Exercise-set 9.

Solutions

1. \(\Delta(G) = 4 \implies \chi_e(G) \geq 4 \), and the edges of \(G \) can be colored with 4 colors \implies \chi_e(G) \leq 4.

2. Edges of the same color are independent.

3. \(\chi_e(K_5) \geq e/\nu = 10/2 = 5 \) and \(\chi_e(K_5) \leq \Delta(K_5) + 1 = 5 \), so \(\chi_e(K_5) = 5 \).
\(\chi_e(K_6) \geq \chi_e(K_5) = 5 \), and the edges of \(K_6 \) can be colored with 5 colors \implies \chi_e(K_6) \leq 5.
 (In general, \(\chi_e(K_{2n+1}) = 2n + 1 \) and \(\chi_e(K_{2n}) = 2n - 1 \).)

4. \(\chi_e(K_{20}) = 19 \) (ex. 3.), and a round corresponds to edges of the same color.

5. \(\chi_e(G) \geq \chi_e(K_5) = 5 \), and the edges of \(G \) can be colored with 5 colors \implies \chi_e(G) \leq 5.

6. \(|E(G)| = 1999 \cdot 10/2 = 9995 \), \(\nu(G) \leq 1999/2 = 999 \implies \chi_e(G) \geq 9995/999 > 10 \) and \(\chi_e(G) \leq \Delta(G) + 1 = 11 \implies \chi_e(G) = 11. \)

7. a) \(\chi_e(G) \geq e/\nu = (2k \cdot 3 + 2)/2k > 3 \) (since \(|V(G)| \) is odd) and \(\chi_e(G) \leq \Delta(G) + 1 = 4 \implies \chi_e(G) = 4. \)

 b) Delete the cut-edge and use a).

8. a) \(\chi_e(G) \geq e/\nu = 15/2 > 7 \) and the edges of \(G \) can be colored with 8 colors \implies \chi_e(G) = 8.

 b) \(\chi_e(G) \geq e/\nu = 15/2 > 7 \) and the edges of \(G \) can be colored with 8 colors \implies \chi_e(G) = 8.

9. \(\chi_e(G) \geq e/\nu = 71/7 > 10 \) and \(\chi_e(G) \leq \Delta(G) + 1 = 11 \implies \chi_e(G) = 11. \)

10. Any color class of edges forms a perfect matching (covers all the vertices).

11. \(\nu(G) \geq e/\chi_e \geq 16/5 > 3 \) (since \(\chi_e(G) \leq \Delta(G) + 1 = 5 \), and \(\nu(G) \leq 9/2. \).

12. \(G \) = (rows, columns; selected squares) is a 3-regular bipartite graph \implies \chi_e(G) = 3.

13. \(G \) is bipartite \implies \chi_e(G) = \Delta(G) = 6 \); or give a concrete edge-coloring.

14. \(G \) = two vertex-disjoint paths (which are bipartite) and a 5-regular bipartite graph \implies \chi_e(G) = 2 + 5 = 7.

15. \(\nu(G) \geq e/\chi_e \geq 10/3 > 3 \) (since \(\chi_e(G) = \Delta(G) \leq 3 \).)

16. \(G \) = two vertex-disjoint cycles (which are bipartite) and a bipartite graph with \(\Delta(G) = 8 \implies \chi_e(G) = 2 + 8 = 10. \)

17. \(G \) is bipartite \implies \chi_e(G) = \Delta(G) = 5 \); or give a concrete edge-coloring.

18. For a \(k \)-regular graph on 9 vertices \(\chi_e(G) = k + 1 \), and \(\overline{G} \) is \(8 - k \)-regular \implies \chi_e(\overline{G}) \geq 9 - k. \)

19. a) The edges of \(G \) can be colored with 3 colors; 2 colors for the Hamilton cycle (since it has an even length, because \(|E| = 3|V|/2 \) is an integer), and one for the remaining edges.

 b) The edges of it cannot be colored with 3 colors.

 c) The edges of any 2 colors form a Hamilton cycle.

20. The cut with \(X = \{S, C, D, F\} \) has capacity 15.

21. No. Either find the max flow (which is 20), or notice that the capacity of a cut cannot be 19 (all the capacities are divisible by 3 except for 5), and use the Ford-Fulkerson theorem.