 1 −3 −3
0 0 0 2 −6 −6
0 0 0 −3 9 9


Next we change the position of the box as before, and we get that the boxed element is

zero again. But unlike in the previous case every element below the boxed number is zero
and we cannot swap the rows. Hence we cannot change the boxed element to 1 without
changing the first two rows (which we will keep fixed for a while). Instead of this, we change
the position of the box again: we step to the next element in the same row:

∼


1 1 2 2 1 −1
0 1 3 −1 8 4

0 0 0 1 −3 −3
0 0 0 2 −6 −6
0 0 0 −3 9 9

 ∼


1 1 2 2 1 −1
0 1 3 −1 8 4

0 0 0 1 −3 −3
0 0 0 2 −6 −6
0 0 0 −3 9 9


The current leading coefficient is 1, so we do not have to multiply the third row, we simply

change the numbers below the boxed element to zero. This way every element of the last two
rows becomes zero, so we can omit these rows and obtain the echelon form of the matrix:

∼


1 1 2 2 1 −1
0 1 3 −1 8 4

0 0 0 1 −3 −3
0 0 0 0 0 0
0 0 0 0 0 0

 ∼
 1 1 2 2 1 −1

0 1 3 −1 8 4

0 0 0 1 −3 −3


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The following steps of the algorithm lead to the reduced echelon form. We are going to
change every element above the leading coefficients to zero. We begin this process in the last
row by adding the last row to the second one and subtracting two times the last row from
the first one. Then we step back to the second row and subtract it from the first one:

∼

 1 1 2 0 7 5
0 1 3 0 5 1
0 0 0 1 −3 −3

 ∼
 1 0 −1 0 2 4

0 1 3 0 5 1
0 0 0 1 −3 −3


We have reached the reduced echelon form and the algorithm stops. This form gives us

all the solutions of the system in a manageable form. To see this we consider the equations
that correspond to the rows of the last matrix:

x1 − x3 +2x5 =4,

x2+3x3 +5x5 =1,

x4−3x5 =−3.

Easy to see that the values of x3 and x5 can be chosen freely, and after that the values of
the other variables can be expressed in terms of these values uniquely. Hence the solutions
of the system can be written in the following form:

x3 = α ∈ R, x5 = β ∈ R,
x1 = 4− 2β + α,

x2 = 1− 5β − 3α,

x4 = −3 + 3β.

We call the variables x3 and x5 free parameters (since their values can be chosen freely).
They are those variables for which there is no leading coefficient in the corresponding column
of the coefficient matrix.

2.3.2 Gaussian Elimination

For a system of equations with n variables and k equations we fix the notation xj for
the variables (1 ≤ j ≤ n) and ai,j for the coefficient of xj in the ith equation (1 ≤ i ≤ k,
1 ≤ j ≤ n). The constant on the right hand side of the ith equation will be denoted by bi.
Also, we say that the system is of size (k × n), and its equations and augmented coefficient
matrix are the following:

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1
a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2

...
...

...
ak,1x1 + ak,2x2 + · · ·+ ak,nxn = bk


a1,1 a1,2 . . . a1,n b1
a2,1 a2,2 . . . a2,n b2
...

... . . . ...
...

ak,1 ak,2 . . . ak,n bk


Definition 2.3.1. If a system of equations of size (k × n) is given with its augmented
coefficient matrix, then we call the following operations elementary row operations : for every
1 ≤ i, j ≤ k, i 6= j and λ ∈ R,

(i) the (element-wise) multiplication of a row by λ if λ 6= 0,

(ii) replacement of the ith row of the matrix by the sum of itself and λ times the jth row,
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(iii) swapping of the ith and the jth rows,

(iv) omission of a row which contains only zero elements.

Proposition 2.3.1. The operations given in the previous definition are equivalent transfor-
mations of the coefficient matrix, i.e. the numbers y1, . . . , yn constitute a solution of the
system given by the coefficient matrix before the operations if and only if they give a solution
after the operations.

Proof. We prove the statement only for operation (ii), the remaining part of the proof is left
to the reader. Assume that y1, . . . , yn is a solution of the system given by the matrix, then
ai,1y1 + · · ·+ ai,n = bi and aj,1y1 + · · ·+ aj,n = bj hold. Adding λ times the second equation
to the first we obtain that (ai,1 + λaj,1)y1 + . . . (ai,n + λaj,n)yn = bi + λbj. But this means
that the equation belonging to the ith row of the matrix after the operation holds. As the
other rows do not change, we have that y1, . . . , yn is a solution of the new system.

On the other hand, if y1, . . . , yn is the solution of the system that is described by the
coefficient matrix after the operation, then (ai,1 + λaj,1)y1 + . . . (ai,n + λaj,n)yn = bi + λbj
and aj,1y1 + · · ·+ aj,n = bj hold (these correspond to the ith and jth row of the new matrix,
respectively). Multiplying the latter equation by λ and subtracting the result from the former
one we get ai,1y1 + · · · + ai,n = bi, hence y1, . . . , yn satisfy the ith equation of the original
system, and since the other equations does not change, y1, . . . , yn is a solution of the original
system.

Definition 2.3.2. If a system of equations of size (k × n) is given with its augmented
coefficient matrix, then we say that it is of row echelon form, when the following hold:

(i) every row of the matrix contains a non-zero element before the vertical line, and the
first non-zero element (the so-called leading coefficient) of the row is 1,

(ii) if 1 ≤ i < j ≤ k, and the leading coefficient of the ith row is in the lth column, while
the leading coefficient in the jth row is in the mth column, then l < m (and then every
element below a leading coefficient in the corresponding column is zero, moreover, every
element on the left of a leading coefficient in its row and in the rows below it are also
zero).

We say that the coefficient matrix is of reduced row echelon form, if the following holds beside
(i) and (ii):

(iii) every element above a leading coefficient in the corresponding column is zero (i.e. a
column of a leading coefficient contains only one non-zero element, namely the leading
coefficient itself).

Here is an example of a matrix of row echelon form and another one which is of reduced
row echelon form (every ∗ denotes an arbitrary real number):

1 ∗ ∗ . . . ∗ ∗ ∗
0 0 1 . . . ∗ ∗ ∗
0 0 0 . . . · · ·
· · · . . . · · ·
0 0 0 . . . 1 ∗ ∗

 ,


1 ∗ 0 . . . 0 ∗ ∗
0 0 1 . . . 0 ∗ ∗
0 0 0 . . . 0 · ·
· · · . . . · · ·
0 0 0 . . . 1 ∗ ∗

 .
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If a system is of reduced row echelon form, then it is easy to find all of its solutions.
Indeed, if every column contains a leading coefficient (which is 1), then the unique solution
is given by the values on the right of the vertical line (as in the first example of the previous
section). If there are columns which do not contain a leading coefficient, then they correspond
to free parameters , i.e. variables whose values can be chosen freely, and then the values of
the other variables can be expressed in terms of the free parameters and the values on the
right of the vertical line (see the last example of the previous section).

The Gaussian elimination works in the following way: if a system of equations is given
(by an augmented coefficient matrix), then we apply elementary row operations so that either
we get a forbidden row , that is, a row which contains only zero elements on the left side of
the vertical line and a non-zero last element (and then the system is inconsistent , i.e. it has
no solution), or a matrix of reduced row echelon form is obtained (and then we can read
all of the solutions of the system). All this is ensured by Proposition 2.3.1. The process is
divided into two phases. In the first one we reach a matrix of row echelon form or we get a
row whose elements are all zero except for the last one. In the latter case we stop and give
the output "there is no solution". Otherwise we continue with the second phase where we
reach a matrix of reduced row echelon form.

Gaussian Elimination - First Phase

Assume that the size of the system is (k × n). We store the number of the row (in the
variable i) and the number of the column (in the variable j) where the next leading coefficient
is supposed to be. Initially we set i = j = 1. In the first part of this phase we run a loop,
whose body is described by the following two paragraphs.

If ai,j 6= 0, then we multiply the ith row by 1/ai,j, and for every i < l ≤ k we multiply
the (new) ith row by (−al,j) and add it to the lth row (obtaining zeros below the current
leading coefficient). Now if i < k and j < n, then we increase i and j by 1 continue from the
beginning of the body, otherwise we break the loop and jump to the second part of the first
phase (detailed below later).

On the other hand, if ai,j = 0 and al,j 6= 0 for some i < l ≤ k, then we choose an l with
this property (e.g. the least one) and swap the ith and the lth rows and continue as in the
previous paragraph. If there is no such l, then we increase j by 1 when it is smaller than
n and go back to the beginning of the body (i.e. to the previous paragraph). If we cannot
increase j, then we decrease i by 1, break the loop and jump to the second part of the first
phase.

In the second part of the first phase we do the following. If i = k, then this means that we
reached the last line of the matrix and set the leading coefficient in it to 1. In this case the
matrix is of row echelon form, so we finish the first phase. If i < k, then either we reached the
nth column and set the leading coefficient to 1 in the ith row and nth column and eliminated
the non-zero elements below it, or we had al,n = 0 for every i+ 1 ≤ l ≤ k anyway (but then
ai,n is not necessarily 1, or in the (degenerate, but still possible) case when i = −1 it is not
even defined). In all of these cases we have only zeros in the lth row on the left side of the
vertical line for every i < l ≤ k. So if bl 6= 0 for some i < l ≤ k, then there are no solutions
and the algorithm stops. Otherwise we omit the lth row for every i < l ≤ k.
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We give the steps of this phase also in the form of a pseudocode:

GAUSSIAN ELIMINATION - FIRST PHASE
Input: a matrix A with k rows and n + 1 columns (the augmented coefficient matrix
of a system of linear equations with n variables and k equations)

1 i← 1; j ← 1;
2 while true do
3 if ai,i 6= 0, then
4 multiply the ith row by 1/ai,j
5 if i < k, then
6 for every i < l ≤ k add (−al,j) times the ith row to the lth row
7 if i = k or j = n, then
8 goto SECOND PART
9 else
10 i← i+ 1; j ← j + 1
11 else
12 if i < k and al,j 6= 0 for some i < l ≤ k, then
13 swap the ith and the lth rows
14 else
15 if j = n, then
16 i← i− 1
17 goto SECOND PART
18 else
19 j ← j + 1
20 end while
21 SECOND PART:
22 if i < k, then
23 if bl 6= 0 for some i < l ≤ k, then
24 print "The system has no solution."; stop
25 else
26 omit the lth row for every i < l ≤ k
27 print "The matrix is of echelon form."; stop

Gaussian Elimination - Second Phase

In the second phase of the algorithm the input is an augmented coefficient matrix which
is of row echelon form. Here we simply eliminate the non-zero elements above the leading
coefficients. For example, if ai,j = 1 is the leading coefficient of the ith row, then for every
1 ≤ l < i we multiply the ith row by al,j and subtract the result from the lth row (element-
wise). We begin this phase with the last row and go backwards. Note that this is not
necessary but this way we decrease the number of operations (because of the zeros that we
produced in the previous steps of this phase). It is obvious that the resulting matrix is of
reduced echelon form. We summarize this in the following theorem:

Theorem 2.3.2. If a system of equation is given by its augmented coefficient matrix and we
apply Gaussian elimination, then exactly one of the following cases holds:

(i) We get a line at the end of the first phase whose elements are zero except for the last
one. In this case the system has no solution.
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(ii) We obtain a matrix of reduced row echelon form such that there is a leading coefficient
in every column. Then the system has a unique solution.

(iii) We obtain a matrix of reduced row echelon form such that there are columns without a
leading coefficient. Then the system has infinitely many solutions.

In the cases (ii) and (iii) the solutions can be read from the reduced echelon form as discussed
above.

Corollary 2.3.3. If a system of equations with k equations and n variables has a unique
solution, then k ≥ n.

Proof. As the system has a solution, the Gaussian elimination produces a matrix of reduced
row echelon form with say k′ rows. Then k′ ≤ k since the algorithm does not increase
the number of the lines. Since the solution is unique, every column of the resulting matrix
contains a leading coefficient, but the number of the leading coefficients is the same as the
number of the rows, hence k′ = n and the claim follows.

Finally, we turn to the running time of the Gaussian elimination. It is not hard to see
that in the case of a system with k equations and n variables the algorithm makes at most
ck2n basic operations for some constant c, but the running time of these operations largely
depends on how we store the numbers that are obtained during the process as results of
previous operations, and also on how we actually implement these operations.

If all the inputs are rational numbers, then it would be possible to store the numerator and
the denominator of them. But in this case we have to simplify the fractions after performing
the operations on them, otherwise the magnitude of the numbers can get so large that the
running time of the algorithm becomes exponential. This simplification can be done (for
example) with the Euclidean algorithm, which still gives a polynomial running time, but
unfortunately it is not fast enough for applications.

Hence in practice an approximation (typically a floating-point format) is used giving a
reasonable running time. The drawback of this is that the errors of the approximations can
accumulate during the process resulting in an unacceptable outcome. This can happen for
example when we divide by numbers which are very close to zero. Without giving any further
details we summarize this as follows: the Gaussian elimination is an efficient algorithm when
implemented carefully.

2.4 The Determinant

We have seen in Corollary 2.3.3 that if a system of equations has a unique solution, then
the number of the equations is at least as large as the number of the variables. An important
special case is when these two numbers are the same. One may expect that in this case the
other direction of the statement of Corollary 2.3.3 holds, i.e. a system with n variables and
n equations has a unique solution. However, this is not the case. But we will see later that
if the solution is not unique, then this is due to some kind of "coincidence". The tool that
is used to describe this phenomenon precisely is the determinant, which will be defined and
investigated below.

As an introduction we describe the case of the system with 2 equations and 2 variables:

a1,1x1 + a1,2x2 = b1,

a2,1x1 + a2,2x2 = b2.

58



It is easy to see that if a1,1a2,2 − a1,2a2,1 6= 0, then

x1 =
a2,2b1 − a1,2b2

a1,1a2,2 − a1,2a2,1
, x2 =

a1,1b2 − a2,1b1
a1,1a2,2 − a1,2a2,1

is the unique solution of the system. It is also not hard to show that if a1,1a2,2− a1,2a2,1 = 0,
then the system has infinitely many or no solutions depending on the numbers b1 and b2. We
will handle this problem for a general n, and our results will contain this special case as well.
But we encourage the reader to try to prove these statements above.

2.4.1 The Inversion Number of Permutations

By a permutation we mean a sequence of length n (for some positive integer n) which
contains each of the numbers 1, 2, . . . , n exactly once. In other words, it is a way of arranging
the numbers 1, 2 . . . , n. The permutations will be denoted by Greek letters. For a permutation
π we denote the number in the ith place by πi. For example, for n = 8 a permutation can
be given by π = (5, 3, 1, 8, 4, 2, 6, 7), and here π1 = 5, π2 = 3, . . . , π8 = 7.

Remark. To be precise, a permutation is defined as a function from the set {1, 2, . . . , n}
onto itself, i.e. it is a one-to-one map (or bijection), and for a permutation π the number πi
is nothing else than the function value π(i). This approach is very useful from many points
of view, since the composition of functions provides an operation on the set of permutations,
which - for example - makes it possible to introduce the notions below in a natural way. We
choose another way instead which is maybe less expressive, but it is shorter and does not
lead us to sidetracks.

Definition 2.4.1. Assume that π = (π1, π2, . . . , πn) is a permutation. If for some i < j we
have πi > πj, then the pair of elements (πi, πj) is called an inversion of π. The inversion
number of a permutation is the number of inversions (πi, πj) of π, and it is denoted by I(π).

In the example above the inversions are the pairs (5, 3), (5, 1), (5, 4), (5, 2), (3, 1), (3, 2),
(8, 4), (8, 2), (8, 6), (8, 7) and (4, 2), hence I(π) = 11.

Proposition 2.4.1. Assume that π = (π1, π2, . . . , πi, . . . , πj, . . . , πn) is a permutation, and
let us interchange the numbers πi and πj. Then this way we obtain another permutation
π′ = (π1, π2, . . . , πj, . . . , πi, . . . , πn), and the parity of I(π) and I(π′) is different (i.e. one of
them is even while the other one is odd).

Proof. We first prove the proposition in the case when we interchange elements in consecutive
places, i.e. when j = i+ 1. Then the relation of πi and πj changes: if (πi, πj) is an inversion
of π, then πi > πj, and hence (πj, πi) = (π′i, π

′
j) is not an inversion of π′. Similarly, if (πi, πj)

is not an inversion of π, then πi < πj, and then (πj, πi) = (π′i, π
′
j) is an inversion of π′. For

any indices k 6= l different form i and j we have πk = π′k and πl = π′l, so (πk, πl) is an inversion
of π if and only if (π′k, π′l) is an inversion of π′. If k < i, then k < j holds as well and (πk, πi)
is an inversion of π if and only if (π′k, π′j) = (πk, πi) is an inversion of π′. The remaining pairs
can be handled similarly and we get that the exchange of two neighboring elements increases
or decreases the the inversion number by 1, that is, I(π′) = I(π)± 1, and then the parity of
I(π) and I(π′) are different.

Now we turn to the general case. We accomplish the replacement of the elements πi and
πj by a series of exchanges of neighboring elements. As i < j, we first interchange πj with
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πj−1, then with πj−2, and we continue until the elements πi and πj become neighbors, i.e.
until, say after t exchanges πj gets in the (i + 1)th position. Starting with the permutation
π = π(0) we obtain this way a sequence of permutations π(1), π(2), . . . , π(t). Then we swap the
elements πi and πj and get the permutation π(t+1), and finally we move the element πi in the
original position of πj via t exchanges of consecutive elements resulting in the permutations
π(t+2), . . . , π(2t+1) = π′. By the first paragraph the parity of I(π(k)) and I(π(k+1)) is different
for every 0 ≤ k ≤ 2t, and we change this parity 2t + 1 times, hence the parity of I(π) and
I(π′) must be different.

2.4.2 The Definition of the Determinant

Let us consider the following problem: we would like to place 8 rooks on a chessboard in
a non-attacking arrangement (i.e. in a configuration such that none of them can capture any
other rook in one step). This means that any row or any column can contain at most 1 rook,
and since the number of rows (and columns) on the board is 8, we get that every row (and
column) must contain exactly 1 rook.

The problem can be solved in the following way: we place the rooks on the board in 8
steps. In the ith step we place one rook in the ith row, and hence every row will contain
exactly one of them. Once we place a rook on the board, we exclude exactly one column
from the possible choices in the next steps. That is, in the first step we can choose a square
in the first row freely. But in the second step the column of the first rook is excluded, so
there are 7 possibilities left. Similarly, in the third step we can choose from 6 squares for
the third rook, etc. We obtain that the number different non-attacking rook arrangements is
8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 8! = 40320.

Observe that we can encode the rook arrangements above with a permutation. Namely,
we can assign to the rook in the ith row the number of its column and obtain a sequence of
8 numbers this way. Since there is exactly one rook in every column, every number between
1 and 8 occurs exactly once, that is, we get a permutation. This method works in the
opposite direction as well, i.e. every permutation π = (π1, . . . , π8) gives a rook arrangement:
in the ith step we place a rook in the ith row and the πith column. Since every number
between 1 and 8 occurs exactly once in the sequence π1, . . . , π8, we get a non-attacking
rook arrangement indeed. These maps between the arrangements and the permutations are
inverses to each other, that is, if we encode an arrangement with a permutation and then
obtain an arrangement from this permutation like we described above, then we get back the
original arrangement.

Note that the number 8 has no significance here. Assume that a table of real numbers
is given with n rows and n columns. Such a table is called a matrix of size n × n and the
numbers in the table are called the entries of the matrix. The entry of a matrix A in the ith
row and jth column is usually denoted by ai,j.

We can choose n entries in the matrix so that any two of them are in different rows and
different columns. In other words, every row and every column contains exactly one entry
from the chosen ones. Such a set of n entries will be called a rook arrangement. As before,
we can encode the rook arrangements with a permutation of n numbers.

Definition 2.4.2. Let us choose n entries of a matrix A of size n× n so that every row and
every column of A contains exactly one of them. Then the set of these entries is called a rook
arrangement of A. We say that a permutation of the numbers 1, 2, . . . , n corresponds to a
rook arrangement if in the arrangement the πith entry is chosen from the ith row.
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It follows in the same way as above that the number of the rook arrangements for a matrix
of size n× n is n!.

Definition 2.4.3. Assume that A is a matrix of size n × n. For every rook arrangement
of A we multiply the entries of it, and we multiply the product by (−1)I(π), where π is the
permutation that corresponds to the arrangement (i.e. we keep the sign of the product if the
permutation π has even inversion number, and change the sign otherwise). The sum of the
n! products that are obtained this way is called the determinant of A and it is denoted by
detA or |A|. It can be expressed by the following formula:

(3) detA =
∑
π

(−1)I(π)a1,π1a2,π2 . . . an,πn ,

where we sum over all permutations π of the set {1, 2, . . . , n}.

It is an important part of the definition that the matrix A is a square matrix, i.e. the
number of its rows is the same as the number of its columns. Of course we can talk about a
matrix of size k×n with k rows and n columns, but its determinant is defined only if k = n.

In general it is rather tiresome to calculate the determinant of a matrix for even a relatively
small n. For example, if n = 5, then we have 5! = 120 rook arrangements, so we have to
multiply 5 numbers and calculate the inversion number of a permutation 120 times. Also,
the value n! grows so fast (faster than an exponential function) that a computer cannot
accomplish the calculation in a reasonable time for bigger n’s. Later we give a polynomial
algorithm for this task.

On the other hand, for n = 2 and n = 3 it is not hard to memorize the formula that the
definition gives. The case n = 2 is so simple and important that we give the details of its
calculation. If

(4) A =

(
a1,1 a1,2
a2,1 a2,2

)
,

then there are only two rook arrangements and we get two products: a1,1a2,2 and a1,2a2,1.
The first one belongs to the permutation (1, 2) whose inversion number is 0, and the second
one belongs to (2, 1) with inversion number 1. Hence

(5) detA =

∣∣∣∣ a1,1 a1,2
a2,1 a2,2

∣∣∣∣ = a1,1a2,2 − a1,2a2,1.

That is, the determinant of a 2 × 2 matrix is the difference of the products of the entries
in the diagonals of the matrix. The product of the entries in the so-called main diagonal
(the diagonal that consists of entries with the same row and column index) has the positive
sign, while we take the product of the entries in the antidiagonal with a negative sign. It is
important that this formula holds only for a 2× 2 matrix.

Exercise 2.4.1. Determine the formula for the determinant in the case of a 3× 3 matrix.

As final remark of this section we mention that once we give a matrix with its entries
(like on the right hand side of (4)), then in the notation of its determinant we often omit the
parentheses (like in (5)).
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2.4.3 The Basic Properties of the Determinant

Although the definition of the determinant cannot be used in general for its calculation,
there are special cases when the formula in (3) simplifies a lot. These special determinants
turn out to be useful in general since (as we will see later) an arbitrary determinant can be
transformed so that its calculation becomes easy.

The matrix A of size n× n is called upper triangular if every entry of it below the main
diagonal is 0. That is, for every 1 ≤ i, j ≤ n, i > j we have ai,j = 0. Similarly, A is called a
lower triangular matrix if every entry above its main diagonal is 0, i.e. for every 1 ≤ i, j ≤ n,
i < j we have ai,j = 0.

Upper triangular matrix: Lower triangular matrix:

a1,1 a1,2 a1,3 a1,4 . . . a1,n
0 a2,2 a2,3 a2,4 . . . a2,n
0 0 a3,3 a3,4 . . . a3,n
0 0 0 a4,4 . . . a4,n
...

...
...

... . . . ...
0 0 0 0 . . . an,n





a1,1 0 0 0 . . . 0
a2,1 a2,2 0 0 . . . 0
a3,1 a3,2 a3,3 0 . . . 0
a4,1 a4,2 a4,3 a4,4 . . . 0
...

...
...

... . . . ...
an,1 an,2 an,3 an,4 . . . an,n


Theorem 2.4.2. Assume that A is a matrix of size n× n.

(i) If A has a row or column whose entries are all 0, then detA = 0.

(ii) If A is a upper triangular or a lower triangular matrix, then its determinant is the
product of the entries in its main diagonal, i.e. detA = a1,1a2,2 . . . an,n.

Proof. Part (i) follows immediately from the definition of the determinant. Indeed, assume
that the ith row of A contains only 0 entries. Since every term in the sum (3) is the product
of some entries of the matrix and exactly one of them is from the ith row, we get that every
product is 0 and hence so is the determinant. The analogous claim for a column instead of
a row follows the same way (replacing the word "row" by "column" in the argument above).

For the proof of (ii) we first assume that A is an upper triangular matrix. If a rook
arrangement contains a 0 entry, then the term in (3) belonging to it becomes zero. Hence we
are going to identify those arrangements which does not (necessarily) contain 0 entries. From
the first column we can only choose the first entry a1,1, since all the other entries are zero.
From the second column we cannot chose the first entry since it is excluded by our choice in
the first column. The remaining entries are zero except for a2,2 in the main diagonal, so we
have to choose this entry. Similarly, from the third column we cannot choose the first two
entries and below the third one every entry is zero, hence we choose a3,3. Continuing this way
we get that the only rook arrangement which does not (necessarily) contain a 0 entry is the
one which consists of the entries in the main diagonal, and this belongs to the permutation
(1, 2, . . . , n) whose inversion number is 0. Thus, in (3) there is only one term left, namely
a1,1a2,2 . . . an,n with a positive sign. The analogous statement for a lower triangular matrix
can be proved similarly, but also follows from the next theorem.

Definition 2.4.4. Let A be a matrix of size k × n, then the transpose of A is a matrix of
size n× k denoted by AT whose entry in the jth row and the ith column is the same as the
entry of A in the ith row and the jth column for every 1 ≤ i ≤ k and 1 ≤ j ≤ n. That is, if
the entry of A in the ith row and jth column is ai,j and the entry of AT in the jth row and
ith column is bj,i, then ai,j = bj,i.
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One may visualize this in the following way: we get the transpose of a matrix when we
reflect its entries to the main diagonal. This operation swaps the rows and the columns of
the matrix, i.e. the rows of a matrix are the same as the columns of its transpose (similarly,
the columns of a matrix are the same as the rows of its transpose). Note that (AT )T = A
holds. An example is the following:

A =

 2 3 4 5 6
7 8 9 10 11
12 13 14 15 16

 , AT =


2 7 12
3 8 13
4 9 14
5 10 15
6 11 16

 .

If A is a lower triangular matrix, then AT is an upper triangular matrix, so the statement
of (ii) in the previous theorem for a lower triangular matrix follows from the case of the upper
triangular matrix and the following:

Theorem 2.4.3. If A is a matrix of size n× n, then detAT = detA.

Proof. Let us denote the entry of B = AT in the ith row and jth column by bi,j (and the
entry of A in the same position by ai,j). We are going to show that in the formula (3) for A
and B we get the same products with the same signs and hence the statement follows.

Let π = (π1, . . . , πn) be an arbitrary permutation. The corresponding term in the formula
(3) for A is

(−1)I(π)a1,π1a2,π2 . . . an,πn = (−1)I(π)bπ1,1bπ2,2 . . . bπn,n
by the definition of the matrix B. Now every number between 1 and n occurs exactly once
in the sequence π1, . . . , πn, so if π′ is the permutation for which π′πi = i, then (since the
multiplication of the real numbers is commutative) the term above can be written as

(−1)I(π)bπ1,π′π1 bπ2,π′π2 . . . bπn,π′πn = (−1)I(π)b1,π′1b2,π′2 . . . bn,π′n .

It is obvious that if the permutations π and % are different, then so are the permutations
π′ and %′. Indeed, there is an i for which πi 6= %i, and hence π′πi = i = %′%i 6= %′πi , since
%′ is a permutation and takes different values for different indices. So the map π 7→ π′ is
one-to-one on the set of permutations (because its domain and its image has the same (finite)
cardinality). So it is enough to show that I(π) = I(π′) for every permutation π, because then

(−1)I(π)a1,π1a2,π2 . . . an,πn = (−1)I(π′)b1,π′1b2,π′2 . . . bn,π′n ,

and this way we get disjoint pairs of equal terms in the formula (3) for A and B, and then
detA = detB must hold.

So assume that for some 1 ≤ k < l ≤ n we have π′k = i and π′l = j. Then by definition
πi = k and πj = l. Now the pair (π′k, π′l) is an inversion of π′ if and only if i > j. But this
latter inequality means exactly that the pair (πj, πi) = (l, k) is an inversion of π. However,
if (π′k, π′l) is not an inversion, then i < j and (πi, πj) = (k, l) is not an inversion either. Also,
for different inversions of π′ we get different inversions of π, so we have a one-to-one map
between the inversions of π′ and π, i.e. I(π) = I(π′), and the proof is complete.

Remark. The permutation π′ defined in the previous proof is called the inverse permutation
of π. The reason for this is the following: if we regard the permutations as functions from the
set {1, 2, . . . , n} onto itself, then π′ is the inverse function of π, that is, π′(π(i)) = i = π(π′(i))
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holds for every integer 1 ≤ i ≤ n. The first equality is the direct consequence of the definition
of π′. But also the second equation follows from the definition, since if π′(i) = k, then i = π(k)
must hold, because π′ is a bijection (a one-to-one function), and hence cannot take the same
values on different places, and then π(π′(i)) = π(k) = i.

To calculate a determinant of an arbitrary matrix we will transform it so that we get
(for example) an upper triangular matrix and then the calculation becomes easy by Theorem
2.4.2. The following theorem describes the steps of this transformation:

Theorem 2.4.4. Assume that A is a matrix of size n×n, λ ∈ R is a scalar and 1 ≤ i, j ≤ n,
i 6= j are integers.

(i) If we multiply a row or a column of A by λ element-wise, then for the resulting matrix
A′ we have detA′ = λ · detA.

(ii) If we interchange two rows or columns of A, then for the resulting matrix A′ we have
detA′ = (−1) · detA.

(iii) If we replace the ith row by the (element-wise) sum of itself and λ times the jth row,
then the determinant of the resulting matrix A′ is the same as the determinant of A,
i.e. detA′ = detA. Similarly, if we replace the ith column by the (element-wise) sum
of itself and λ times the jth column obtaining the matrix A′, then detA′ = detA.

Proof. By the previous theorem it is enough to prove the statements for row operations,
because an operation on the columns means an operation on the rows of the transpose of
the matrix. In other words, assume that the statements are true for row operations and we
obtain the matrix A′ by a column operation while we get the matrix A′′ by the corresponding
row operation. Then if for example this operation on the columns is of type (iii), then

detA′ = det(A′)T = det(AT )′′ = detAT = detA.

Here the first and the last equality follows from the previous theorem. The second equality
means that if we make the operation on the columns and then we reflect the matrix to the
main diagonal, then this means the same as a reflection and then the corresponding operation
on the rows of the transpose. Finally, the third equation follows from our assumption (that
row operations of type (iii) do not change the determinant). The claim follows similarly for
the other types of column operations.

For the proof of (i) let us assume (for example) that we obtain A′ by multiplying the ith
row of A by λ. By definition, the determinant of A′ is obtained by the formula

detA′ =
∑
π

(−1)I(π)a1,π1 . . . ai−1,πi−1
(λai,πi)ai+1,πi+1

. . . an,πn

= λ ·
∑
π

(−1)I(π)a1,π1 . . . an,πn = λ · detA.

For the proof of (ii) let us assume that we obtain the matrix A′ by swapping the ith and
jth row of A, where 1 ≤ i < j ≤ n. We are going to pair the terms in the formula (3)
for A and A′. To a term belonging to the permutation π = (π1, . . . , πi, . . . , πj, . . . , πn) we
assign the term with the corresponding permutation π′ = (π1, . . . , πj, . . . , πi, . . . , πn). We are
going to show that these terms differ only in sign, and since in both sums every term has
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exactly one pair (i.e. we have a one-to-one map between the terms of the sums), we get that
detA′ = − detA.

Let us fix the permutation π, then the corresponding term in the sum (3) is

(−1)I(π)a1,π1 . . . ai,πi . . . aj,πj . . . an,πn .

Let π′ be the assigned permutation. Then the parity of I(π) and I(π) are different by
Proposition 2.4.1, and hence (−1)I(π′) = −(−1)I(π). Also, if ak,l and a′k,l are the elements of
A and A′ in their kth row and lth column, respectively, then ak,πk = a′k,π′k

for every k 6= i, j,
because the kth row of A and A′ are the same and πk = π′k holds as well. Also, we have
a′i,π′i

= aj,πj and a′j,π′j = ai,πi by the definition of A′ and π′. Hence the term that corresponds
to π′ in the formula (3) for detA′ is

(−1)I(π′)a′1,π′1 . . . a
′
i,π′i

. . . a′j,π′j . . . a
′
n,π′n

= −(−1)I(π)a1,π1 . . . aj,πj . . . ai,πi . . . an,πn ,

and this is exactly that we wanted to show.
Before the proof of (iii) we are going to show the following statement (which is useful also

in other situations):

Lemma 2.4.5. Assume that the n×n matrices X,X ′ and X ′′ have the same entries outside
the ith row, while the ith row of X is the element-wise sum of the ith row of X ′ and X ′′:

X =


x1,1 x1,2 x1,3 · · · x1,n
...

...
... . . . ...

x′i,1 + x′′i,1 x′i,2 + x′′i,2 x′i,3 + x′′i,3 · · · x′i,n + x′′i,n
...

...
... . . . ...

xn,1 xn,2 xn,3 · · · xn,n

 ,

X ′ =


x1,1 x1,2 x1,3 · · · x1,n
...

...
... . . . ...

x′i,1 x′i,2 x′i,3 · · · x′i,n
...

...
... . . . ...

xn,1 xn,2 xn,3 · · · xn,n

 , X ′′ =


x1,1 x1,2 x1,3 · · · x1,n
...

...
... . . . ...

x′′i,1 xi,2 x′′i,3 · · · x′′i,n
...

...
... . . . ...

xn,1 xn,2 xn,3 · · · xn,n

 .

Then detX = detX ′ + detX ′′. The analogous claim holds with columns instead of rows.

Proof. By the previous theorem it is enough to prove the statement for rows. For any
permutation π the corresponding term in the definition of detX is

(−1)I(π)x1,π1 . . .(x′i,πi + x′′i,πi) . . . xn,πn =

= (−1)I(π)x1,π1 . . . x′i,πi . . . xn,πn + (−1)I(π)x1,π1 . . . x′′i,πi . . . xn,πn ,

because it is the sum of the corresponding terms in detX ′ and detX ′′. This holds for every
term and hence the claim follows.

Turning to the proof of (iii) we will apply the previous lemma for the matrices A′, A and
Y , where A′ is the resulting matrix after the operation, A is the original matrix and Y is the
matrix that is obtained by replacing the ith row of A by λ times the jth row of A. Then the
lemma gives that detA′ = detA+ detY , so it remains to show that detY = 0.
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First note that detY = λ · detY ′ by (i), where Y ′ is the matrix obtained from A by
replacing its ith row by its jh row. Now we can apply (ii) for Y ′: if we swap its ith and jth
row, then we get the same matrix, on the other hand, the sign of the determinant changes
by (ii), i.e. detY ′ = (−1) · detY ′, hence detY ′ = 0 and therefore detY = λ · detY ′ = 0 must
hold and the claim follows.

2.4.4 The Calculation of the Determinant

In this chapter we first show an example for the application of Theorem 2.4.4 and after
that we give a general algorithm for the calculation of the determinant. The method will
be familiar since these transformation rules are similar to the ones that we applied in the
Gaussian elimination. There are differences though, first of all, while in the case of a system
of equations the analogous steps do not change the set of solutions, here the determinant
may change, so we have to keep track of these changes. On the other hand, we have more
options here, since while it makes no sense to operate on the set of columns in an augmented
coefficient matrix, by the calculation of the determinant this is allowed (and often can be
very useful).

Let us calculate the following determinant:∣∣∣∣∣∣∣∣
3 12 −3 −6
2 8 3 −9
1 5 −1 0
−1 −3 3 5

∣∣∣∣∣∣∣∣ .
We are going to use the row operations listed in Theorem 2.4.4 to transform this matrix to
an upper triangular matrix. First we apply operation (i) on the first row. If we multiply it
by 1/3, then the determinant is also multiplied by 1/3, or equivalently:∣∣∣∣∣∣∣∣

3 12 −3 −6
2 8 3 −9
1 5 −1 0
−1 −3 3 5

∣∣∣∣∣∣∣∣ = 3 ·

∣∣∣∣∣∣∣∣
1 4 −1 −2
2 8 3 −9
1 5 −1 0
−1 −3 3 5

∣∣∣∣∣∣∣∣ .
The determinant on the right hand side is 1/3 times the determinant on the left hand side,
and after rearranging this we get the equality above. This way we reach that the first non-
zero number in the first row is 1, and we add an appropriate multiple of the first row to the
other rows so that the numbers below this entry become 0. Namely, we add (−2), (−1) and
1 times the first row to the second one, third one and fourth one, respectively. This way we
reach a matrix where the first column looks like in an upper triangular matrix. Also, these
steps do not change the value of the determinant, so the last product above is

= 3 ·

∣∣∣∣∣∣∣∣
1 4 −1 −2
0 0 5 −5
0 1 0 2
0 1 2 3

∣∣∣∣∣∣∣∣ = (−3) ·

∣∣∣∣∣∣∣∣
1 4 −1 −2
0 1 0 2
0 0 5 −5
0 1 2 3

∣∣∣∣∣∣∣∣ .
After that we cannot continue with the second row as above, since there is a 0 in the second
column and we cannot change it to 1 by a multiplication. So we swap the second and the
third rows changing the sign of the determinant. This way we already get that the entry in
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the second row and second column is 1, so we simply subtract this row from the last one and
obtain the last product is

= (−3) ·

∣∣∣∣∣∣∣∣
1 4 −1 −2
0 1 0 2
0 0 5 −5
0 0 2 1

∣∣∣∣∣∣∣∣ = (−3) · 5 ·

∣∣∣∣∣∣∣∣
1 4 −1 −2
0 1 0 2
0 0 1 −1
0 0 2 1

∣∣∣∣∣∣∣∣ ,
where we applied an operation of type (i) again (from Theorem 2.4.4) for the third row and
for λ = 1/5. Finally, we subtract 2 times the third row from the last one. This does not
change the value of the determinant, and the result is an upper triangular matrix, hence
Theorem 2.4.2 is applicable. So the product above becomes

(−3) · 5 ·

∣∣∣∣∣∣∣∣
1 4 −1 −2
0 1 0 2
0 0 1 −1
0 0 0 3

∣∣∣∣∣∣∣∣ = (−3) · 5 · (1 · 1 · 1 · 3) = −45.

That is, the value of the determinant is −45.
The computation above followed the steps of an efficient algorithm which gives the value of

the determinant in general. It can be regarded as a variant of the first phase of the Gaussian
elimination, since we make similar row operations on the matrix to obtain an upper triangular
matrix. Namely, in the ith loop we try to change the entry in the ith row and ith column
(i.e. the ith number in the main diagonal) to 1 and then use this to eliminate all non-zero
elements in its column below it.

There are important differences though. We have already seen that the changes of the
determinant should be recorded during the process. Moreover, if in the ith row we get zero
in the main diagonal and all the other entries in its column below it are also zero, then the
algorithm can stop, and the determinant is zero. Indeed, we cannot swap the ith row and
some other row below it to change this entry to a non-zero number. But if we continue the
process with the next element of the main diagonal to obtain an upper triangular form, then
the first i columns do not change in the remaining steps. This means that at the end of the
process the zero entry in the ith row and ith column makes the product of the numbers in
the main diagonal - that is, the determinant - zero.

After this explanation we give the steps of the algorithm by a pseudocode:

CALCULATION OF A DETERMINANT
Input: a matrix A of size n× n

1 i← 1; D ← 1;
2 while true do
3 if ai,i 6= 0, then
4 D ← ai,iD
5 multiply the ith row by 1/ai,i
6 if i < n, then
7 for every i < j ≤ n add (−aj,i) times the ith row to the jth row
8 i← i+ 1
9 else
10 print "detA =",D; stop
11 else
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12 if i < n and aj,i 6= 0 for some i < j ≤ n, then
13 swap the ith and jth rows
14 D ← (−1) ·D
15 else
16 print "detA = 0"; stop
17 end while

Exercise 2.4.2. Let A be the matrix of size n×n for which the entries of the main diagonal
are all p for some p ∈ R and all its other entries are 1. Calculate the determinant of A.

2.4.5 Systems of Linear Equations and the Determinant

As we have promised in the introductory paragraphs of the section, we are going to handle
now the case of a system of linear equations with n equations and n variables. The variant
of the Gaussian elimination detailed above establishes the connection between these systems
and the determinant which can be used to decide if the system has a unique solution:

Theorem 2.4.6. Let (A|b) be the augmented coefficient matrix of a system of linear equations
with n equations and n variables. That is, A is the coefficient matrix of size n × n, while
b ∈ Rn is the vector whose coordinates are constants on the right hand sides of the equations.
Then the system has a unique solution if and only if detA 6= 0.

Proof. Let us run first phase of the Gaussian elimination to this system as it is described
in Section 2.3.2. To be precise, we run only the first part of the first phase, until line 21
in the code on page 57. Though the steps of the algorithm change the determinant of the
coefficient matrix A, but the determinant of the resulting matrix is non-zero if and only if it
was non-zero originally, i.e. if and only if detA 6= 0 (this follows from Theorem 2.4.4).

At line 21 of the algorithm we have 3 possibilities. If the system has no solutions, then
at that point we have a forbidden row in the matrix. On the other hand, if there is infinitely
many solutions, then by Theorem 2.3.2 there is a column without a leading coefficient, so
there must be a row which is identically zero (otherwise the number of the leading coefficients
would be the number of the rows which is the same as the number of the columns). In both
cases the transformed coefficient matrix (without the constant vector on the right) has a
row with only zero entries. Then its determinant is 0 by part (i) of Theorem 2.4.2 and then
detA = 0 holds as well.

On the other hand, if the solution of the system is unique, then there is a leading coefficient
in every column and hence in every row. This means that we get an upper triangular matrix
whose entries in the main diagonal are all 1, and then the determinant of the transformed
coefficient matrix is non-zero, therefore detA 6= 0 follows.

2.4.6 The Expansion Theorem for Determinants

In this section we prove a theorem called the Laplace expansion which reduces the calcula-
tion of a determinant of size n×n to the calculation of n determinants of size (n−1)×(n−1).
The verb "reduce" may be a little bit misleading, since it refers to the reduction of the size, not
to the reduction of the number of operations that are needed for the computation. Though in
a few cases it can be used to simplify the actual calculation, its main importance is revealed
mostly in theoretical arguments. Before giving the formula we need some preparations:
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Definition 2.4.5. Let A be a matrix of size n × n. With the entry ai,j of A in its ith row
and jth column we associate the sign (−1)i+j and the sub-matrix Mi,j of size (n−1)×(n−1)
which is obtained from A by deleting its ith row and its jth column. Then the cofactor
associated with ai,j is the product Ci,j = (−1)i+j detMi,j. The determinant of a sub-matrix
Mi,j is called a (first) minor of A.

Theorem 2.4.7 (Laplace expansion). If A is a matrix of size n×n and we add the entries of
a fixed row or column multiplied by the associated cofactors, then the result is the determinant
of the matrix. That is,

detA =
n∑
k=1

ai,kCi,k =
n∑
k=1

(−1)i+kai,k detMi,k

=
n∑
k=1

ak,jCk,j =
n∑
k=1

(−1)k+jak,j detMk,j

for every 1 ≤ i, j ≤ n.

Proof. Assume first that the statement of the theorem holds for rows. Let bj,i denote the
entry of AT in its jth row and in its ith column. If Nj,i is the associated sub-matrix for bj,i
and Mi,j is the associated sub-matrix for ai,j, then Nj,i =MT

i,j holds. So for every 1 ≤ j ≤ n
we have

n∑
k=1

(−1)k+jak,j detMk,j =
n∑
k=1

(−1)k+jak,j detMT
k,j

=
n∑
k=1

(−1)j+kbj,k detNj,k

= detAT = detA

by Theorem 2.4.3. Hence it is enough to prove the theorem for rows.
We prove the theorem in three steps. In the first step we show that if the first n − 1

entries of the last row of A are zero, then the statement holds for the last row, that is,

detA =
n∑
k=1

an,kCn,k =
n∑
k=1

(−1)n+kan,k detMn,k = (−1)n+nan,n detMn,n = an,n detMn,n.

For this, observe that a term belonging to a permutation π in the formula (3) is non-zero
only if πn = n, so it is enough to sum over these permutations:

detA =
∑

π, πn=n

(−1)I(π)a1,π1 . . . an−1,πn−1an,n = an,n
∑

π, πn=n

(−1)I(π)a1,π1 . . . an−1,πn−1 .

Hence it remains to show that this last sum is detMn,n. The entries a1,π1 , . . . , an−1,πn−1

form a rook arrangement of the minor Mn,n, because πi 6= n for i = 1, . . . , n − 1. For the
same reason, π′ = (π1, . . . , πn−1) is a permutation of the numbers 1, . . . , n − 1. Also, for
every permutation π′ of the numbers 1, . . . , n − 1 we can associate a permutation of the
numbers 1, . . . , n for which πn = n, namely π = (π′1, . . . , π

′
n−1, n). These maps constitute

a one-to-one correspondence between the permutations of 1, . . . , n with πn = n and the
permutations of 1, . . . , n − 1, which means that we get every rook arrangement of Mn,n in
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the form a1,π1 , . . . , an−1,πn−1 . Also, if πn = n, then πn does not occur in any inversion of π,
so I(π) = I(π′). It follows that

an,n
∑

π, πn=n

(−1)I(π)a1,π1 . . . an−1,πn−1 = an,n
∑
π′

(−1)I(π′)a1,π′1 . . . an−1,π′n−1

where in the last sum we sum over the permutations of 1, . . . , n − 1. But the last sum is
detMn,n by definition and the proof of the first step is complete.

In the second step we prove that if in the ith row of A there is at most 1 non-zero entry,
then the statement holds for the ith row. Assume for example that we have ai,k = 0 for every
1 ≤ k ≤ n, k 6= j, where 1 ≤ j ≤ n. We have to show that

detA =
n∑
k=1

(−1)i+kai,k detMi,k = (−1)i+jai,j detMi,j.

Now we transform the matrix A in the following way: we swap the ith and row and the next
one, then we swap the new (i + 1)th row (which is the ith row of A) and the next one, and
we continue this way until the ith row of A becomes the last row of the transformed matrix
A′. By part (ii) of Theorem 2.4.4 we have detA′ = (−1)n−i detA, since we have made n− i
swaps. Similarly, we swap the jth column of A′ and the next one, then (j + 1)th column of
the resulting matrix and the following one, and we continue this until the jth column of A′
becomes the last one of the transformed matrix A′′. As before, we have

detA′′ = (−1)n−j detA′ = (−1)2n−i−j detA = (−1)i+j detA,

i.e. detA = (−1)i+j detA′′. But the first n − 1 entries of the last row of A′′ are zero, so by
the first part of the proof we can expand it along its last row:

detA′′ =
n∑
k=1

(−1)n+ka′′n,k detM ′′
n,k = a′′n,n detM

′′
n,n,

where a′′i,j is the entry of A′′ in the ith row and the jth column, andM ′′
i,j is the assigned minor.

But because of the way that A′′ was obtained from A we have a′′n,n = ai,j and M ′′
n,n = Mi,j,

so the statement follows for the ith row of A.
Finally, we prove the statement for a general matrix A ∈ Rn×n. We fix an index 1 ≤ i ≤ n

and apply Lemma 2.4.5 for the ith row (n− 1) times to obtain

detA =

∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 a1,3 . . . a1,n
...

...
... . . . ...

ai,1 ai,2 ai,3 . . . ai,n
...

...
... . . . ...

an,1 an,2 an,3 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 a1,3 . . . a1,n
...

...
... . . . ...

ai,1 0 0 . . . 0
...

...
... . . . ...

an,1 an,2 an,3 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 a1,3 . . . a1,n
...

...
... . . . ...

0 ai,2 ai,3 . . . ai,n
...

...
... . . . ...

an,1 an,2 an,3 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣
= . . .
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=

∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 a1,3 . . . a1,n
...

...
... . . . ...

ai,1 0 0 . . . 0
...

...
... . . . ...

an,1 an,2 an,3 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 a1,3 . . . a1,n
...

...
... . . . ...

0 ai,2 0 . . . 0
...

...
... . . . ...

an,1 an,2 an,3 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣
+

+

∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 a1,3 . . . a1,n
...

...
... . . . ...

0 0 ai,3 . . . 0
...

...
... . . . ...

an,1 an,2 an,3 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣
+ · · ·+

∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 a1,3 . . . a1,n
...

...
... . . . ...

0 0 0 . . . ai,n
...

...
... . . . ...

an,1 an,2 an,3 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣
.

By the second part of the proof the statement of the theorem holds for the latter determinants,
and the statement follows.

There is an easy consequence of this theorem which will be useful for us later. Assume
that a matrix A is given. Let us fix two different indices 1 ≤ i 6= j ≤ n and construct the
matrix A′ from A so that we replace its jth row by its ith row. As i 6= j, the ith and the jth
rows of the matrix A′ are identical. If we subtract one of them from the other one, then the
determinant of the matrix does not change, but the result contains an identically zero row,
so its determinant is zero by part (i) of Theorem 2.4.2 and hence detA′ = 0 follows.

Let us expand the matrix A′ along the jth row. Then by the previous theorem we have

0 = detA′ =
n∑
k=0

(−1)j+ka′j,k detM ′
j,k =

n∑
k=0

(−1)j+kai,k detMj,k =
n∑
k=1

ai,kCj,k,

since the ith row of A and the jth row of A′ are the same, and the matrices A and A′ agree
outside their jth row, but the minorsMj,k andM ′

j,k do not contain elements from the jth row
of the corresponding matrix, so they are the same. A similar argument (or the application of
Theorem 2.4.3) gives the analogous result for columns instead of rows. We summarize this
in the following

Corollary 2.4.8. Assume that A ∈ Rn×n. Then for indices 1 ≤ i 6= j ≤ n we have

0 =
n∑
k=1

ai,kCj,k =
n∑
k=1

(−1)j+kai,k detMj,k

=
n∑
k=1

ak,iCk,j =
n∑
k=1

(−1)k+jak,i detMk,j.

2.4.7 Three-dimensional Analytic Geometry and the Determinant

In this section we introduce the notion of the cross product of vectors in R3, and shortly
address the connection of the determinant with the volume of parallelepipeds.

Remark. The three-dimensional space is easily visualized, and a big part of analytic geome-
try can be generalized to any dimension. For example the scalar product and also the volume
have a natural generalization, and the connection between the determinant and the volume
detailed below has an analogue in higher dimensions. Although here we restrict ourselves

71



to the three-dimensional space, we note that this connection makes it possible to define the
determinant as the volume of a (higher dimensional) parallelepiped. A useful byproduct of
this is that this method provides a natural and easy way for the proof of Theorem 2.5.5
below. On the other hand, the dimension is important in the case of the cross product.
Without giving any details we just mention here that an analogue of the three-dimensional
cross product can be defined in the 7-dimensional space, but not for any other dimensions
(see [8]).

Definition 2.4.6. If u, v ∈ R3 are space vectors, then their cross product is denoted by u×v,
and it is the space vector defined uniquely by the following properties when both u and v are
non-zero and not parallel to each other:

1. the length of u × v is |u× v| = |u| |v| sinϕ, where |u| and |v| are the length of the
vectors u and v and ϕ is the angle between them,

2. u× v is orthogonal (perpendicular) to u and v,

3. the system of the vectors u, v and u× v is right-oriented (see page 33).

If u = 0 or v = 0 or they are parallel, then u× v = 0 by definition.

An immediate consequence of the definition that this operation on the space vectors is
not commutative. Indeed, because of property 3. we have v×u = −u×v. The cross product
is useful for example when we need a vector which is orthogonal to two other vectors that
are not parallel. Luckily it is easy to determine its coordinates from the coordinates of the
factors:

Theorem 2.4.9. If u = (u1, u2, u3) and v = (v1, v2, v3) are space vectors, then

u× v =

(∣∣∣∣ u2 u3
v2 v3

∣∣∣∣ ,− ∣∣∣∣ u1 u3
v1 v3

∣∣∣∣ , ∣∣∣∣ u1 u2
v1 v2

∣∣∣∣) .
We omit the proof of this theorem. Note that the cross product can be expressed in the

following form: ∣∣∣∣∣∣
i j k
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ ,
where i, j and k are the unit vectors of the standard basis belonging to the axes x, y and
z, respectively. Of course this is just a formal notation, since we cannot write vectors in a
determinant. But Theorem 2.4.7 hepls us to read this correctly: if we formally expand this
"determinant" along the first row, then we get

u× v =

∣∣∣∣ u2 u3
v2 v3

∣∣∣∣ · i− ∣∣∣∣ u1 u3
v1 v3

∣∣∣∣ · j + ∣∣∣∣ u1 u2
v1 v2

∣∣∣∣ · k,
which is the statement of the previous theorem.

Finally we mention another important theorem in geometry without a proof. Three
position vectors u, v and w determine (span) a parallelepiped in the space whose vertices are
of the form αu+βv+γw, where α, β and γ take the values 0 or 1. Then the signed volume of
this parallelepiped can be expressed by the coordinates of the vectors (signed volume means
that it takes positive sign if the system u, v and w is right-oriented, and takes negative sign
otherwise).
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Theorem 2.4.10. If u = (u1, u2, u3), v = (v1, v2, v3) and w = (w1, w2, w3) are space vectors,
then the signed volume of the parallelepiped spanned by them is∣∣∣∣∣∣

u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ .
2.5 Matrices

We have already worked with matrices in the previous sections, they are simply defined
as tables of numbers. Now we are going to take a closer look at them. They turn out to be
useful for many purposes. In this section we will see how they connect the systems of linear
equations and the space Rn, while later we will use them to represent the elements of a very
important family of functions that are called linear maps.

2.5.1 Matrix Operations

In the following we will define and investigate the basic operations of matrices. Two of
them can be defined like in the case of column vectors:

Definition 2.5.1. For some integers k, n ≥ 1 a matrix of size k×n is a table which contains
k rows and n columns and whose entries are real numbers. The set of the matrices of size
k × n is denoted by Rk×n, while for a matrix A ∈ Rk×n we denote the entry in its ith row
and jth column by ai,j (and similarly for the matrices B,C, . . . this entry is bi,j, ci,j, etc.). If
A,B ∈ Rk×n, then their sum A+B ∈ Rk×n is defined by the following formula:

a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n
...

... . . . ...
ak,1 ak,2 . . . ak,n

+


b1,1 b1,2 . . . b1,n
b2,1 b2,2 . . . b2,n
...

... . . . ...
bk,1 bk,2 . . . bk,n

 =

=


a1,1 + b1,1 a1,2 + b1,2 . . . a1,n + b1,n
a2,1 + b2,1 a2,2 + b2,2 . . . a2,n + b2,n

...
... . . . ...

ak,1 + bk,1 ak,2 + bk,2 . . . ak,n + bk,n

 .

If moreover λ ∈ R is a scalar, then the matrix λA ∈ Rk×n is called a scalar multiple of A and
it is defined by

λ ·


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n
...

... . . . ...
ak,1 ak,2 . . . ak,n

 =


λa1,1 λa1,2 . . . λa1,n
λa2,1 λa2,2 . . . λa2,n
...

... . . . ...
λak,1 λak,2 . . . λak,n

 .

It is an important part of the definition that the sum of two matrices A and B is defined
only if A and B have the same number of rows and the same number of columns (and then
A+B is the element-wise sum of them). As in the case of the vectors we define the subtraction
by A−B := A+ (−1) ·B.
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Notice that the set Rk×n of matrices and the set Rk·n of vectors together with addition
operation and the scalar multiplication are basically the same, they differ only in notation.
In fact a row vector can be regarded as a matrix of size 1× n, while a column vector can be
regarded as a matrix of size k × 1. It is then not surprising that the analogue of Theorem
2.2.1 is true for the matrices as well:

Theorem 2.5.1. If A,B,C ∈ Rk×n are arbitrary matrices and λ, µ ∈ R are scalars, then

(i) (A+B) + C = A+ (B + C) (the addition of matrices is associative),

(ii) A+B = B + A (the addition of matrices is commutative),

(iii) A+ 0 = A, where 0 denotes the zero matrix (whose entries are all zero),

(iv) there is an additive inverse for any matrix, namely A+ (−1) · A = 0 holds, where 0 is
the zero matrix again.

(v) λ(A+B) = λA+ λB,

(vi) (λ+ µ)A = λA+ µA,

(vii) λ(µA) = (λµ)A,

(viii) 1 · A = A.

This theorem follows easily from the definitions above and from the properties of the
operations on real numbers, hence its proof is left to the reader. What makes a difference
between the vectors and matrices is that another operation is defined for matrices, namely
the multiplication:

Definition 2.5.2. If A ∈ Rk×n and B ∈ Rn×m, then their product C = AB is a matrix of
size k ×m whose entries are given by

(6) ci,j = ai,1b1,j + ai,2b2,j + · · ·+ ai,nbn,j

for every 1 ≤ i ≤ k and 1 ≤ j ≤ m.

The product of two matrices is defined only if the number of the columns in the first
matrix is the same as the number of the rows in the second one, and the number of the
rows of the resulting matrix is the same as for the first matrix, while the result has as many
columns as the second matrix. The entry of the result in the ith row and the jth column
is a "scalar product" type sum, namely we take the ith row of the first matrix and the jth
column of the second one, and then multiply the first entry in the row and the first entry in
the column, then we multiply the second entries, and continue this until the last entries. The
sum of these products will be the entry of the resulting matrix. Note that if there is only 3
entries, then this is exactly the scalar product of two space vectors, so (6) generalizes this
operation. Thus, we will call the expression on the right hand side of (6) the scalar product
of the ith row of A and the jth column of B.
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The following figure helps to visualize how the product of matrices is defined:
b1,1 . . . b1,j . . . b1,m
b2,1 . . . b2,j . . . b2,m
... . . . ... . . . ...
bn,1 . . . bn,2 . . . bn,m

 = B

A =


a1,1 a1,2 . . . a1,n
...

... . . . ...
ai,1 ai,2 . . . ai,n
...

... . . . ...
ak,1 ak,2 . . . ak,n




b1,1 . . . ↑ . . . b1,n
... . . . ... . . . ...
← ci,j
... . . . ... . . . ...
bk,1 . . . bk,2 . . . bk,n

 = C = AB.

Recall the definition of the transpose of a matrix (see Definition 2.4.4). In the following
exercise we show some examples for the operations above:

Exercise 2.5.1. Let A and B be the following matrices:

A =

(
2 −1 −5
1 4 −3

)
, B =

(
5 −4
−2 3

)
.

Decide if the following operations are defined and if they are, then calculate the result:

a) 3A+ 9B, b) AB, c) BA, d) BA− 2A e) ATBT .

Solution. a) As 4A ∈ R2×3 and 9B ∈ R2×2, they are not of the same size and hence their
sum is not defined.

b) As A has 3 columns and B has only 2 rows, the operation AB is not defined.
c) The number of the columns of B is the same as the number of rows of A, so the product

BA is defined and the result is in R2×3:(
a2 −1 −5
1 4 −3

)
= A

B =

(
5 −4
−2 3

)(
c1,1 c1,2 c1,3
c2,1 c2,2 c2,3

)
= C = BA,

where

c1,1 = 5 · 2 + (−4) · 1 = 6,

c1,2 = 5 · (−1) + (−4) · 4 = −21,
c1,3 = 5 · (−5) + (−4) · (−3) = −13,
c2,1 = (−2) · 2 + 3 · 1 = −1,
c2,2 = (−2) · (−1) + 3 · 4 = 14,

c2,3 = (−2) · (−5) + 3 · (−3) = 1.

Hence the result is
BA =

(
6 −21 −13
−1 14 1

)
.
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d) As BA and 2A are both in R2×3, we can subtract the second one from the first one:

BA− 2A =

(
6 −21 −13
−1 14 1

)
−
(

4 −2 −10
2 8 −6

)
e) As AT ∈ R3×2 and BT ∈ R2×2, the product ATBT is defined:(

a5 −2
−4 3

)
= BT

AT =

 2 1
−1 4
−5 −3

 d1,1 d1,2
d2,1 d2,2
d3,1 d3,2

 = D = ATBT ,

Observe that here we have to make the same calculations as in the case of BA, only the order
is different. For example d1,1 = 2 · 5 + 1 · (−4) = 6 = c1,1, d1,2 = 2 · (−2) + 1 · 3 = −1 = c2,1.
In general, the calculation of di,j and cj,i requires the same operations, so the result will be
the transpose of C = AB, that is

D = ATBT =

 6 −1
−21 14
−13 1

 .

�
The connection between the results of part c) and part e) follows from the general state-

ment below:

Theorem 2.5.2. Let A and B be matrices. Then the operation AB is defined if and only
the operation BTAT is defined, and in this case (AB)T = BTAT .

Proof. Let A be a matrix of size k×n (and hence equivalently AT ∈ Rn×k), then the product
AB is defined if and only if B is of size n ×m. But this is equivalent to BT ∈ Rm×n which
is equivalent to the existence of the product BTAT . Hence the first part of the statement is
proved.

We set X = AB and Y = BTAT . Then xi,j is the scalar product of the ith row of A and
the jth column of B. As the entries of the jth row of BT are the same as the entries of the
jth column of B, and the same hold for the ith column of AT and the ith row of A, we get
that we make the same computations when calculating the element yj,i, hence xi,j = yj,i for
every 1 ≤ i ≤ k and 1 ≤ j ≤ m, i.e. XT = Y .

Now we turn to the main properties of the matrix multiplication. We have already seen
that it cannot be commutative, since it can happen that AB is defined but BA is not (see
part b) of the previous exercise). But AB = BA does not hold in general even in the case
when both sides are defined. For example, when

A =

(
0 1
0 0

)
and B =

(
1 0
0 0

)
,

then AB is the zero matrix but BA is not. But the other properties that are usual for the
multiplication of real numbers hold for the matrix multiplication as well:

Theorem 2.5.3. Assume that A, B and C are matrices and λ ∈ R is a scalar. Then for
each of the following equations its left hand side is defined if and only if its right hand side
is defined, and in that case the equations hold:
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(i) (λA)B = λ(AB) = A(λB),

(ii) A(B + C) = AB + AC and (B + C)A = BA + CA (distributive law for the matrix
operations),

(iii) (AB)C = A(BC) (the matrix multiplication is associative).

Proof. We begin with the proof of (i), and we only prove the first equality, the other one
follows similarly. Now A ∈ Rk×n if and only if λA ∈ Rk×n, so the existence of the result
on both sides is equivalent to B ∈ Rn×m. So assume that B is a matrix of size n × m,
X = AB, Y = λ(AB) and Z = (λA)B. By the definition of the matrix multiplication
we have xi,j = ai,1b1,j + · · · + ai,nbn,j for every 1 ≤ i ≤ k and 1 ≤ j ≤ m, and hence
yi,j = λ(ai,1b1,j + · · · + ai,nbn,j). We also have zi,j = (λai,1)b1,j + · · · + (λai,n)bn,j from the
definition, and then the basic properties of the operations on the real numbers give that
yi,j = zi,j.

Now we turn to the proof of (ii). Again, we show only the first equality, the proof of the
second one is similar. If A ∈ Rk×n, then both sides are defined if and only if B,C ∈ Rn×m.
So assume that B and C are of size n×m, and set X = AB, Y = AC and Z = A(B + C).
By definition, we have:

xi,j = ai,1b1,j + · · ·+ ai,nbn,j,

yi,j = ai,1c1,j + · · ·+ ai,ncn,j,

zi,j = ai,1(b1,j + c1,j) + · · ·+ ai,n(bn,j + cn,j)

for every 1 ≤ i ≤ k and 1 ≤ j ≤ m. As zi,j = xi,j + yi,j for every i, j, we get the statement.
Finally, we turn to the proof of (iii). Let A ∈ Rk×n, then the left hand side is defined

if and only if B ∈ Rn×m and (as AB ∈ Rk×m, we must have) C ∈ Rm×t. But this is also
equivalent to existence of the product BC ∈ Rn×t and the product A(BC) ∈ Rk×t. So assume
that B is of size n ×m while C is of size m × t, and set X = AB and Y = XC = (AB)C.
Then

xi,j = ai,1b1,j + · · ·+ ai,nbn,j

for every 1 ≤ i ≤ k and 1 ≤ j ≤ m, so

yi,j = xi,1c1,j + · · ·+ xi,mcm,j,

= (ai,1b1,1 + · · ·+ ai,nbn,1)c1,j + (ai,1b1,2 + · · ·+ ai,nbn,2)c2,j

+ · · ·+ (ai,1b1,m + · · ·+ ai,nbn,m)cm,j.

Applying the distributive law for the reals we get that yi,j is the sum of all the products
of the form ai,rbr,scs,j where 1 ≤ r ≤ n and 1 ≤ s ≤ m. A similar computation shows
that the corresponding entry of A(BC) is the same sum. We omit the details of this latter
computation.

The multiplication of the real numbers has another important property. The number 1
has a special role, since 1 · a = a · 1 = a holds for every number a ∈ R. There is an analogue
of this property for matrices as well.

Definition 2.5.3. The matrix of size n× n whose entries in its main diagonal are 1 and all
its other entries are 0 is called the identity matrix in Rn×n. It is denoted by In or (if the size
of the matrix is clear from the context, then) simply by I.
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Proposition 2.5.4. If A ∈ Rk×n, then IkA = AIn = A.

Proof. We prove the statement for AIn, the proof of the another part is similar. So if C = AIn,
then by definition we have

ci,j = ai,1 · 0 + · · ·+ ai,j−1 · 0 + ai,j · 1 + ai,j+1 · 0 + · · ·+ ai,n · 0 = ai,j,

hence the statement follows.

Finally, the following theorem connects the product of the matrices and the determinant:

Theorem 2.5.5. If A,B ∈ Rn×n, then detAB = detA · detB.

For the proof we will use an analogue of Theorem 2.4.4:

Lemma 2.5.6. Assume that A,B ∈ Rn×n, λ ∈ R is a scalar and 1 ≤ i, j ≤ n, i 6= j are
integers.

(i) If we multiply a row of A or a column of B by λ element-wise, then for the resulting
matrices A′ and B′ we have

detA′B = detAB′ = λ · detAB

and
detA′ · detB = detA · detB′ = λ · detA · detB.

(ii) If we interchange two rows of A or two columns of B, then for the resulting matrices
A′ and B′ we have

detA′B = detAB′ = (−1) · detAB

and
detA′ · detB = detA · detB′ = (−1) · detA · detB.

(iii) If we replace the ith row of A (or the ith column of B) by the (element-wise) sum of
itself and λ times the jth row of A (λ times the jth column of B), then for the resulting
matrices A′ and B′ we have

detA′B = detAB′ = detAB

and
detA′ · detB = detA · detB′ = detA · detB.

Proof. First note that the second statements in (i), (ii) and (iii) are immediate consequences
of Theorem 2.4.4, hence it remains to show the first statements. For the proof of (i) observe
that if we multiply the ith row of A by λ getting the matrix A′, then by the definition of the
matrix multiplication we have that A′B is obtained from AB by multiplying the ith row of
the latter product by λ. Hence detA′B = λ · detAB follows from part (i) of Theorem 2.4.4.
Similarly, if we multiply the ith column of B by λ producing the matrix B′, then the product
AB′ is obtained from AB by multiplying its ith column by λ, and detAB′ = λ · detAB
follows as above. The proofs of the other statements are similar and left to the reader.
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Proof of Theorem 2.5.5 As in the first phase of the Gaussian elimination one can perform
the steps described in part (i), (ii) and (iii) of the lemma above on the matrix A to obtain
an upper triangular matrix A′. By the lemma we have that detA′B = c · detAB and
detA′ · detB = c · detA · detB for the same non-zero real number c.

By performing analogous steps on the columns of B one can obtain an upper triangular
matrix B′ so that detA′B′ = c′ · detA′B and detA′ · detB′ = c′ · detA′ · detB hold for the
same non-zero constant c′. This can be done in the following way: we start in the last row of
B and swap a non-zero entry in the last place if necessary. Then we eliminate all the other
non-zero entries on the left of the last entry in the row. After this we continue in the previous
row where all the entries on the left of the main diagonal will be eliminated. If the entry in
the main diagonal is 0, then first we interchange this with a non-zero entry on the left of the
diagonal. If every entry of a row on the left of the main diagonal is also zero, then of course
we can simply continue with the previous row.

Hence
detAB = cc′ · detA′B′, detA · detB = cc′ · detA′ · detB′,

where A′ and B′ are upper triangular. As c and c′ above are non-zero, it remains to show the
statement for upper triangular matrices. But for an upper triangular matrix its determinant
is the product of the entries in its main diagonal by Theorem 2.4.2. So if the entries of the
main diagonal of A′ and B′ are a1,1, . . . , an,n and b1,1 . . . , bn,n, respectively, then

detA′ · detB′ = a1,1 . . . an,nb1,1 . . . bn,n.

On the other hand, the product A′B′ is also an upper triangular matrix, and the entries in
its main diagonal are a1,1b1,1, . . . , an,nbn,n by the definition of the matrix multiplication, so
the product on the left hand side of the last equation is in fact detA′B′. �

2.5.2 Matrix Multiplication and Systems of Linear Equations

Assume that the matrix A and the vector b are the following:

A =


2 −1 6
2 2 3
6 −1 17
4 −1 13

 , b =


12
24
46
32

 .

Consider the following problem: we are looking for those vectors x for which the equality
Ax = b holds. That is, we would like to solve this matrix equation. First of all, as A has 3
columns, the numbers of the rows of x must be 3 as well. Also, the result is of size 4× 1, so
the number of the columns of x is necessarily 1, hence the equation Ax = b can hold only if
x ∈ R3×1, i.e. if x is a 3-dimensional column vector. Let us write

x =

 x1
x2
x3

 ,

then by the definition of matrix multiplication we have

Ax =


2x1 − x2 + 6x3
2x1 + 2x2 + 3x3
6x1 − x2 + 17x3
4x1 − x2 + 13x3

 .
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This vector equals to b, then this is equivalent to the following system (by equating the
coordinates of b and the product above):

2x1− x2+ 6x3 =12

2x1+2x2+ 3x3 =24

6x1− x2+17x3 =46

4x1− x2+13x3 =32

We have already solved this system in Section 2.3.1 as the first example for the Gaussian
elimination, its unique solution is

x =

 3
6
2

 .

We see that the matrix equation Ax = b above is equivalent to a system of linear equations.
These systems occurred also when we examined the spanned subspaces of vectors in Rn. The
following theorem describes these connections precisely:

Theorem 2.5.7. Assume that a1, a2, . . . , an, b ∈ Rk are vectors and let A be the matrix whose
ith column is the vector ai for every 1 ≤ i ≤ n (and hence A ∈ Rk×n). Then the following
are equivalent:

(i) the matrix equation Ax = b has a solution,

(ii) the system of linear equations given by the augmented coefficient matrix (A|b) is solvable,

(iii) b ∈ span {a1, . . . , an}.

Proof. The vector b is in the span of the vectors a1, . . . , an if and only if λ1a1+ · · ·+λnan = b
holds for some real numbers λ1, . . . , λn ∈ R. If the ith coordinate of the vector aj is denoted
by ai,j, then the ith coordinate of a linear combination λ1a1+ . . . , λnan is ai,1λ1+ · · ·+ai,nλn.
Since λ1a1 + · · · + λnan = b holds if and only if the coordinates on the right and left hand
side are the same, respectively, it is then equivalent to ai,1λ1 + · · · + ai,nλn = bi for every
1 ≤ i ≤ k, where bi is the ith coordinate of b. But this means exactly that the system
of linear equations given by the matrix (A|b) is solvable, so (ii) and (iii) equivalent to each
other.

Now we turn to the equivalence of (i) and (ii). Observe that if Ax = b is solvable, then
(as the product on the left hand side exists) x ∈ Rn×1 must hold, since the number of its
rows must be the number of the columns of A while the number of its columns must be the
number of the columns of b. If we denote the jth coordinate of x by xj for every 1 ≤ j ≤ n,
then the ith coordinate of the product Ax is ai,1x1+ai,2x2+ · · ·+ai,nxn by definition. Hence
Ax = b is solvable if and only if x ∈ Rn×1 and ai,1x1 + ai,2x2 + · · · + ai,nxn = bi holds for
every 1 ≤ i ≤ k, that is, if and only if the system given by (A|b) is solvable.

Observe that the proof above gives more. The solvability of the equation Ax = b and
the system (A|b) is not just equivalent, but the solutions are basically the same. This means
that if x1, . . . , xn is a solution of the system if and only if the vector x = (x1, . . . , xn)

T is a
solution of Ax = b. Also, this holds if and only if the vector b can be expressed as the linear
combination of the ai’s with the scalars x1, . . . , xn.

Accordingly, we may use the notation Ax = b for the system given by (A|b). We also
note that the equivalence of (i) and (iii) together with the remark above can be expressed
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in the following way: the vector x is the solution of the equation Ax = b if and only if b
can be expressed as the linear combination of the columns of A with the coordinates of x as
coefficients. This and Theorem 2.2.4 together give the following:

Corollary 2.5.8. Assume that a1, a2, . . . , an ∈ Rk are vectors let A be the matrix whose ith
column is the vector ai for every 1 ≤ i ≤ n (and hence A ∈ Rk×n). Then the following are
equivalent:

(i) the system of linear equations Ax = 0 has the unique solution x = 0,

(ii) the vectors a1, . . . , an are linearly independent.

This leads us to an important property of square matrices:

Theorem 2.5.9. Assume that A ∈ Rn×n is a square matrix. Then the following are equiva-
lent:

(i) the columns of A as vectors in Rn are linearly independent,

(ii) the rows of A as row vectors of length n are linearly independent,

(iii) detA 6= 0.

Note that we have not defined the linear combinations and linear independence of row
vectors, but it can be done in an analogous way as in the case of column vectors. Also,
the statement (ii) can be understood so that the transposes of the row vectors (regarded as
elements of Rn) are linearly independent.

Proof. By the previous corollary (i) holds if and only if the system Ax = 0 has a unique
solution. By Theorem 2.4.6 this is equivalent to detA 6= 0. By Theorem 2.4.3 (and by the
equality (AT )T = A which holds for every matrix) this is equivalent to detAT 6= 0. As we
have seen, this holds if and only if the columns of AT are independent. As the columns of
AT are the transposes of the rows of A, the statement follows.

Note that for space vectors this means that they are independent if and only if the 3× 3
determinant consisting of their coordinates is non-zero. But by Theorem 2.4.10 this is nothing
else than the signed volume of the parallelepiped spanned by the vectors. This means that
this volume is non-zero if and only if the vectors are independent, i.e. they are not co-planar
- which agrees with the natural intuition about the volume.

2.5.3 The Inverse of a Matrix and its Calculation

A system of linear equations can be written in a form Ax = b by Theorem 2.5.7, where A
is the coefficient matrix and b is the vector whose coordinates are the constants on the right
hand sides of the equations. As formally there is a matrix multiplication on the left hand
side, it seems a natural question if there is an analogue of the division for matrices, since in
that case we could hope for a solution by "dividing both sides by A". It turns out that the
answer for this question is (at least in partly) positive. This means that in some cases we
have this analogue. To understand the following notion correctly we note that the division
by a real number a is nothing else than the multiplication by its reciprocal 1/a = a−1. Now
we introduce the corresponding notion for matrices (and use the latter notation to emphasize
the similarity):
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Definition 2.5.4. Assume that A ∈ Rn×n, then the matrix X ∈ Rn×n is called the inverse
of A if AX = In = XA holds. In this case we use the notation X = A−1.

It is important part of the definition that the inverse is defined only for a square matrix.
Also, if it exists, then it is unique. Indeed, if XA = I = AX and Y A = I = AY hold for the
matrices X and Y , then

X = XI = X(AY ) = (XA)Y = IY = Y

by Proposition 2.5.4 and by the associativity of the matrix multiplication. So the notation
A−1 is justified by the uniqueness, and from now on we can talk about the inverse of a matrix
- at least if it exists. It is easy to see that there are matrices whose inverse exists, for example
I−1 = I by Proposition 2.5.4. Unfortunately this is not always the case, but the next theorem
gives a complete answer for this question:

Theorem 2.5.10. The matrix A ∈ Rn×n has an inverse if and only if detA 6= 0.

Proof. Assume first that A−1 exists. It follows easily from the definition of the determinant
(or by part (ii) of Theorem 2.4.2) that det In = 1 for every n. Then by Theorem 2.5.5 we
have 1 = det In = det(AA−1) = detA · detA−1, and hence detA 6= 0 must hold.

For the other direction we need the following lemma:

Lemma 2.5.11. If A ∈ Rn×n and detA 6= 0, then there exists a unique matrix X ∈ Rn×n

for which AX = In holds.

Proof. If AX = In holds, then of course X must be of size n× n. So let x1, . . . , xn ∈ Rn be
the columns of the matrix X. Observe that the ith column of AX is Axi by the definition
of the matrix multiplication. Hence the equation AX = In holds if and only if the equation
Axi = ei holds for every 1 ≤ i ≤ n, where e1, e2, . . . , en are the columns of In, i.e. the vectors
of the standard basis of Rn (see page 46). Since detA 6= 0 by our assumption, each of these
equations has a unique solution by Theorem 2.4.6, and the statement follows.

Now we return to the proof of the theorem. By the lemma there is a unique matrix X
for which AX = I holds. We will show that in this case XA = I holds as well. By Theorem
2.5.5 we have 1 = det I = det(AX) = detA · detX, so detX 6= 0 holds and hence the lemma
above is applicable for X as well. Thus, there is a unique matrix Y for which XY = I holds.
Now Proposition 2.5.4 and the associativity of the matrix multiplication give

Y = IY = (AX)Y = A(XY ) = AI = A,

hence XA = I and the theorem follows.

Now if a system of linear equations if given by the matrix equation Ax = b, where
A ∈ Rn×n (which means that the number of equations is the same as the number of variables),
and detA 6= 0 also holds, then we can multiply the equation by A−1 from the left to obtain

(7) x = Inx = (A−1A)x = A−1(Ax) = A−1b,

so the unique solution of the system is A−1b. This means that the system can be solved by
a matrix multiplication if the matrix A−1 is known. But observe that the proof above gives
a method also for the computation of the inverse (if detA 6= 0). By its last paragraph it
is enough to determine the matrix X for which AX = I holds, it will be automatically the
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inverse of A. By the proof of Lemma 2.5.11 this can be done by solving the systems given
by Ax = ei for every 1 ≤ i ≤ n using Gaussian elimination (for example).

An advantage of this method is that it is not necessary to run the Gaussian elimination
n times, the systems can be solved simultaneously. Indeed, the coefficient matrices of the
systems agree, so the algorithm makes the same steps in all cases, we only have to keep track
of the changes of all vectors on the right hand sides of the equations. That is, we write down
the matrix (A| e1 e2 . . . en) and run the Gaussian elimination for this matrix (note that the
steps are determined only by the coefficient matrix A). If the determinant is 0, then at some
point we get 0 in the main diagonal so that all the entries in its column are 0 below it and
we can stop (just like in line 16 of the algorithm for the calculation of the determinant, see
page 67). Otherwise, after the algorithm stops, we obtain the reduced row echelon form on
the left side of the vertical line, which is the matrix In in this case. So the result will be of
the form (In|x1 . . . xn) where xi is the solution of the system Ax = ei, that is, on the right
side of the line we get the inverse of A.

We demonstrate this method by an example. Let us calculate the inverse of the matrix

A =

 1 −3 7
−1 3 −6
2 −5 12

 .

We are going to run the Gaussian elimination for the matrix (A|I3): 1 −3 7 1 0 0
−1 3 −6 0 1 0
2 −5 12 0 0 1

 ∼
 1 −3 7 1 0 0

0 0 1 1 1 0
0 1 −2 −2 0 1

 ∼
The leading coefficient in the first row is already 1 in the beginning, so in the first step we
eliminate the non-zero elements below it: we add the first row to the second one and subtract
2 times the first row from the third one. After these steps the second entry of the second
row is zero, but we can swap the second and the third row to obtain a non-zero entry in the
main diagonal:

∼

 1 −3 7 1 0 0
0 1 −2 −2 0 1
0 0 1 1 1 0

 ∼
The arising matrix is already of row echelon form, so we turn to the second phase of the
elimination. We eliminate the non-zero entries above the leading coefficient in the last row
by adding 2 times the last row to the second one and subtracting 7 times the last row from
the first one. Finally, we add 3 times the second row to the first one:

∼

 1 −3 0 −6 −7 0
0 1 0 0 2 1
0 0 1 1 1 0

 ∼
 1 0 0 −6 −1 3

0 1 0 0 2 1
0 0 1 1 1 0

 .

At this point the algorithm stops and the columns on the right side of the vertical line form
the inverse of A:

A−1 =

 −6 −1 3
0 2 1
1 1 0

 .
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Now assume that we want to solve the system

x1−3x2+ 7x3 =p,

−x1+3x2− 6x3 =q,

2x1−5x2+12x3 =r.

This is equivalent to the equation Ax = b where A is the matrix above and b = (p, q, r)T . As
detA 6= 0 and hence its inverse exists, we get by (7) that

x = A−1b =

 −6p− q + 3r
2q + r
p+ q

 ,

so the unique solution of the system is x1 = −6p− q + 3r, x2 = 2q + r and x3 = p+ q.

This algorithm above works well in practice, but now we also give a formula for the inverse
which is often useful in theoretical arguments. If A ∈ Rn×n, then let Â ∈ Rn×n be the matrix
whose entry âi,j in the ith row and in the jth column is the cofactor Cj,i assigned to the entry
aj,i of A (given in Definition 2.4.5). Note that the indeces i, j are swapped in the definition
of âi,j. Then Theorem 2.4.7 and Corollary 2.4.8 together give that

(8) AÂ =


detA 0 . . . 0
0 detA . . . 0
...

... . . . ...
0 0 . . . detA

 ,

so we have the following:

Theorem 2.5.12. If A ∈ Rn×n and detA 6= 0, then

(9) A−1 =
1

detA
Â.

In general it is rather tiresome to calculate Â based on its definition, but for n = 2 it is
in fact very easy, since the minors of the matrix are 1× 1 determinants whose values are just
their single entry. So if

A =

(
a b
c d

)
,

whose determinant (given explicitly in (5)) is non-zero, then

(10) A−1 =
1

detA

(
detM1,1 − detM2,1

− detM1,2 detM2,2

)
=

1

ad− bc

(
d −b
−c a

)
.

We can use the theorem above to give an exact formula for the unique solution of a system
Ax = b, where A ∈ Rn×n and detA 6= 0. As we have seen in (7), this is

A−1b =
1

detA
Âb,

so the value of the variable xi is
1

detA

n∑
k=1

Ck,ibk.

If Bi is the matrix which is obtained from A when replacing its ith column by b, then the
latter sum is just the determinant of Bi expanded along the ith column, so we have
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Theorem 2.5.13 (Cramer’s rule). Assume that the system of linear equations is given by
Ax = b, where A ∈ Rn×n and detA 6= 0. Then the unique solution of the system is

xi =
detBi

detA
(1 ≤ i ≤ n),

where Bi is the matrix obtained from A when replacing its ith column by the vector b.

As in the case of Theorem 2.5.12 we have to warn the reader that this formula is not
practical for the calculation of the solution in general. But for n = 2 it is simple enough to
take a closer look at it. So if we have the system

a1,1x1 + a1,2x2 = b1,

a2,1x1 + a2,2x2 = b2,

then
A =

(
a1,1 a1,2
a2,1 a2,2

)
, B1 =

(
b1 a1,2
b2 a2,2

)
, B2 =

(
a1,1 b1
a2,1 b2

)
,

and if detA = a1,1a2,2 − a1,2a2,1 6= 0, then the unique solution is given by

x1 =
detB1

detA
=

a2,2b1 − a1,2b2
a1,1a2,2 − a1,2a2,1

, x2 =
detB2

detA
=

a1,1b2 − a2,1b1
a1,1a2,2 − a1,2a2,1

.

Recall that these are the same formulae that were given at the beginning of Section 2.4.
Finally, we show another quick application of Theorem 2.5.12. Note that if the entries

of the matrix A are rational numbers, then so are the entries of Â (because its entries are
determinants with rational entries multiplied by ±1, so every operation that we make by
the calculation of Â gives a rational result). Also, the determinant of A is rational, so (9)
gives that A−1 has rational entries. In fact this follows also from the algorithm above for
the calculation of the inverse. But the formula in (9) gives even more when we repeat this
argument with integer entries. Namely, if the entries of A are integers, then so are the entries
of Â, so we immediately get

Corollary 2.5.14. Assume that A ∈ Rn×n and the entries of A are integers. If detA = ±1,
then the entries of A−1 are also integers.

This is a basic (and very important) fact in number theory, but we do not go into that
direction.

2.5.4 The Rank of a Matrix

The columns of a matrix A of size k × n can be regarded as a system of vectors in Rk.
Also, the rows of this matrix constitute a system of row vectors of length n. At first sight one
may see no connection between these two systems. But Theorem 2.5.9 tells us that in the
special case when A is a square matrix, its columns are independent if and only if its rows
are independent, and both of these are equivalent to detA 6= 0. In this section we generalize
this result for an arbitrary matrix.

Definition 2.5.5. Assume that A ∈ Rk×n and r ≤ min{k, n}. An (r× r) square sub-matrix
of A is formed by the common entries of r arbitrary columns and r arbitrary rows of A.
An r × r minor of A (or a minor determinant of order r) is the determinant of an r × r
square sub-matrix of A. A minor of order 0 is defined to be 1. If k = n (i.e. A is a square
matrix), then an r× r minor is also called an (n− r)th minor. The zeroth minor is then the
determinant of A.
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Figure 1: A sub-matrix of size 3×3 is formed by the common entries of 3 rows and 3 columns

Figure 1 illustrates the choice of a 3× 3 sub-matrix M of a matrix A of size 5× 10, where
the 2nd, 3rd and 5th rows and the 3rd, 7th and 9th columns are chosen, so the entries of M
are the following:

M =

 a2,3 a2,7 a2,9
a3,3 a3,7 a3,9
a5,3 a5,7 a5,9

 .

Definition 2.5.6. Assume that A ∈ Rk×n.

(i) The column rank of A is r if r columns of A can be chosen so that they are linearly
independent (as vectors in Rk), but any system of r + 1 columns of A is linearly
dependent. We use the notation rc(A) for the column rank of A.

(ii) The row rank of A is r if r rows of A can be chosen so that they are linearly independent
(as row vectors of length n), but any system of r + 1 rows of A is linearly dependent.
We use the notation rr(A) for the row rank of A.

(iii) The determinantal rank of A is r if A has non-zero r × r minor, but every minor of A
of order r + 1 is zero. We use the notation rd(A) for the determinantal rank of A.

Note that the column, row and determinantal rank is determined uniquely by the previous
definitions. Indeed, if there is no linearly independent system which consits of r + 1 column
vectors of A, then more than r + 1 columns of A cannot be independent, since in that case
any r+1 vectors of that system would be independent. So rc(A) is the maximal integer r for
which there exists a linearly independent system of r column vectors of A. Similarly, rr(A)
is the maximal number r for which there exists an independent system of r row vectors of A.

Turning to the determinantal rank, we show by induction that if every minor of A of order
r + 1 is zero, then so is every minor of order r + n for every integer n ≥ 1. The statement
holds for n = 1 by assumption. It remains to show that if n > 1 and the statement holds for
n− 1, then it is also true for n. But this follows from the Laplace expansion, since a minor
of order r+n, i.e. the determinant of an (r+n)× (r+n) sub-matrix M of A can be written
as a sum

n+r∑
k=1

(−1)k+1ak detMk

when expanded along its first row (for example). Here Mk is a (r + n − 1) × (r + n − 1)
sub-matrix of M and hence also a sub-matrix of A, so detMk is an (r+ n− 1)× (r+ n− 1)
minor of A and hence it is zero for every k by assumption. Hence rd(A) is the maximal
integer r for which A has a non-zero minor of order r.

For the zero matrix 0 we have rc(0) = rr(0) = 0, since any column or row of it is the zero
vector which is itself dependent (while the empty set of vectors is independent by definition).

86



Also, among the minors of the zero matrix only the minor of order 0 is different from zero
(by definition), so rd(0) = 0 holds as well.

Now we compute these values for the matrix

A =

 1 3 5 7
9 11 13 15
17 19 21 23

 .

Let us denote the ith row of A by ri while the jth column by cj (1 ≤ i ≤ 3 and 1 ≤ j ≤ 4).
Now for example c1 and c2 are independent, because they are not the scalar multiple of each
other, but

c1 − 2c2 + c3 = 0,

2c1 − 3c2 + c4 = 0,

c1 − 3c3 + 2c4 = 0,(11)
c2 − 2c3 + c4 = 0,

and hence any 3columns of A are dependent, so rc(A) = 2. Similarly, r1 and r2 are inde-
pendent, but r1 − 2r2 + r3 = 0 shows that the 3 rows together are dependent, and then
rr(A) = 2.

Finally, the first and the last rows and columns determine the minor∣∣∣∣ 1 7
17 23

∣∣∣∣ = 1 · 23− 17 · 7 = −96 6= 0,

but if we chose 3 columns and (all the) 3 rows, then the corresponding minor will be zero.
This follows easily from the equations in (11), since they show that if an appropriate scalar
multiples of the second and third chosen columns are added to the first one, then the first
column will be identically zero, and then the determinant is zero as well (by part (i) of
Theorem 2.4.2). This gives that rd(A) = 2.

The values of the 3 different ranks of A were the same in the previous example. The
following statement shows that this is not a coincidence:

Theorem 2.5.15. For every matrix A ∈ Rk×n we have rc(A) = rr(A) = rd(A).

Proof. If A is the zero matrix, then all of the three types of the rank are zero. So we can
assume that A is non-zero, and hence rc(A), rr(A) and rd(A) are positive integers.

First we show that rc(A) ≥ rd(A). Assume that rd(A) = r, it is then enough to choose r
columns of A so that they are linearly independent. As rd(A) = r, there is a non-zero minor
of A of order r. That is, A has a sub-matrixM of size r×r so that detM 6= 0. Let AM denote
the sub-matrix of A formed by the r columns of A that are chosen by the construction of
the sub-matrix M . We show that the columns of AM are independent. Assume that a linear
combination of them with the coefficients x1, . . . , xr gives the zero vector. Then AMx = 0
for the vector x = (x1, . . . , xr)

T . This matrix equation encodes a system of linear equations
with the coefficient matrix AM where the constants on the right hand sides are all zero.
Let us omit some equations from this system (which means the omission of some rows of
AM). Namely, we keep only those equations that belong to the rows that are chosen by the
construction of M , i.e. we keep only these rows of AM and hence the resulting coefficient
matrix of this new system is M itself. The remaining equations still hold for x1, . . . , xn, so
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Mx = 0 follows. This gives that the linear combination of the columns of M with the scalars
x1, . . . , xr is zero. As detM 6= 0, we have by Theorem 2.5.9 that the columns of M are
independent, hence x1 = · · · = xr = 0 must hold by Theorem 2.2.4. We conclude that a
linear combination of the columns of AM gives the zero vector if only if every coefficient is
zero, i.e. they are linear independent by Theorem 2.2.4 again.

For the proof of the inequality rc(A) ≤ rd(A) we are going to use the following

Lemma 2.5.16. Assume that the columns of a matrix C ∈ Rk×n (as vectors in Rk) are
linearly independent. If k > n, then there is a row of C which can be omitted so that the
columns of the resulting matrix C ′ ∈ R(k−1)×n are still linearly independent.

Proof. Let us denote the columns of C by c1, . . . , cn. If W = span {c1, . . . , cn}, then there is
a generating system of size n in W . Now if k > n, then we cannot find k independent vectors
in W by the I-G inequality (Theorem 2.2.5). So there is a vector among the vectors of the
standard basis of Rk (i.e. among the columns of the identity matrix Ik) that is not in W .
Assume that the vector ej (i.e. the vector whose jth coordinate is 1 and all the others are
zero) has this property (1 ≤ j ≤ k). We show that we can omit the jth row of C so that the
columns of the resulting matrix C ′ are independent.

Assume to the contrary that the columns of C ′ are dependent and hence the equation
C ′x = 0 for some x 6= 0. Than Cx 6= 0, because the columns of C are independent. But Cx
is is obtained by inserting the scalar product α of the jth row of C and x in C ′x after the
(j − 1)th coordinate, hence α 6= 0 and Cx = αej, i.e. α−1Cx = C(α−1x) = ej contradicting
ej /∈ W .

Now we turn to the proof of rc(A) ≤ rd(A). Assume that rc(A) = r, and the columns
c1, . . . , cr of A are linearly independent. As A ∈ Rk×n, the vectors cj are in Rk, so we must
have k ≥ r by the I-G inequality, since there is a generating system in Rk which consists of
k vectors. Let C be the matrix whose jth column is cj. If k > r, then we can omit a row of
C getting the matrix C ′ ∈ R(k−1)×r so that its columns are still independent. If k − 1 > r,
then we can continue this process, and after (k − r) steps we get a matrix M ∈ Rr×r so
that its columns are linearly independent. By Theorem 2.5.9 we have detM 6= 0, and hence
rd(A) ≥ r.

We have proved that rc(A) ≤ rd(A) and rc(A) ≥ rd(A), i.e. rc(A) = rd(A) holds for any
matrix A. As the rows of A are the columns of AT , we get rr(A) = rc(A

T ) = rd(A
T ) by the

previous paragraphs. Since the square sub-matrices of AT are the transposes of the square
sub-matrices of A and hence by Theorem 2.4.3 the minors of AT are the same as the minors
of A, we obtain that the maximal order of the non-zero minors (i.e. the determinantal rank)
is the same for A and AT . This means that rr(A) = rd(A

T ) = rd(A), and the proof of the
theorem is complete.

Definition 2.5.7. If A ∈ Rk×n, then the common value of rc(A), rr(A) and rd(A) is called
the rank of A. It is denoted by rk(A) or rank(A).

Theorem 2.5.17. Assume that A ∈ Rk×n and let us denote its jth column by aj for any
1 ≤ j ≤ n. Then rank(A) is the dimension of span {a1, . . . , an}.

Proof. If rank(A) = r, then we can choose r vectors from the column vectors of A so that
they are independent, but any r + 1 of them are dependent. After a possible renumbering
we may assume that a1, . . . , ar are the chosen vectors. It is enough to show that these form
a basis in the subspace W = span {a1, . . . , an}.
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The vectors a1, . . . , ar are independent by our choice, so it remains to show that they
span W , that is, if U = span {a1, . . . , ar}, then U = W . It is obvious that U ⊂ W since
every linear combination of a1, . . . , ar is also a linear combination of a1, . . . , an. Hence we
need to show that W ⊂ U . For every r < i ≤ n the system a1, . . . , ar, ai is dependent (by
the definition of the rank r) and hence by Lemma 2.2.6 we have ai ∈ U . But a1, . . . , ar ∈ U
holds as well, because they span U , so we obtain that ai ∈ U for every 1 ≤ i ≤ n. But U is a
subspace of Rk, so it is closed under addition and scalar multiplication, so every element of
W is in U and we are done.

Exercise 2.5.2. Assume that A and B are matrices and the product AB is defined. Show
that rank(AB) ≤ rank(A).

The Computation of the Rank

Now we give an effective algorithm for the computation of the rank. As in many cases
before, a version of the Gaussian elimination is applicable here. We will apply its steps for an
arbitrary matrix (instead of an augmented coefficient matrix), and the following proposition
tells us that these steps does not change the rank.

Proposition 2.5.18. The elementary row operations (see Definition 2.3.1) does not change
the rank of a matrix.

Proof. Assume that c1, . . . , cm are some of the columns of a matrix A, and they form the
sub-matrix A′ of A. By Corollary 2.5.8 the columns of A′ are independent if and only if the
system A′x = 0 has the unique solution x = 0. Assume that we apply an elementary row
operation on A. Parallel to this, let us apply the same operation on the augmented coefficient
matrix (A′|0). By Proposition 2.3.1 this does not change the set of the solutions of the system
(A′|0), so the solution of the original system is unique if and only if the resulting system has a
unique solution, or equivalently, if and only if the columns of the resulting coefficient matrix
are independent (this last equivalence follows from Corollary 2.5.8 again). But the columns of
the resulting coefficient matrix are the same as the columns that are obtained from c1, . . . , cm
after the row operation on the matrix A (because A′ is formed by the columns c1, . . . cm), let
us denote them by d1, . . . , dm. We get that c1, . . . , cm are independent if and only if d1, . . . , dm
are, so the column rank is the same before and after the application of the operation, and
the statement follows.

Proposition 2.5.19. If a matrix is of row echelon form, then its rank is the number of its
rows.

Proof. Assume that the matrix A ∈ Rk×n is of row echelon form. As every row of it contains
a leading coefficient which is 1, and any two of them are in different columns, we get that
the matrix has at least as many columns as rows, that is, k ≤ n. We are going to show
that rank(A) = k. Let us examine the sub-matrix M of size k × k which is obtained by the
common entries of all of the rows of A and the columns which contain a leading coefficient.
Let us denote these columns by c1, . . . , ck in order. Since A is of row echelon form, the ith
coordinate of ci is 1 while its jth coordinate is zero for all i < j ≤ k. That is, M is an upper
triangular matrix and all of its entries in the main diagonal are 1. Hence detM = 1 6= 0, so
rd(A) ≥ k. But since there is only k rows of A, we have k ≥ rr(A) = rank(A) = rd(A) ≥ k,
and then rank(A) = k.
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It is now easy to construct an algorithm for the calculation of the rank. We have already
seen in Section 2.3.2 that the row echelon form can be reached by elementary row operations.
Namely, we can simply run the first phase of the Gaussian elimination for the matrix with
some modifications, as in this case there are no associated equations and hence we do not
have to keep track of the changes of the right hand sides, accordingly, we cannot obtain a
forbidden row. However, we still can get identically zero rows which can be omitted (this is
also an elementary row operation). In other words, we apply the algorithm given by the a
code on page 57 without the lines 23 − 25. The resulting matrix has the same rank as the
original one by Proposition 2.5.18, and this rank is the number of the rows of the result by
the last proposition above.

Note that

rank(A) = rr(A) = rc(A
T ) = rank(AT ).(12)

So if we apply an elementary operation on columns instead of rows, then this means the
same as the application of the corresponding operation for the rows of AT and then taking
the transpose again, hence it does not change the rank of the matrix. To be precise, let Tc(A)
be the result of an elementary operation on the columns of a matrix A while we define Tr(A)
to be the result of the corresponding operation on the rows. Then

rank(Tc(A)) = rank([Tr(A
T )]T ) = rank(Tr(A

T )) = rank(AT ) = rank(A).

Here the first equality means that if we apply the operation on the columns, then we get
the same matrix as if we apply the corresponding row operation on the transpose and then
transpose the result back. The second equality follows from our observation (12) above, while
the next one is just the application of Proposition 2.5.18 for AT , and finally we apply (12)
again. Hence Proposition 2.5.18 holds for also for elementary column operations. This often
makes the calculation easier in practice. We repeat the statement in

Corollary 2.5.20. The elementary column operations does not change the rank of a matrix.

Finally, we address the following problem: given a matrix A, we are looking for a maximal
independent set of the column vectors of it. By the proof of Proposition 2.5.18 we get that a
set of the columns of A is independent if and only if it is independent after the application
of an elementary row operation. This means that if we choose a maximal independent set of
columns from the resulting matrix after the first phase of the Gaussian elimination, then the
corresponding columns of A form a maximal independent subset of the columns of A.

We show that if A is of row echelon form, then the columns that contain a leading
coefficient form a maximal independent set of column vectors of A. This, together with
the previous paragraph gives an algorithm for our task. First of all, if A has k rows, than
rank(A) = k by Proposition 2.5.19. As the number of the leading coefficient is the same
as the number of rows (i.e. k) and any two of them are in different columns, the number
of the columns that contain a leading coefficient is k. Hence, it remains to show that they
are independent, since then they are automatically maximal among the independent sets of
columns. But as in the proof of Proposition 2.5.19, we get that they form an upper triangular
matrix whose determinant is non-zero (it is in fact 1), and hence they are independent by
Theorem 2.5.9.

Note that this method works only if we apply elementary row operations exclusively.
The corresponding operations on the columns - although they leave the rank of the matrix
unchanged - may change the independence of some systems of the columns.
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2.6 Linear Maps

In many parts of mathematics and its applications we have to handle functions that assign
a vector to another one. The notation f : Rn → Rk means that f is a function whose domain
is (the whole set) Rn and its range is a subset of Rk (so maybe not the whole set). Among
these, the so-called linear functions are particularly significant. They appear for example by
the study of geometric transformations and also in multivariable calculus, namely, they can
be used by the local approximation of more complex functions - as the tangential line (if it
exists) can be used for the local approximation of a function f : R→ R. The study of linear
functions is one of the most important parts of linear algebra.

2.6.1 Basic Properties and Examples

Definition 2.6.1. A function f : Rn → Rk is called a linear map if the following hold for
any x, y ∈ Rn and λ ∈ R:

(i) f(x+ y) = f(x) + f(y) (f is additive),

(ii) f(λx) = λf(x) (f is homogeneous (of degree 1)).

Note that the additions on the left and right hand sides of (i) are different. On the left, we
add two vectors in Rn and apply the function f for the sum, while on the right we apply the
addition in Rk for the images of the two vectors x and y. Also, the scalar multiplication on
the left hand side of (ii) is an operation in Rn, while on the right hand side it is an operation
in Rk.

Examples. examples

1. The function f1 : R3 → R2 defined by

f1

 x
y
z

 =

(
x− y
x+ z

)

is linear. Indeed,

f1

 x1
y1
z1

+

 x2
y2
z2

 = f1

 x1 + x2
y1 + y2
z1 + z2

 =

(
(x1 + x2)− (y1 + y2)
(x1 + x2) + (z1 + z2)

)

=

(
x1 − y1
x1 + z1

)
+

(
x2 − y2
x2 + z2

)
= f1

 x1
y1
z1

+ f1

 x2
y2
z2

 ,

so f1 is additive. Similarly, if λ ∈ R, then

f1

λ
 x

y
z

 = f1

 λx
λy
λz

 =

(
λx− λy
λx+ λz

)
= λ

(
x− y
x+ z

)
= λf1

 x
y
z

 ,

so f1 is homogeneous, and hence linear.
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2. Let f2 : R2 → R2 be the function which assigns to every plane vector its (orthogonal)
projection to the x axis. It is easy to give a formula for f2:

f2

(
x
y

)
=

(
x
0

)
.

The linearity of f2 follows from this formula like in the previous case.

3. Let f3 : R2 → R2 be the rotation about the origin by the angle α, then f3 is a linear
map. Indeed, as the sum of two non-zero vectors is the vertex of the (maybe degenerate)
parallelogram spanned by them which is different from the origin and the endpoints of
the vectors, and the rotation takes the spanned parallelogram into the parallelogram
which is spanned by the rotated vectors, we get that the image of the sum is the sum of
the images (this holds obviously if at least one of the vectors is the zero vector), hence
the additivity of f3 follows. Also, the application of a dilation and a rotation after that
gives the same result as the application of these transformations in reverse order, so f3
is homogeneous and hence linear. We will give a formula for f3 later.

4. Let f4 : R2 → R2 be the reflection in a line going through the origin. As in the case of
the rotation above, it is easy to see that f4 is linear.

5. Let f5 : Rn → Rk be the identically zero map. Since

f5(x) + f5(y) = 0 + 0 = 0 = f5(x+ y) and λf5(x) = λ0 = 0 = f5(λx)

hold for every x, y ∈ Rn and λ ∈ R, we get that f5 is linear.

6. Let f6 : Rn → Rn be the identity map which maps every vector in Rn to itself. Then
f6 is obviously linear.

Here are some basic properties of a linear map:

Proposition 2.6.1. Let f : Rn → Rk be a linear map. Then the following hold:

(i) if 01 is the zero vector in Rn and 02 is the zero vector in Rk, then f(01) = 02,

(ii) f(λ1x1 + · · ·+ λmxm) = λ1f(x1) + · · ·+ λmf(xm) for any vectors x1, . . . , xm ∈ Rn and
for any scalars λ1, . . . , λm ∈ R.

Proof. We have f(01) = f(01 + 01) = f(01) + f(01), because f is additive. Adding −f(01) =
(−1) · f(01) to both sides we get (i). By the repeated application of the additivity and the
homogeneity of f we get the second statement immediately.

It follows from property (i) above that in the case of the rotation f3 in the examples above
it is important that we rotate about the origin. Rotation about any other point of the plane
does not fix the origin and hence it is not linear. Similarly, if we reflect in a line which does
not go through the origin, then this transformation is not linear.

We assign two important sets to every linear map:

Definition 2.6.2. Assume that f : Rn → Rk is a linear map. The kernel of f is the set of
vectors in the domain Rn of f that are mapped to the zero vector 0 ∈ Rk of the range of f .
That is,

ker f = {x ∈ Rn : f(x) = 0}.
The image of f is the set of the vectors in the range of the map f . That is,

Im f = {y ∈ Rk : ∃x ∈ Rn, f(x) = y} = {f(x) : x ∈ Rn}.
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Examples. Let f1, . . . , f6 denote the same maps as in the examples above.

1. Every vector of R2 is an image of f1 since(
x
y

)
= f1

 0
−x
y

 ,

hence Im f1 = R2. The vector (x, y, z)T is in ker f1 if and only if

x− y = 0

x+ z = 0.

The solutions of this system are the vectors of the form (α, α,−α)T for some α ∈ R, so
ker f1 = span {(1, 1− 1)T}.

2. In the case of the projection to the x axis every value of f2 is (obviously) on the x axis
and we get every point of this axis as an image, so Im f2 is the x axis. The projection
yields the zero vector if and only if the x coordinate of the projected vector is zero,
hence ker f2 is the y axis.

3. Rotations and reflections are bijections of the plane, so Im f3 = Im f4 = R2. The origin
is mapped to itself in both cases so ker f3 = ker f4 = {0}.

4. In the case of f5 every vector is mapped to 0, so Im f5 = {0} and ker f5 = Rn. For the
identity map f6 we obviously have Im f6 = Rn and ker f = {0}.

The image and the kernel have special structure in the previous examples, namely, they
are subspaces. As the following theorem shows, this is true in general:

Theorem 2.6.2. If f : Rn → Rk is a linear map, then ker f is a subspace of Rn and Im f is
a subspace of Rk.

Proof. The kernel of f is non-empty, since 0 ∈ Rn is in it by part (i) of the previous propo-
sition. If x, y ∈ ker f , then by the additivity of f we have

f(x+ y) = f(x) + f(y) = 0 + 0 = 0,

so x+ y ∈ ker f . Similarly, if λ ∈ R then by the homogeneity of f we have

f(λx) = λf(x) = λ0 = 0,

so λx ∈ ker f . This means that ker f is a non-empty set of Rn which is closed under addition
and scalar multiplication, so it is a subspace of Rn.

Now we prove the statement for the image of f . We have f(0) = 0 ∈ Im f , so it is
non-empty. If x, y ∈ Im f , then there is a u ∈ Rn for which f(u) = x, and similarly, there is
a v ∈ Rn for which f(v) = y. Then by the additivity of f we have

x+ y = f(u) + f(v) = f(u+ v),

so x+ y ∈ Im f . Similarly, if λ ∈ R, then by the homogeneity of f we have

λx = λf(u) = f(λu),

hence λx ∈ Im f . That is, Im f is non-empty and closed under addition and scalar multipli-
cation, so it is a subspace of Rk.
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As we have seen above, a linear map is not always injective, i.e. the image of different
vectors can be the same. It turns out that there is a connection between the injectivity of a
linear map and its kernel:

Theorem 2.6.3. Assume that f : Rn → Rk is a linear map and x, y ∈ Rn. Then f(x) = f(y)
holds if and only if x− y ∈ ker f . Consequently, f is injective if and only if ker f = {0}.

Proof. If f(x) = f(y) holds, then by the linearity of f this is equivalent to

0 = f(x)− f(y) = f(x− y),

so f(x) = f(y) holds if and only if x− y ∈ ker f .
If f is not injective, then there are different vectors u, v ∈ Rn for which f(u) = f(v),

and hence 0 6= u − v ∈ ker f . On the other hand, if ker f 6= {0}, then there is a vector
0 6= u ∈ ker f , and then f(u) = f(0) = 0, so f is not injective.

2.6.2 The Dimension Theorem

We have seen that for a linear map f : Rn → Rk the sets ker f and Im f are subspaces of
Rn and Rk, respectively. Note that the elements of ker f have n coordinates while the vectors
in Im f have k coordinates, so in general they are different objects. Still, there is a relation
between these subspaces:

Theorem 2.6.4 (Dimension theorem). If f : Rn → Rk is a linear map, then

dimker f + dim Im f = n.

Proof. Assume that dimker f = s, and let b1, . . . , bs be a basis of ker f (there is a basis
in ker f by Theorem 2.2.10). Since this is an independent set of vectors in Rn, it can be
completed to a basis of Rn by Theorem 2.2.11, so assume that b1, . . . , bs, bs+1, . . . , bn is a
basis of Rn. It is enough to prove that the vectors f(bs+1), . . . , f(bn) ∈ Rk form a basis of
Im f .

First we show that they span Im f . Assume that x ∈ Im f , then there exists a vector
u ∈ Rn so that f(u) = x. The vector u can be written uniquely as a linear combination
of the basis vectors b1, . . . , bn, i.e. u = λ1b1 + · · · + λnbn for some uniquely determined
λ1, . . . , λn ∈ R. Then

x = f(λ1b1 + · · ·+ λnbn)

= λ1f(b1) + · · ·+ λsf(bs) + λs+1f(bs+1) + · · ·+ λnf(bn)

= λs+1f(bs+1) + · · ·+ λnf(bn),

since b1, . . . , bs ∈ ker f and hence f(b1) = · · · = f(bs) = 0. This shows that every vector in
Im f is a linear combination of the vectors f(bs+1), . . . , f(bn), that is, they span Im f .

Now assume that
λs+1f(bs+1) + · · ·+ λnf(bn) = 0

for some λs+1, . . . , λn ∈ R. The left hand side above is f(λs+1bs+1+· · ·+λnbn) by the linearity
of f , and hence v = λs+1bs+1 + · · · + λnbn ∈ ker f . But then v can be written uniquely as a
linear combination of the basis vectors b1, . . . , bs (because they form a basis in ker f):

λ1b1 + · · ·+ λsbs = v = λs+1bs+1 + · · ·+ λnbn,

λ1b1 + · · ·+ λsbs − λs+1bs+1 − · · · − λnbn = 0,

94



and since b1, . . . , bn is a basis in Rn, they are independent and hence by Theorem 2.2.4 we
get λ1 = · · · = λs = λs+1 = · · · = λn = 0. Another application of Theorem 2.2.4 gives that
the vectors f(bs+1), . . . , f(bn) are independent, therefore they form a basis of Im f , and the
proof is complete.

Corollary 2.6.5. Assume that f : Rn → Rn is a linear map (so f maps the vectors of Rn

into the same set). Then Im f = Rn if and only if ker f = {0}. That is, f is injective if and
only if it is surjective. Thus, if f is injective or surjective, then it is a bijection.

Proof. Assume that Im f = Rn, then dim Im f = n and hence by the previous theorem we
get that dimker f = 0, so ker f = {0} must hold.

Assume now that ker f = {0}, then dimker f = 0 and hence dim Im f = n. This means
that there is a basis of size n in Im f , and by Corollary 2.2.12 it is a basis of Rn, thus, we
have in fact Im f = Rn.

The second statement follows from the first one and from Theorem 2.6.3.

Theorem 2.6.4 is sometimes referred to as the "dimension formula", or more often, as the
"rank-nullity theorem". Accordingly, the number dim Im f is called the rank of the linear
map f and it is denoted by rank(f), while the number dimker f is called the nullity of f and
it is denoted by null(f). We will see later that there is close connection between the rank of
linear maps and the rank of matrices.

2.6.3 The Matrix of a Linear Map

Theorem 2.6.6. Assume that b1, . . . , bn ∈ Rn is a basis in Rn and c1, . . . , cn ∈ Rk are
arbitrary vectors. Then there is exactly one linear map f : Rn → Rk for which f(bi) = ci for
every 1 ≤ i ≤ n. That is, the image of the basis elements determines a linear map uniquely.

Proof. Assume first that f : Rn → Rk is a linear map for which f(bi) = ci holds for every
1 ≤ i ≤ n. If x ∈ Rn, then by Theorem 2.2.14 it can be written uniquely as a linear
combination of the basis elements b1, . . . , bn, i.e.

x = λ1b1 + · · ·+ λnbn,

where the scalars λ1, . . . , λn ∈ R are determined uniquely by x and the basis B = {b1, . . . , bn}.
Note that the scalars λi are the coordinates of x relative to B. Hence by Proposition 2.6.1
we have

f(x) = f(λ1b1 + · · ·+ λnbn)

= λ1f(b1) + · · ·+ λnf(bn)(13)

= λ1c1 + · · ·+ λncn.

This means that the values of f are determined uniquely, so there is at most one linear map
f : Rn → Rk that satisfies f(bi) = ci for every i.

We show that the map defined by (13) is linear and satisfies the conditions in the state-
ment. This will complete the proof of the theorem. So for every x ∈ Rn we define

f(x) = λ1c1 + · · ·+ λncn,

where λ1, . . . , λn ∈ R are the (uniquely determined) coordinates of x relative to B. First
of all, the coordinates of a basis element bi relative to B are zero except for λi = 1, hence
f(bi) = ci holds for every 1 ≤ i ≤ n.
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It remains to show that f is linear. Assume that x, y ∈ Rn and the coordinate vectors of
them relative to B are [x]B = (λ1, . . . , λn)

T and [y]B = (µ1, . . . , µn)
T . Then

x+ y = (λ1b1 + · · ·+ λnbn) + (µ1b1 + · · ·+ µnbn)

= (λ1 + µ1)b1 + · · ·+ (λn + µn)bn,

hence we have that [x+ y]B = (λ1 + µ1, . . . , λn + µn)
T . Therefore,

f(x+ y) = (λ1 + µ1)c1 + · · ·+ (λn + µn)ck

= (λ1c1 + · · ·+ λncn) + (µ1c1 + · · ·+ µncn)

= f(x) + f(y),

which means that f is additive. Similarly, if α ∈ R, then the coordinates of αx relative to B
are αλ1, . . . , αλn, hence

f(αx) = αλ1c1 + · · ·+ αλncn

= α(λ1c1 + · · ·+ λkcn)

= αf(x),

so f is homogeneous, and together with additivity this yields that f is linear and we are
done.

Now we are going to assign a matrix to a linear map f : Rn → Rk once a basis is chosen
in both Rn and Rk.

Definition 2.6.3. Assume that f : Rn → Rk is a linear map, B1 = {v1, . . . , vn} is a basis
of Rn and B2 = {w1, . . . , wk} is a basis of Rk. If f(vi) = a1,iw1 + · · · + ak,iwk, that is, the
uniquely determined coordinates of vi relative to B2 are a1,i, . . . , ak,i, then the matrix of the
linear map f with respect to the bases B1 and B2 is

[f ]B1,B2
=


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n
...

... . . . ...
ak,1 ak,2 . . . ak,n

 .

In the special case when B1 is the standard basis of Rn and B2 is the standard basis of Rk

we omit the indeces B1 and B2 in the notation and write simply [f ] for the matrix of f with
respect to the standard bases.

The matrix above depends not just on f , but also on the chosen bases. The theorem
above together with the uniqueness of the coordinates of a vector relative to a basis assures
that once the bases B1 and B2 are fixed, then the matrix [f ]B1,B2 is determined uniquely
by f . In other words, keeping the bases B1, B2 fixed, there is a one-to-one correspondence
between the linear maps from Rn to Rk and the matrices in Rk×n (but again, we get different
matrices for the same linear map if we chose different bases).

This means that we can give the linear map by giving its matrix, and an advantage of
this is that the matrix can be used to calculate the values of the map for an arbitrary vector:

96



Theorem 2.6.7. Assume that f : Rn → Rk is a linear map, B1 = {v1, . . . , vn} is a basis of
Rn and B2 = {w1, . . . , wk} is a basis of Rk. If x ∈ Rn, then

(14) [f(x)]B2 = [f ]B1,B2 · [x]B1 .

That is, if we multiply the matrix of f with respect to B1 and B2 by the coordinate vector of x
relative to B1 from the right, then we obtain the coordinate vector of the vector f(x) relative
to the basis B2. In the special case when B1 and B2 are the standard bases in Rn and Rk,
respectively, we obtain

f(x) = [f ] · x.

Proof. If

[x]B1 =


λ1
λ2
...
λn

 and [f ]B1,B2 =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n
...

... . . . ...
ak,1 ak,2 . . . ak,n

 ,

then

f(x) = f(λ1v1 + · · ·+ λnvn)

= λ1f(v1) + · · ·+ λnf(vn)

= λ1(a1,1w1 + · · ·+ ak,1wk) + · · ·+ λn(a1,nw1 + · · ·+ ak,nwk)

= (a1,1λ1 + a1,2λ2 + · · ·+ a1,nλn)w1 + · · ·+ (ak,1λ1 + · · ·+ ak,nλn)wk,

and this gives (14).
If B1 is the standard basis in Rn and B2 is the standard basis in Rk, then [x]B1 = x and

[f(x)]B2 = f(x), hence the second statement follows.

Corollary 2.6.8. Assume that f : Rn → Rk is a linear map and [f ] ∈ Rk×n is its matrix
with respect to the standard bases of Rn and Rk. If c1, . . . , cn are the columns of [f ], then
Im f = span {c1, . . . , cn}. Moreover, rank(f) = rank([f ]) holds.

Proof. Let us introduce the notation W = span {c1, . . . , cn}. If x ∈ Rn, then f(x) = [f ] · x
by the previous theorem, and the product on the right hand side is a linear combination of
the columns of [f ], so Im f ⊂ W . On the other hand, if y = x1c1+ · · ·+xncn ∈ W is a linear
combination of the columns, then y = [f ] · x = f(x) for x = (x1, . . . , xn)

T , hence W ⊂ Im f
and the first statement of the theorem holds. Moreover,

rank(f) = dim Im f = dimW = rank([f ])

holds by Theorem 2.5.17.

As we have promised, now we give a formula for the rotation about the origin on the
plane by the angle α. More precisely, we give the matrix of this map:

Proposition 2.6.9. Let fα : R2 → R2 be the rotation about the origin by the angle α, then
fα is linear and its matrix with respect to the standard bases is

[fα] =

(
cosα − sinα
sinα cosα

)
.
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Proof. We have already seen in Section 2.6.1 that fα is linear. The first column of [fα] is

fα((1, 0)
T ) = (cosα, sinα)T

by the definition of cosα and sinα. As (0, 1)T is obtained when rotating (1, 0) about the
origin by the angle 90◦, we get its image from (cosα, sinα)T in the same way, hence

fα((0, 1)
T ) = (− sinα, cosα)T ,

which is the second column of [fα], so we are done.

Consider the following problem: given a linear map f , we are looking for a basis in Im f .
We get the matrix [f ] ∈ Rk×n of f by writing the coordinates of f(ei) in the ith column of a
matrix (1 ≤ i ≤ n), where e1, . . . , en ∈ Rn is the standard basis. By the previous corollary we
need to find a basis of the spanned subspace of the columns of [f ]. As we have already seen
in the proof of Theorem 2.5.17, this means that we have to find a maximal set of independent
column vectors of [f ], and the details of the algorithm for this task was given at the end of
Section 2.5.4.

Now we handle the same problem for the subspace ker f . By Theorem 2.6.4 we have

dimker f = n− dim Im f = n− rank([f ]).

The subspace ker f consists of those vectors x ∈ Rn for which the equation [f ] · x = 0 holds.
Hence we need to find n− rank([f ]) independent vectors among the solutions of the equation
above, which is equivalent to a system of linear equations. When we apply the Gaussian
elimination for this system, we get n − rank(f) free parameters which can be chosen freely
and after that the values of the other variables are defined uniquely. Every solution gives the
coordinates of a vector x which solves the matrix equation [f ] ·x = 0. It is easy to see that if
we take those vectors that come from the solutions where exactly one of the free parameters
is 1 while the other free parameters are zero, then we get n− rank([f ]) independent vectors,
so they form a basis in ker f . Indeed, assume, that m = n − rank(f) and xj1 , . . . , xjm are
the free parameters, where 1 ≤ j1 < j2 < · · · < jm ≤ k are the indices of them. For an
1 ≤ i ≤ m, let y

i
be the solution of [f ] · x = 0 whose jith coordinate is 1 but whose jlth

coordinate is 0 for every 1 ≤ l ≤ m, l 6= i. Then the matrix Y ∈ Rk×m whose ith column is
y
i
contains the identity matrix Im as a sub-matrix, hence m = rd(Y ) = rank(Y ) = rc(Y ), so

the columns of Y are independent.
Note that there is no significance of the special choice of the bases B1 and B2 here, we only

made these changes for simplicity. The argument above can be told (with some appropriate
minor changes) for the matrix [f ]B1,B2 where B1 and B2 are arbitrary bases of Rn and Rk,
respectively. The details are left to the reader.

Example 2.6.4. Let f : R5 → R4 be the linear map given by the matrix

[f ] = A =


2 8 6 4 2
1 2 −1 12 7
−1 −1 3 −12 0
5 22 19 4 7

 .

After applying Gaussian elimination for the system given by the matrix (A|0) we obtain the
following reduced row echelon form: 1 0 −5 0 −31 0

0 1 2 0 7 0
0 0 0 1 2 0

 .

98



The columns that contain a leading coefficient are independent, and the corresponding
columns of A (that is, the first, second and fifth column) give a basis of Im f .

The free parameters are the third and the fifth variables (say x3 and x5). The solution
that comes from x3 = 1 and x5 = 0 is (5,−2, 1, 0, 0)T , while the solution that comes from
x3 = 0 and x5 = 1 is (31,−7, 0,−2, 1)T . These two vectors form a basis in ker f .

Exercise 2.6.1. Give an alternative proof of the dimension theorem: show (without the
usage of it) that the vectors in ker f that are obtained by the method above are not only
independent, but in fact they span ker f . Deduce the statement of the theorem from this.

2.6.4 Operations of Linear Maps

Since the addition is defined in Rk, we can define point-wise addition for functions that
map into Rk as in the case of real valued functions. As we also have scalar multiplication in
Rk, a scalar multiple of such a function can be defined as well.

Definition 2.6.5. If f, g : X → Rk are functions from some set X into Rk, then their sum
is the function f + g : X → Rk defined by (f + g)(x) := f(x) + g(x) for every x ∈ X. Also,
if λ ∈ R, then the function λf : X → Rk defined by (λf)(x) = λ · f(x) for every x ∈ X is
called the scalar multiple of f by λ.

Remark. It is not hard to see that the functions X → Rk together with the addition and
scalar multiplication defined above satisfy the statements of the theorems 2.1.1, 2.2.1 and
2.5.1, that is, as it was mentioned in the remark on page 38, they constitute a vector space
over R (as the set of space vectors, the set Rn and the set of matrices in Rk×n do, of course,
together with the corresponding operations on them). As we are going to see in the following,
there is a strong connection between these vector spaces and the space of matrices in the
case when the functions are linear with the domain Rn for some integer n.

Theorem 2.6.10. Assume that f, g : Rn → Rk are linear maps, B1 = {v1, . . . , vn} is a basis
of Rn and B2 = {w1, . . . , wk} is basis of Rk. Then the functions f +g and λf are also linear,
and the matrix of f+g w.r.t. (with respect to) the bases B1 and B2 is the sum of the matrices
of f and g w.r.t. the bases B1 and B2. Also, the matrix of λf w.r.t. B1 and B2 is the matrix
of f w.r.t. B1 and B2 multiplied by λ. That is

[f + g]B1,B2 = [f ]B1,B2 + [g]B1,B2 and [λf ]B1,B2 = λ[f ]B1,B2 .

Proof. First we show that f + g : Rn → Rk is linear. If x, y ∈ Rn, then

(f + g)(x+ y) = f(x+ y) + g(x+ y)

= f(x) + f(y) + g(x) + g(y)

= f(x) + g(x) + f(y) + g(y)

= (f + g)(x) + (f + g)(y),

hence f + g is additive. Similarly, if µ ∈ R, then

(f + g)(µx) = f(µx) + g(µx) = µf(x) + µg(x)

= µ(f(x) + g(x)) = µ(f + g)(x),
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so f + g is homogeneous. The proof of the linearity of λf for a λ ∈ R is similar:

(λf)(x+ y) = λf(x+ y) = λ(f(x) + f(y))

= λf(x) + λf(y) = (λf)(x) + (λf)(y),

and hence λf is additive. Finally,

(λf)(µx) = λf(µx) = λ(µf(x)) = µ(λf(x)) = µ(λf)(x),

i.e. λf is homogeneous.
For the second statement we simply use Theorem 2.6.7 and that [u+ v]B2 = [u]B2 + [v]B2

holds for any vectors u, v ∈ Rk (see the proof of Theorem 2.6.6) together with the properties
of the matrix operations. That is, for any x ∈ Rn we have

[(f + g)(x)]B2 = [f(x) + g(x)]B2

= [f(x)]B2 + [g(x)]B2

= [f ]B1,B2 [x]B1 + [g]B1,B2 [x]B1

= ([f ]B1,B2 + [g]B1,B2)[x]B1 ,

so we get the coordinate vector of (f+g)(x) relative to the basis B2 if we multiply the matrix
[f ]B1,B2 + [g]B1,B2 by the coordinate vector of x relative to the basis B1. We apply this for
the vectors vj (1 ≤ j ≤ n) that are the vectors of the basis of B1. But as

vu = 0v1 + · · ·+ 0vi−1 + 1vi + 0vi+1 + · · ·+ 0vn,

we have that [vj]B1 = ej, where ej is the vector of the standard basis of Rk whose jth
coordinate is 1 while its other coordinates are zero. Hence

[(f + g)(vj)]B2 = ([f ]B1,B2 + [g]B1,B2)ej,

and the product of the right hand side gives the jth column of the matrix ([f ]B1,B2 +[g]B1,B2)
by the definition of the matrix multiplication, while the left hand side is the jth column
of the (uniquely determined) matrix of f + g w.r.t. B1 and B2. Since this holds for every
1 ≤ j ≤ n, we get [f + g]B1,B2 = [f ]B1,B2 + [g]B1,B2 .

The proof is basically the same for λf , since for any u ∈ Rk we have [λu]B2 = λ[u]B2 , and
hence for any x ∈ Rn

[(λf)(x)]B2 = [λf(x)]B2 = λ[f(x)]B2 = λ([f ]B1,B2 [x]B1) = (λ[f ]B1,B2)[x]B1 .

If we apply this for the vectors vj for every 1 ≤ j ≤ n, then we get that the jth column of
the matrix of λf w.r.t. B1 and B2 is the jth column of λ[f ]B1,B2 , so they are equal.

There is one more operation which can be defined for functions in very general situations.
If f : A→ B is a function which maps from a set A to B, and the function g : B → C maps
from B to C, then their composition h = g ◦ f is a function which maps from A to C and it
is defined by h(x) = (g ◦ f)(x) = g(f(x)) for every x ∈ A. Note that here the order of the
functions f and g in the definition of h is important, since g is applicable only if the element
in its argument is in B. In the case when f and g are linear maps then their composition
g ◦ f is called the product of them (if it is defined).
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Theorem 2.6.11. Assume that f : Rn → Rk and g : Rk → Rm are linear maps. Then
their product g ◦ f : Rn → Rm is a linear map. Moreover, if B1 = {u1, . . . , un} is a basis
of Rn, B2 = {v1, . . . , vk} is a basis of Rk and B3 = {w1, . . . , wm} is a basis of Rm, then
[g ◦ f ]B1,B3 = [g]B2,B3 [f ]B1,B2 holds.

Proof. Assume that x, y ∈ Rn, then by the additivity of f and g we have

(g ◦ f)(x+ y) = g(f(x+ y)) = g(f(x) + f(y))

= g(f(x)) + g(f(y)) = (g ◦ f)(x) + (g ◦ f)(y),

so (g ◦ f) is additive. If moreover λ ∈ R, then by the homogeneity of f and g we get

(g ◦ f)(λx) = g(f(λx)) = g(λf(x)) = λg(f(x)) = λ(g ◦ f)(x),

hence (g ◦ f) is homogeneous, thus, it is linear.
For the second statement we apply Theorem 2.6.7 twice, that is, for any x ∈ Rn we have

[(g ◦ f)(x)]B3 = [g(f(x))]B3 = [g]B2,B3 [f(x)]B2

= [g]B2,B3([f ]B1,B2 [x]B1) = ([g]B2,B3 [f ]B1,B2)[x]B1 .(15)

Applying this to a basis vector uj ∈ B1 (as in the previous proof) we get [(g ◦ f)(uj)]B3 on
the left hand side, which is by definition the jth column of the matrix [g ◦ f ]B1,B3 . But as
we have seen before, we have [uj]B1 = ej, where ej is the vector of the standard basis of Rn

whose jth coordinate is 1 while its other coordinates are zero. Therefore, the right hand side
becomes ([g]B2,B3 [f ]B1,B2)ej, which is the jh column of the matrix ([g]B2,B3 [f ]B1,B2) by the
definition of the matrix multiplication. As this holds for every 1 ≤ j ≤ n, the statement
follows.

Note that in the previous proof we used that the matrix multiplication is associative. But
observe that this is in fact unnecessary. If we do not do the last step in (15), then we simply
obtain

[(g ◦ f)(x)]B3 = [g]B2,B3([f ]B1,B2 [x]B1).

Applying this (without the associativity) to the basis vector uj we get that the jth column
of [g ◦ f ]B1,B3 is [g]B2,B3([f ]B1,B2ej), so this jth column is the product of [g]B2,B3 and the jth
column of [f ]B1,B2 . Hence the entry of [g ◦ f ]B1,B3 in its ith row and jth column is the scalar
product of the ith row of [g]B2,B3 and the jth column of [f ]B1,B2 , i.e. the matrix of g ◦ f is
the product of the matrix of g and the matrix of f .

We needed only the definition of the matrix product so far. Now it is an easy exercise
that the composition of functions is associative, that is, we have h◦(g◦f) = (h◦g)◦f if both
sides are defined. If A, B and C are matrices so that the products A(BC) and (AB)C are
defined, then there are uniquely determined linear maps f , g and h so that A = [h], B = [g]
and C = [f ]. The previous theorem together with the associativity of the composition of
functions gives an alternative proof of the associativity of the matrix multiplication. Although
this argument was a little bit sketchy, it is not hard to work out the missing pieces. Also, this
is in fact very enlightening: we now see that the matrix multiplication is associative because
it realizes a composition of functions. The computations in the proof of Theorem 2.5.3 based
on the definition of the matrix multiplication hardly show anything about this.

We are going to show another application of the previous theorem to trigonometric func-
tions. In view of Proposition 2.6.9 it is probably not surprising that the application of
certain geometric transformations may connect some algebraic expressions of trigonometric
functions:
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Corollary 2.6.12. If α, β ∈ R, then

(i) sin(α + β) = sinα cos β + cosα sin β,

(ii) cos(α + β) = cosα cos β − sinα sin β.

Proof. Let fα, fβ : R2 → R2 be the rotations about the origin by the angles α and β,
respectively. Then fα ◦ fβ is the rotation about the origin by the angle α + β, so we denote
this product by fα+β. These 3 maps are linear, and Proposition 2.6.9 gives their matrices
[fα], [fβ] and [fα+β] w.r.t. the standard bases. By the previous theorem we get that

[fα+β] = [fα ◦ fβ] = [fα][fβ],

that is,(
cos(α + β) − sin(α + β)
sin(α + β) cos(α + β)

)
=

(
cosα − sinα
sinα cosα

)(
cos β − sin β
sin β cos β

)

=

(
cosα cos β − sinα sin β − cosα sin β − sinα cos β
sinα cos β + cosα sin β − sinα sin β + cosα cos β

)
.

Comparing the entries (for example) in the first columns of the two sides the result follows.

If a function f : A → B is injective (one-to-one) and surjective (onto), that is, it is a
bijection, then its inverse f−1 : B → A can be defined. For a y ∈ B the value f−1(y) is the
unique element x ∈ A for which f(x) = y holds. Then for every x ∈ A we have f−1(f(x)) = x
(i.e. f−1 ◦ f : A→ A is the identity map of A), and for every y ∈ B we have f(f−1(y)) = y
(i.e. f ◦ f−1 : B → B is the identity map of B). On the other hand, if f is not a bijection,
then its inverse does not exist.

If f : Rn → Rn is linear map then by Corollary 2.6.5 it is bijective if and only if it is
injective, and also, this holds if and only if f is surjective. In the following we give another
equivalent condition for this. Also, we show that if the inverse exists, then it is linear, and
we determine its matrix.

Theorem 2.6.13. Assume that f : Rn → Rn is a linear map and B1, B2 are bases of Rn.
Then the inverse of f exists if and only if det[f ]B1,B2 6= 0, and in this case it is linear and
we have

[f−1]B1,B2 = [f ]−1B2,B1
.

Proof. By Corollary 2.6.5 the inverse of f exists if and only if f is injective, and by Theorem
2.6.3 this is equivalent to ker f = {0}. By Theorem 2.6.7 we have

0 = f(x)⇐⇒ 0 = [0]B2 = [f(x)]B2 = [f ]B1,B2 [x]B1 ,

and as [x]B1 = 0⇐⇒ x = 0, the inverse exists if and only if the matrix equation [f ]B1,B2y = 0
has the unique solution y = 0. Since [f ]B1,B2 ∈ Rn×n, this is equivalent to det[f ]B1,B2 6= 0 by
Theorem 2.4.6.

Now assume that f−1 exists and x, y ∈ Rn. By the surjectivity of f there are vectors
u, v ∈ Rn so that f(u) = x and f(v) = y. By the definition of the inverse function we have
u = f−1(f(u)) = f−1(x) and v = f−1(f(v)) = f−1(y), and together with the linearity of f
this gives that

f−1(x+ y) = f−1(f(u) + f(v)) = f−1(f(u+ v)) = u+ v = f−1(x) + f−1(y),
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so f−1 is additive. Moreover, if λ ∈ R, then

f−1(λx) = f−1(λf(u)) = f−1(f(λu)) = λu = λf−1(x),

hence f−1 is homogeneous, i.e. it is linear.
It remains to determine the matrix of f−1 w.r.t. B1 and B2. Assume that B1 =

{v1, . . . , vn}. If idRn : Rn → Rn denotes the identity map, then obviously [idRn(vj)]B1 =
[vj]B1 = ej holds for every basis vector vj ∈ B1, where ej is the jth standard basis vector in
Rn. Hence the matrix [idRn ]B1,B1 is the identity matrix In, and we get by the application of
Theorem 2.6.11 for f−1, f , B1, B2 and B3 = B1 that

In = [idRn ]B1,B1 = [f ◦ f−1]B1,B1 = [f ]B2,B1 [f
−1]B1,B2 ,

so [f−1]B1,B2 is the right inverse of [f ]B2,B1 . By the last paragraph of the proof of Theorem
2.5.10 (or by a computation similar to the previous one) this is also a left inverse, so the
statement follows.

2.6.5 Change of Basis

We have defined the matrix of a linear map with respect to some bases, but we have not
told anything about the significance of the bases so far. One may think that the choice of the
standard bases simplifies the calculations, but this is only an illusion caused by the simplicity
of the notations. Roughly speaking, choosing a basis means the choice of a point of view, and
one can have different reasons for changing the perspective. It can happen that the simplicity
of the formulae is important, but maybe the viewpoint is fixed for some reason and we simply
want to adjust the computations to it. In this section we show how the coordinate vectors
and the matrices of a linear maps w.r.t. different bases are connected to each other.

First we take a closer look at the situation when a vector x of Rn is given with its
coordinate vector with respect to the basis B1 = {v1, . . . , vn} and we have to change the
basis, i.e. the coordinate vector with respect to another basis B2 = {v′1, . . . , v′n} of Rn is
needed. In this case we can simply apply Theorem 2.6.7 for the identity map idRn of Rn and
the bases B2 and B1. This way we obtain

[x]B1 = [idRn ]B2,B1 [x]B2 .

The jth column of the matrix [idRn ]B2,B1 comes from the equation

v′j = a1,jv1 + · · ·+ an,jvn.

Now let g : Rn → Rn be the linear map that maps the basis elements of B1 to the elements
of B2, that is, g(vj) = v′j holds for every 1 ≤ j ≤ n. Observe that the jth column of the
matrix [idRn ]B2,B1 is by definition the same as the jth column of [g]B1,B1 , so these matrices
are the same. At this point we introduce a notation:

Notation. If f : Rn → Rn is a linear map and B is a basis of Rn, then for simplicity we
write [f ]B instead of [f ]B,B, and we say that [f ]B is the matrix of f w.r.t. the basis B.

Using this notation we have [g]B1,B1 = [g]B1 and hence

[x]B1 = [g]B1 [x]B2 .
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As all the elements of the basis B2 are in Im g, and so are the linear combinations of them,
thus, in fact Im g = Rn holds. This means that g is surjective and hence by Corollary
2.6.5 it is a bijection, so its inverse g−1 is defined and linear by Theorem 2.6.13, moreover,
[g−1]B1 = [g]−1B1

holds as well. Multiplying the identity above by this matrix from the left we
obtain

Theorem 2.6.14. Assume that x ∈ Rn, and B1 = {v1, . . . , vn}, B2 = {v′1, . . . , v′n} are bases
of Rn. If g : Rn → Rn is the linear map for which g(vj) = v′j holds for every 1 ≤ j ≤ n, then

[x]B2 = [g]−1B1
[x]B1 .

Now we turn to the change of the bases in the case of linear maps:

Theorem 2.6.15. Assume that f : Rn → Rk is a linear map, B1 = {v1, . . . , vn} and
C1 = {v′1, . . . , v′n} are bases of Rn, while B2 = {w1, . . . , wk} and C2 = {w′1, . . . , w′k} are bases
of Rk. Let g : Rn → Rn be the uniquely determined linear map for which g(vj) = v′j holds for
every 1 ≤ j ≤ n (that is, g maps the vectors of the basis B1 to the elements of the basis C1).
Also, let h : Rk → Rk be the uniquely determined linear map for which h(wi) = w′i holds for
every 1 ≤ i ≤ k (that is, h maps the vectors of the basis B2 to the elements of the basis C2).
Then

[f ]C1,C2 = [h]−1B2
[f ]B1,B2 [g]B1 .

This formula above simplifies a lot when f maps from Rn into itself and we use only one
"old" and one "new" basis for the description of the map by a matrix:

Corollary 2.6.16. Assume that f : Rn → Rn is a linear map and let B = {v1, . . . , vn} and
C = {v′1, . . . , v′n} be bases of Rn. Let g : Rn → Rn be the uniquely determined linear map for
which g(vj) = v′j holds for every 1 ≤ j ≤ n. Then

[f ]C = [g]−1B [f ]B[g]B.

Proof of Theorem 2.6.15. Assume that f(v′j) = a′1,jw
′
1 + · · · + a′k,jw

′
k. This means that the

jth column of [f ]C1,C2 is the vector (a′1,j, . . . , a′k,j)T . As g(vj) = v′j for every 1 ≤ j ≤ n and
h(wi) = w′i for every 1 ≤ i ≤ k, we have

(f ◦ g)(vj) = f(g(vj)) = f(v′j) = a′1,jw
′
1 + · · ·+ a′k,jw

′
k

= a′1,jh(w1) + · · ·+ a′k,jh(wk)

= h(a′1,jw1 + · · ·+ a′k,jwk).

As the elements w′1, . . . , w′k of the basis C2 of Rk are in Imh, we have Imh = Rk, that is, h
is surjective and hence by Corollary 2.6.5 it is a bijection, so its inverse h−1 is defined and
linear. Thus,

(h−1 ◦ f ◦ g)(vj) = a′1,jw1 + · · ·+ a′k,jwk,

which means that the jth column of the matrix [h−1◦f ◦g]B1,B2 is the same as the jth column
of [f ]C1,C2 . This holds for every 1 ≤ j ≤ n, hence

[f ]C1,C2 = [h−1 ◦ f ◦ g]B1,B2 .

Now we apply Theorem 2.6.11 first for h−1, f ◦g and the bases B1, B2 and B3 = B2 to obtain
[h−1 ◦ f ◦ g]B1,B2 = [h−1]B2 [f ◦ g]B1,B2 . Next we apply the same theorem to the maps f and g
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and the (ordered) triple of bases B1, B1, B2, which yields [f ◦ g]B1,B2 = [f ]B1,B2 [g]B1 . Finally,
the application of Theorem 2.6.13 for [h−1]B2 gives the statement. �

By Exercise 2.5.2 we have rank(AB) ≤ rank(A) for any matrices A, B for which the
product AB is defined. Note that then

rank(AB) = rank((AB)T ) = rank(BTAT ) ≤ rank(BT ) = rank(B)

follows as well. Assume that f : Rn → Rk is a linear map, B1 is a basis of Rn and B2 is a
basis of Rk. If g : Rn → Rn is the linear map which maps the elements of the standard basis
of Rn to the elements of B1 and h : Rk → Rk is the linear map that maps the elements of
the standard basis of Rk to the elements of the basis B2, then

rank([f ]B1,B2) = rank([h]−1[f ][g]) ≤ rank([h]−1[f ]) ≤ rank([f ])

by Theorem 2.6.15 and by the remarks above. Similarly, as the equation [h][f ]B1,B2 [g]
−1 = [f ]

holds as well, rank([f ]) ≤ rank([f ]B1,B2) also follows, hence these ranks are the same. Thus,
by Corollary 2.6.8 we infer that

rank(f) = rank([f ]) = rank([f ]B1,B2)

for any bases B1 and B2, as we have already mentioned in Section 2.6.3.

Example 2.6.6. Finally, we show an application of these tools. Assume that f : R2 → R2 is
the reflection in the line that goes through the origin and is parallel to the vector u = (1, 2)T .
We are looking for its matrix w.r.t. the standard basis.

The calculation of the image of the standard basis elements requires some work, but we
choose another way instead and use some images that can be determined easily. For example,
f fixes the vector u, that is, f(u) = u. Also, after the rotation u about the origin by 90◦ we
get v = (−2, 1)T , and obviously f(v) = −v holds. Therefore, it is easy to give the matrix of
f w.r.t. the basis B = {u, v}. Indeed, we have

[f ]B =

(
1 0
0 −1

)
.

If g : R2 → R2 is the linear map that maps the standard basis to B, then its matrix w.r.t.
the standard basis is

[g] =

(
1 −2
2 1

)
, and [g]−1 =

1

5

(
1 2
−2 1

)
by the formula for the inverse in (10). By Corollary 2.6.16 we get that

[f ]B = [g]−1[f ][g] ⇐⇒ [g][f ]B[g]
−1 = [f ],

so the matrix of f w.r.t. the standard basis is

1

5

(
1 −2
2 1

)(
1 0
0 −1

)(
1 2
−2 1

)
=

1

5

(
1 −2
2 1

)(
1 2
2 −1

)
=

(
−3/5 4/5

4/5 3/5

)
.
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2.6.6 Eigenvalues and Eigenvectors

We saw in the last example that the matrix of reflection w.r.t. a carefully chosen basis
had a simple form, namely every entry of it outside the main diagonal was zero. A matrix
of this form is called a diagonal matrix . Accordingly, it was easy to determine the image of
the basis vectors. Using the notations of Example 2.6.6 we had f(u) = u and f(v) = −v, so
the image was a scalar multiple of the original vector.

In the following we are going to see when a basis can be chosen for a linear map so that
the corresponding matrix of the map w.r.t. that basis is diagonal. We are going to work
with linear maps that map from Rn into itself, so that Im f ⊂ Rn holds. We call these maps
linear transformations (note though that in many books this expression simply refers to a
linear map). In the example above the vectors u and v were useful because f transformed
them in a simple way. Now we introduce the notions that generalize this phenomenon:

Definition 2.6.7. Let f : Rn → Rn be a linear transformation. The real number λ ∈ R is
called the eigenvalue of f if there is a non-zero vector 0 6= v ∈ Rn so that f(v) = λv. A
non-zero vector 0 6= v ∈ Rn is called an eigenvector of f if there is a real number λ ∈ R so
that f(v) = λv.

Note that the zero vector must be excluded from the set of eigenvectors since we have
f(0) = λ0 for every linear transformation f and every scalar λ ∈ R. But an eigenvalue can
be zero, and observe that λ = 0 is the eigenvalue of a linear transformation if and only if
ker f 6= {0}, that is, if and only if f is not injective, and the corresponding eigenvectors are
the non-zero vectors in ker f .

If f(v) = λv for a non-zero vector v, then we say that the eigenvalue λ belongs to the
eigenvector v, and similarly, the eigenvector v belongs to the eigenvalue λ. Clearly, there is
exactly one eigenvalue that belongs to an eigenvector, since if µv = f(v) = λv, then obviously
λ = µ follows (because v 6= 0). But the opposite is not true, in fact the following holds:

Proposition 2.6.17. If f : Rn → Rn is a linear transformation and λ ∈ R is an eigenvalue
of f , then the eigenvectors belonging to λ together with the zero vector constitute a subspace
of Rn.

Proof. Let Vλ be the set that consists of the zero vector and the eigenvectors belonging to λ.
Then Vλ is non-empty since the zero vector is in it, so we have to show that it is closed under
addition and scalar multiplication. Assume that u, v ∈ Vλ and µ ∈ R. Note that f(0) = λ0
holds also for the zero vector. By the linearity of f we have

f(u+ v) = f(u) + f(v) = λu+ λv = λ(u+ v),

so u+v is either an eigenvector of f belonging to λ or the zero vector, so it is in Vλ. Similarly,

f(µu) = µf(u) = µ(λu) = λ(µu),

so µu ∈ Vλ and the statement follows.

A reflection on the plane in a line going through the origin has the eigenvalues 1 and
−1. Every non-zero vector on the line is an eigenvector of the reflection belonging to the
eigenvalue 1, while every non-zero vector that is orthogonal to the line is an eigenvector
belonging to the eigenvalue −1. The only eigenvalue of the identity map is 1, every non-zero
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vector is an eigenvector of it. A rotation on the plane about the origin by an angle different
from k · 180◦ (for some integer k) does not have any eigenvalues or eigenvectors.

Assume that f : Rn → Rn is a linear transformation, and B is a basis of Rn. If λ ∈ R is
an eigenvalue of f and v ∈ Rn is an eigenvector that belongs to λ, then by Theorem 2.6.7 we
have

[f ]B[v]B = [f(v)]B = [λv]B = λ[v]B,

so if one multiplies the vector [v]B by the matrix of f w.r.t. B, then the matrix multiplication
transforms the vector v so that becomes the scalar multiple of itself.

Definition 2.6.8. Assume that A ∈ Rn×n. The scalar λ ∈ R is an eigenvalue of the matrix
A if there exists a non-zero vector 0 6= x ∈ Rn so that Ax = λx holds. A non-zero vector
0 6= x ∈ Rn is an eigenvector of the matrix A if Ax = λx for some λ ∈ R.

Hence if λ is an eigenvalue of the linear transformation f , then it is also an eigenvalue of
its matrix of w.r.t. any basis of Rn. Also, if v is an eigenvector of f and B is a basis of Rn,
then x = [v]B is an eigenvector of the matrix [f ]B.

On the other hand, if A ∈ Rn×n is the matrix of a linear transformation f : Rn → Rn

w.r.t. a basis B = {v1, . . . , vn}, that is, A = [f ]B, and λ is an eigenvalue of the matrix A with
the corresponding eigenvector x = (x1, . . . , xn)

T , then for the vector v = x1v1 + · · · + xnvn
we have x = [v]B, moreover,

[f(v)]B = [f ]B[v]B = Ax = λx = λ[v]B = [λv]B.

Hence λ is an eigenvalue of f with the corresponding eigenvector v.
This means that one can determine the eigenvalues of a linear map by calculating the

eigenvalues of its matrix w.r.t. any basis. We will give a method for this and we will show
how the eigenvectors of a matrix can be determined once its eigenvalues are known. The
following statement shows how all this can be applied for finding a basis so that the matrix
of the map w.r.t. it has a simple form:

Proposition 2.6.18. Assume that f : Rn → Rn is a linear transformation and let B =
{v1, . . . , vn} be a basis of Rn. Then the matrix [f ]B is diagonal if and only if B consists of
eigenvectors of f . In this case the entries in the diagonal of the matrix are the eigenvalues
that belong to the corresponding eigenvectors.

Proof. Observe, that by definition

[f ]B =


λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λn


holds if and only if f(vj) = λjvj for every 1 ≤ j ≤ n. The statement follows from this
immediately.

Note that there are linear transformations whose matrix is not diagonal in any basis. For
example, a rotation of the plane about the origin by angle different from k · 180◦ has no
eigenvalues, so its matrix cannot be diagonal.

Now we turn to the determination of the eigenvalues. The following theorem makes this
possible, at least in principle.
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Theorem 2.6.19. The scalar λ ∈ R is an eigenvalue of the matrix A ∈ Rn×n if and only if
det(A− λIn) = 0.

Proof. The scalar λ ∈ R is an eigenvalue of A if and only the equation Ax = λx has a
non-zero solution. This equation holds if and only if

0 = Ax− λx = Ax− λInx = (A− λIn)x.

By Theorem 2.4.6 the equation (A − λIn)x = 0 has a non-zero solution if and only if the
determinant of the coefficient matrix is zero, hence the statement follows.

Observe that if λ is regarded as a variable, then det(A − λIn) is a polynomial in the
variable λ. By the previous statement the eigenvalues of the matrix A are exactly the roots
of this polynomial.

Definition 2.6.9. If A ∈ Rn×n and λ is a variable, then the polynomial det(A − λIn) is
called the characteristic polynomial of the matrix A. It is denoted by pA(λ).

If the entries of A are denoted by ai,j, then its characteristic polynomial is the following
determinant: ∣∣∣∣∣∣∣∣∣

a1,1 − λ a1,2 . . . a1,n
a2,1 a2,2 − λ . . . a2,n
...

... . . . ...
an,1 an,2 . . . an,n − λ

∣∣∣∣∣∣∣∣∣ .
Observe that if we calculate this by the definition, then the variable λ occurs in every rook
arrangement at most n times. Moreover, there is only one rook arrangement which contains λ
exactly n times, namely the one that is obtained by choosing the entries in the main diagonal.
The product of these entries is

n∏
i=1

(ai,i − λ),

so the coefficient of λn is (−1)n. Hence deg pA(λ) = n, and its leading coefficient is (−1)n.
By a well-known theorem of algebra a polynomial of degree n with real coefficients can have
at most n roots, but in general these can be determined only by approximate methods.

It is not hard to see that the constant term of pA(λ) is detA. Also, one can see easily
that the coefficient of λn−1 is (−1)n−1 times the sum of the entries in the main diagonal. This
latter sum is called the trace of the matrix A and it is denoted by trA.

Now assume that f : Rn → Rn is a linear transformation, and B1, B2 are bases of Rn.
Then [f ]B2 = C−1[f ]B1C for some matrix C ∈ Rn×n by Corollary 2.6.16, and hence by
Theorem 2.5.5 we have

det([f ]B2 − λIn) = det(C−1[f ]B1C − λIn) = det(C−1[f ]B1C − λC−1InC)
= det[C−1([f ]B1 − λIn)C] = det(C−1) det([f ]B1 − λIn) det(C)
= det([f ]B1 − λIn) det(C−1) det(C) = det([f ]B1 − λIn) det(C−1C)
= det([f ]B1 − λIn) det(In) = det([f ]B1 − λIn),

that is, the characteristic polynomial of the matrix of f w.r.t. some basis does not depend
on the choice of the basis. Thus, we can define the characteristic polynomial of the linear
transformation f as the characteristic polynomial of its matrix w.r.t. an arbitrary basis. It
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will be denoted by pf (λ). This shows that the trace and the determinant of a matrix of f is
also independent of the choice of the basis. Note that this follows also from Corollary 2.6.16
and Exercise 2.6.3.

Remark. Theorem 2.5.5 was stated only for matrices with real entries, while here we used
for matrices whose entries are in fact polynomials. It is not hard to change the argument
above so that it becomes precise. We remark that Theorem 2.5.5 can be proved also for
matrices with polynomial entries. But actually we do not need this. If we choose a number
λ ∈ R, then det([f ]B1 − λIn) is the value of the characteristic polynomial when the number
λ is substituted in place of the variable. We have seen that this value is the same for the
characteristic polynomials of the matrices [f ]B1 and [f ]B2 and for any choice of λ ∈ R, hence
the polynomials themselves must be identical.

Once we know the eigenvalues of a matrix A, we can calculate the corresponding eigen-
vectors by solving the equation Ax = λx, or equivalently, the equation (A−λIn)x = 0, where
λ is an eigenvalue of A (recall that this has a non-zero solution since det(A−λIn) = 0). This
can be done for example by using Gaussian elimination. For a linear transformation f we
can choose an arbitrary basis B, calculate the roots of the characteristic polynomial of its
matrix w.r.t. B to obtain the eigenvalues of f , and finally we can solve the matrix equations
above to get the coordinate vectors of the corresponding eigenvectors w.r.t. B.

Example 2.6.10. We demonstrate this method by an example. Assume that the linear
transformation f : R2 → R2 is give by the formula

f

(
x
y

)
=

(
x+ 3y
3x+ 9y

)
.

Then the image of the vector (1, 0)T is (1, 3)T while f((0, 1)T ) = (3, 9)T , so the matrix of f
w.r.t. the standard basis is

[f ] =

(
1 3
3 9

)
.

The eigenvalues of f are the roots of the polynomial

det([f ]− λI2) =
∣∣∣∣ 1− λ 3

3 9− λ

∣∣∣∣ = (1− λ)(9− λ)− 9 = λ2 − 10λ,

i.e. λ1 = 0 and λ2 = 10. To determine the corresponding eigenvectors we have solve the
equations [f ]x = 0 and [f ]x = 10x. The solutions of the first equation are the vectors of the
form (−3α, α)T , while the second equation, which is equivalent to the system

−9x+ 3y = 0,

3x− y = 0,

gives the solutions (β, 3β)T for any β ∈ R. Hence the matrix of f w.r.t. the basis B =
{(3,−1)T , (1, 3)T} is

[f ]B =

(
0 0
0 10

)
.

Exercise 2.6.2. If
p(x) = amx

m + am−1x
m−1 + · · ·+ a1x+ a0
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is a polynomial with real coefficients, then we can substitute a linear transformation f in
place of the variable x, since the power fk can be defined as the product (composition) of
f with itself if k > 0 is a positive integer, while we define f 0 as the identity map. The sum
and scalar multiple of linear maps were defined is Section 2.6.4, we only note that instead of
the constant term a0 we substitute a0f 0 = a0 · idRn . Also, if A ∈ Rn×n is a matrix, then p(A)
can be defined as

p(A) = amA
m + am−1A

m−1 + · · ·+ a1A+ a0In.

The results of Section 2.6.4 show that [p(f)]B = p([f ]B) holds for any basis B of Rn. Use
this to prove the following: if the matrix of f is diagonal w.r.t. some basis of Rn, then pf (f)
is the identically zero map, where pf (λ) is the characteristic polynomial of f . Show the same
for any f : R2 → R2. (Note that the statement holds for any linear transformation in any
dimension.)

Exercise 2.6.3. Show that tr (A + B) = tr (A) + tr (B), tr (λA) = λtr (A) and tr (AB) =
tr (BA) hold for any matrices A,B ∈ Rn×n and λ ∈ R. Deduce that the trace of the matrix
of a linear transformation w.r.t. some basis does not depend on the choice of the basis.
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