Exercise-set 9. Solutions

- 1. $\Delta(G) = 4 \implies \chi_e(G) \ge 4$, and the edges of G can be colored with 4 colors $\implies \chi_e(G) \le 4$.
- 2. $\chi_e(K_5) \ge e/\nu = 10/2 = 5$ and $\chi_e(K_5) \le \Delta(K_5) + 1 = 5$, so $\chi_e(K_5) = 5$. $\chi_e(K_6) \ge \chi_e(K_5) = 5$, and the edges of K_6 can be colored with 5 colors $\implies \chi_e(K_6) \le 5$. (In general, $\chi_e(K_{2n+1}) = 2n+1$ and $\chi_e(K_{2n}) = 2n-1$.)
- 3. $\chi_e(K_{20}) = 19$ (ex. 3.), and a round corresponds to edges of the same color.
- 4. $\chi_e(G) \ge \chi_e(K_5) = 5$, and and the edges of G can be colored with 5 colors $\implies \chi_e(G) \le 5$.
- 5. $|E(G)| = 1999 \cdot 10/2 = 9995$, $\nu(G) \le 1999/2 = 999 \implies \chi_e(G) \ge 9995/999 > 10$ and $\chi_e(G) \le \Delta(G) + 1 = 11 \implies \chi_e(G) = 11$.
- 6. a) $\chi_e(G) \ge e/\nu = (2k \cdot 3 + 2)/2k > 3$ (since |V(G)| is odd) and $\chi_e(G) \le \Delta(G) + 1 = 4 \implies \chi_e(G) = 4$.
 - b) Delete the cut-edge and use a).
- 7. a) $\chi_e(G) \ge e/\nu = 15/2 > 7$ and the edges of G can be colored with 8 colors $\implies \chi_e(G) = 8$. b) $\chi_e(G) \ge e/\nu = 15/2 > 7$ and the edges of G can be colored with 8 colors $\implies \chi_e(G) = 8$.
- 8. $\chi_e(G) \ge e/\nu = 71/7 > 10$ and $\chi_e(G) \le \Delta(G) + 1 = 11 \implies \chi_e(G) = 11$.
- 9. Any color class of edges forms a perfect matching (covers all the vertices).
- 10. $\nu(G) \ge e/\chi_e \ge 16/5 > 3$ (since $\chi_e(G) \le \Delta(G) + 1 = 5$), and $\nu(G) \le 9/2$.
- 11. For a k-regular graph on 9 vertices $\chi_e(G) = k+1$, and \overline{G} is 8-k-regular $\implies \chi_e(\overline{G}) \ge 9-k$.
- 12. a) The edges of G can be colored with 3 colors; 2 colors for the Hamilton cycle (since it has an even length, because |E| = 3|V|/2 is an integer), and one for the remaining edges.
 - b) The edges of it cannot be colored with 3 colors.
 - c) The edges of any 2 colors form a Hamilton cycle.
- 13. The edges of the original graph can be colored with $\chi_e(G') + 2$ colors.
- 14. Yes, $K_5 \setminus \{\text{one edge}\}\$ is like that.
- 15. G = (rows, colums; selected squares) is a 3-regular bipartite graph $\implies \chi_e(G) = 3$.
- 16. G is bipartite $\implies \chi_e(G) = \Delta(G) = 6$; or give a concrete edge-coloring.
- 17. G = two vertex-disjoint paths (which are bipartite) and a 5-regular bipartite graph $\implies \chi_e(G) = 2 + 5 = 7$.
- 18. $\nu(G) \ge e/\chi_e \ge 10/3 > 3$ (since $\chi_e(G) = \Delta(G) \le 3$).
- 19. G = two vertex-disjoint cycles (which are bipartite) and a bipartite graph with $\Delta(G) = 8 \implies \chi_e(G) = 2 + 8 = 10$.
- 20. G is bipartite $\implies \chi_e(G) = \Delta(G) = 5$; or give a concrete edge-coloring.
- 21. The cut with $X = \{S, C, D, F\}$ has capacity 15.
- 22. No. Either find the max flow (which is 20), or notice that the capacity of a cut cannot be 19 (all the capacities are divisible by 3 except for 5), and use the Ford-Fulkerson theorem.