Combinatorics and Graph Theory 1.

Exercise-set 5. Solutions

- 1. Construct a graph G: V(G) = people, and the edges are the acquaintances. Then deg $(v) \ge 6 = 12/2$ \implies by Dirac's theorem \exists a Hamilton cycle.
- 2. The condition in Ore's theorem holds for $G \Longrightarrow \exists$ a Hamilton cycle.
- 3. Construct a graph G: V(G) = people, and the edges are the acquaintances. G is k-regular for some k. If $k \ge 10 \Longrightarrow G$ contains a Hamilton cycle, if $k \le 9 \Longrightarrow \overline{G}$ contains a Hamilton cycle.
- 4. Construct a graph G: V(G) = people, and the edges are the acquaintances. Then G contains no cycles of length 3 or 4. We need to show that \exists a Hamilton cycle in G_1 , where G_1 is obtained from G by adding edges between the second neighbors, i.e. and u and v are adjacent in $G_1 \iff$ the 2 people know each other or they have a common friend. Then $\deg_{G_1}(v) \ge 5 + 5 \cdot 4 = 25$ (using the property of G) \implies by Dirac's theorem \exists a Hamilton cycle in G_1 .
- 5. a) A cycle on n vertices is like that (check).
 b) E.g. K₇ with the edge {u, v} missing and the 8th vertex is connected to u.
- 6. Add a new vertex to G, and connect it to all the old vertices. Then the new graph contains a Hamilton cycle from which we can get a Hamilton path of G.
- 7. Add two new non-adjacent vertices to G, and connect them to all the old vertices. Then the new graph contains a Hamilton cycle from which we can get a Hamilton path of G by adding one edge.
- 8. Delete v from G. Then the new graph contains a Hamilton cycle from which we can get a Hamilton path of G.
- 9. The 8 edges must have pairwise no common endpoints (i.e. be independent). Every second edge of a Hamilton cycle will do (which exists because $\deg(v) \ge n/2 \ \forall v$).
- 10. We can add the edges of a Hamilton cycle of \overline{G} .
- 11. Need to add k pairwise non-adjacent edges (from \overline{G}). \overline{G} contains a Hamilton cycle (deg_{\overline{G}}(v) = k, $\forall v \in V(G)$). Every second edge of it will do.
- 12. Yes, it can be constructed recursively.
- 13. By contradiction: otherwise we could get a longer path.
- 14. The first graph is not bipartite (contains 5-cycles), but the second graph is.
- 15. Deleting 2 edges are enough, but less is not, since \exists 2 edge-disjoint odd cycles in G.
- 16. The graph determined by the knights and attacks is bipartite (the two classes are to the white and black squares), and each of its degrees is at least $2 \implies \exists$ a degree ≥ 3 .
- 17. Yes (the two classes of vertices are sequences with an even or odd number of 1's, resp.).
- 18. No (the complement contains a triangle).
- 19. The vertices cannot be divided into two classes (degrees).
- 20. Complete bipartite graphs are like that.
- 21. The graphs are exactly the odd cycles (so in particular n must be odd). G must contain an odd cycle (otherwise $\chi(G') = 2$), and cannot contain more vertices or edges.
- 22. $\omega(G) \ge 3 \implies \chi(G) \ge 3$, and G can be colored with 3 colors $\implies \chi(G) \le 3$.
- 23. $\omega(G) \ge 8$ (each row and column is a clique) $\implies \chi(G) \ge 8$, and G can be colored with 8 colors (colors are diagonal) $\implies \chi(G) \le 8$.
- 24. G is bipartite (the two classes of vertices are the even and odd numbers, resp.) $\implies \chi(G) = 2$
- 25. a), b) $\omega(G) \ge 3 \implies \chi(G) \ge 3$, but G cannot be colored with 3 colors (proof!) $\implies \chi(G) \ge 4$. G can be colored with 4 colors $\implies \chi(G) \le 4$.

- 26. $\omega(G) \ge 3 \implies \chi(G) \ge 3$, but G cannot be colored with 3 colors (proof!) $\implies \chi(G) \ge 4$. G can be colored with 4 colors $\implies \chi(G) \le 4$.
- 27. $\chi(G) \ge \lceil n/2 \rceil$ (at most 2 vertices can get the same color), and G can be colored with this many colors $\implies \chi(G) \ge \lceil n/2 \rceil$.
- 28. $\omega(G) \ge 10$ (any 10 consecutive numbers form a clique) $\implies \chi(G) \ge 10$, and G can be colored with 10 colors (periodically) $\implies \chi(G) \le 10$.
- 29. $\omega(G) \ge 5$ ({1, 8, 15, 22, 29} is a clique) $\implies \chi(G) \ge 5$, and G can be colored with 5 colors $\implies \chi(G) \le 5$.
- 30. $\omega(G) \ge 11$ ({10, 11, ..., 20} is a clique) $\implies \chi(G) \ge 11$, and G can be colored with 11 colors $\implies \chi(G) \le 11$.
- 31. $\omega(G) \ge 4$ (the powers of 2 form a clique) $\implies \chi(G) \ge 4$, and G can be colored with 4 colors (using the same color between consecutive powers of 2) $\implies \chi(G) \le 4$.
- 32. $\omega(G) \ge 11$ (prime numbers and 1 form a clique) $\implies \chi(G) \ge 11$, and G can be colored with 11 colors $\implies \chi(G) \le 11$.
- 33. G is K_{10} with a perfect matching deleted. $\omega(G) \ge 5 \implies \chi(G) \ge 5$, and G can be colored with 5 colors $\implies \chi(G) \le 5$.
- 34. $\omega(G) \ge 8 \implies \chi(G) \ge 8$, and G can be colored with 8 colors $\implies \chi(G) \le 8$.
- 35. $\omega(G) \ge 6 \implies \chi(G) \ge 6$, and G can be colored with 6 colors $\implies \chi(G) \le 6$.
- 36. $\omega(G) \ge 9 \implies \chi(G) \ge 9$, and G can be colored with 9 colors $\implies \chi(G) \le 9$.
- 37. $\omega(G) \ge 4 \implies \chi(G) \ge 4$, and G can be colored with 4 colors $\implies \chi(G) \le 4$.
- 38. $\chi(G) = 4$. See exercise 27.
- 39. a) There must be at least one edge between any 2 color classes.b) Otherwise we could put all the vertices of a color class into other color classes.
- 40. A proper coloring of G can be given by pairs of colors from G_1 and G_2 .
- 41. Use the greedy coloring in the original (increasing) order of the vertices.
- 42. Order the vertices: first the exceptional ones, then the rest, and use the greedy coloring.
- 43. Use the greedy coloring in the decreasing order of the degrees.