Combinatorics and Graph Theory 1.

Exercise-set 6. Solutions

- 1. The first graph is not bipartite (contains 5-cycles), but the second graph is.
- 2. Deleting 2 edges are enough, but less is not, since \exists 2 edge-disjoint odd cycles in G.
- 3. The graph determined by the knights and attacks is bipartite (the two classes are to the white and black squares), and each of its degrees is at least $2 \implies \exists$ a degree ≥ 3 .
- 4. Yes (the two classes of vertices are sequences with an even or odd number of 1's, resp.).
- 5. No (the complement contains a triangle).
- 6. The vertices cannot be divided into two classes (degrees).
- 7. Complete bipartite graphs are like that.
- 8. The graphs are exactly the odd cycles (so in particular n must be odd). G must contain an odd cycle (otherwise $\chi(G') = 2$), and cannot contain more vertices or edges.
- 9. $\omega(G) = 3 \implies \chi(G) \ge 3$, and G can be colored with 3 colors $\implies \chi(G) \le 3$.
- 10. $\omega(G) = 8$ (each row and column is a clique) $\implies \chi(G) \ge 8$, and G can be colored with 8 colors (colors are diagonal) $\implies \chi(G) \le 8$.
- 11. G is bipartite (the two classes of vertices are the even and odd numbers, resp.) $\implies \chi(G) = 2$
- 12. a), b) $\omega(G) = 3 \implies \chi(G) \ge 3$, but G cannot be colored with 3 colors (proof!) $\implies \chi(G) \ge 4$. G can be colored with 4 colors $\implies \chi(G) \le 4$.
- 13. $\omega(G) = 3 \implies \chi(G) \ge 3$, but G cannot be colored with 3 colors (proof!) $\implies \chi(G) \ge 4$. G can be colored with 4 colors $\implies \chi(G) \le 4$.
- 14. $\chi(G) \ge \lceil n/2 \rceil$ (at most 2 vertices can get the same color), and G can be colored with this many colors $\implies \chi(G) = \lceil n/2 \rceil$.
- 15. $\omega(G) = 10$ (any 10 consecutive numbers form a clique) $\implies \chi(G) \ge 10$, and G can be colored with 10 colors (periodically) $\implies \chi(G) \le 10$.
- 16. $\omega(G) = 5$ ({1, 8, 15, 22, 29} is a clique) $\implies \chi(G) \ge 5$, and G can be colored with 5 colors $\implies \chi(G) \le 5$.
- 17. $\omega(G) = 11$ ({10, 11, ..., 20} is a clique) $\implies \chi(G) \ge 11$, and G can be colored with 11 colors $\implies \chi(G) \le 11$.
- 18. $\omega(G) = 4$ (the powers of 2 form a clique) $\implies \chi(G) \ge 4$, and G can be colored with 4 colors (using the same color between consecutive powers of 2) $\implies \chi(G) \le 4$.
- 19. $\omega(G) = 11$ (prime numbers and 1 form a clique) $\implies \chi(G) \ge 11$, and G can be colored with 11 colors $\implies \chi(G) \le 11$.
- 20. G is K_{10} with a perfect matching deleted. $\omega(G) = 5 \implies \chi(G) \ge 5$, and G can be colored with 5 colors $\implies \chi(G) \le 5$.
- 21. $\omega(G) = 8 \implies \chi(G) \ge 8$, and G can be colored with 8 colors $\implies \chi(G) \le 8$.
- 22. $\omega(G) = 6 \implies \chi(G) \ge 6$, and G can be colored with 6 colors $\implies \chi(G) \le 6$.
- 23. $\omega(G) = 9 \implies \chi(G) \ge 9$, and G can be colored with 9 colors $\implies \chi(G) \le 9$.
- 24. a) There must be at least one edge between any 2 color classes.b) Otherwise we could put all the vertices of a color class into other color classes.
- 25. A proper coloring of G can be given by pairs of colors from G_1 and G_2 .
- 26. Use the greedy coloring in the original (increasing) order of the vertices.
- 27. Order the vertices: first the exceptional ones, then the rest, and use the greedy coloring.
- 28. Use the greedy coloring in the decreasing order of the degrees.
- 29. Keep choosing vertices of degree at most 5 (in the remaining graph), then use the greedy coloring in the opposite order.