Exercise-set 8. Solutions

- 1. If k committees have at least k members together, for $k = 1, 2, \ldots$ (Hall's condition).
- 2. a) Yes.
 - b) No (H, J, L, M like only B, E, F).
- 3. Count the number of edges between X and N(X) in two ways.
- 4. Use Hall's condition for the (people, chocolates;liking) bipartite graph for $|X| \le n$ and $|X| \ge n+1$, resp.
- 5. Use Hall's condition for $|X| \leq \frac{n}{2}$ and $|X| \geq \frac{n}{2}$, resp.
- 6. There is a non-connected counterexample.
- 7. Can select the edges greedily or use Hall's condition.
- 8. a) Use Frobenius' theorem.
 - b) Use Hall's theorem or unite the vertices of degree 3 and use the theorem from the lecture.
- 9. No: $N(\{a_1, a_2, a_4, a_6, a_8\}) = \{b_2, b_3, b_6, b_8\}.$
- 10. No: $N(\{a_2, a_3, a_5, a_7\}) = \{b_3, b_5, b_8\}.$
- 11. A 2-regular bipartite graph is the union of vertex-disjoint even cycles.
- 12. Hall's condition holds for the (rows, colums; coins) bipartite graph.
- 13. Hall's condition holds for the (figures, sets; containment) bipartite 4-regular (multi)graph.
- 14. $\nu(G) = \tau(G) = 8$, a minimum covering set is $\{a_2, a_3, a_6, a_8, b_1, b_4, b_7, b_9\}$.
- 15. $\nu(G) = \tau(G) = 100, \, \rho(G) = 102, \, \text{a maximum matching e.g. is } \{\{a_i, b_{i+1}\}, \, i = 1, 2, \dots, 100\}.$
- 16. a) $\nu(G) = \tau(G) = 6$,
 - b) $\nu(G) = \tau(G) = 6$,
 - c) $\nu(G) = \tau(G) = 9$,
 - d) $\nu(G) = \tau(G) = 6$.
- 17. a) $\nu(G) = \tau(G) = 4$.
 - b) $\alpha(G) = 6$.
- 18. If we delete E and F, we get 4 odd components.