Exercise-set 5. Solutions

- 1. Not possible; possible.
- 2. $|V(G)| = {8 \choose 2} = 28$, $\deg(v) = {6 \choose 2} = 15 \ \forall v \in V(G) \implies$ no Euler-circuit.
- 3. $|V(G)| = 2^4 = 16$, $\deg(v) = \binom{4}{2} = 6 \ \forall v \in V(G)$, but G is not connected \Longrightarrow no Euler-circuit.
- 4. $|V(G)| = 2^n$, $\deg(v) = n \ \forall v \in V(G)$, and G is connected $\implies \exists$ Euler-circuit if and only if n is
- 5. Construct a graph G: V(G) = children, and u and v are adjacent \iff not next to each other in the circle. This graph contains an Euler-circuit $(\deg(v) = 8 \ \forall v \in V(G), \text{ connected})$. Most number of passes = length of an Euler-circuit = |E(G)| = 40.
- 6. Construct a graph $G: V(G) = \text{digits} = \{0, 1, \dots, 9\}$, and u and v are adjacent $\iff u + v \neq 9$. This graph contains an Euler-circuit $(\deg(v) = 8 \ \forall v \in V(G), \text{ connected}) \iff \exists n$.
- 7. a) Add k new edges ($\Longrightarrow \exists$ Euler-circuit), then delete them.
 - b) No: each trail eliminates ≤ 2 odd degrees from G.
- 8. 4 vertices have odd degrees, and not all of them are adjacent \implies 1 edge is enough.
- 9. Yes: connected, and each degree is even.
- 10. There can be at most 2 components ⇒ adding one edge can make it connected, and the degrees will be OK.
- 11. A circuit passes from S to the complement of S and back an even number of times.
- 12. Yes (delete e and f).
- 13. a) False (if we delete a cycle component).
 - b) True: connected and the degrees are even.
 - c) False, G' is not necessarily connected.
- 14. a) There is no Hamilton cycle: if we delete 4 vertices we get 5 components.

There is a Hamilton path: draw.

b) There is no Hamilton cycle: if we delete 2 vertices we get 3 components.

There is a Hamilton path: draw.

c) There is no Hamilton cycle: if we delete 4 vertices we get 5 components.

There is a Hamilton path: draw.

- 15. a) Yes (draw); yes.
 - b) No (delete 11 vertices); yes (draw).
- 16. a) No (delete the 9 vertices divisible by 3 or 5).
 - b) No as well.
- 17. Yes, we can construct it recursively from n=2.
- 18. a) If we delete 2 vertices we get 3 components \implies need to add at least 1 edge. That is enough (draw).
 - b) If we delete 2 vertices we get 4 components \implies need to add at least 2 edges. That is enough (draw).
- 19. If we delete 1 vertex (the center) we get 100 components \Longrightarrow need to add at least 99 edges. That is enough (path).
- 20. a) Construct a graph G: V(G) = squares, and the edges are the possible moves of the horse. This graph contains no Hamilton path: if we delete the 4 middle vertices we get 6 components.
 - b) Construct a graph G: V(G) = squares, and the edges are the possible moves of the horse. This graph contains no Hamilton cycle: if we delete the 12 vertices we get 13 components.
- 21. By contradiction: if C doesn't contain all the vertices of G, then we could get a longer cycle.

- 22. Construct a graph G: V(G) = people, and the edges are the acquaintances. Then $\deg(v) \ge 6 = 12/2$ \implies by Dirac's theorem \exists a Hamilton cycle.
- 23. The condition in Ore's theorem holds for $G \Longrightarrow \exists$ a Hamilton cycle.
- 24. Construct a graph G: V(G) = people, and the edges are the acquaintances. G is k-regular for some k. If $k \ge 10 \Longrightarrow G$ contains a Hamilton cycle, if $k \le 9 \Longrightarrow \overline{G}$ contains a Hamilton cycle.
- 25. Construct a graph G: V(G) = people, and the edges are the acquaintances. Then G contains no cycles of length 3 or 4. We need to show that \exists a Hamilton cycle in G_1 , where G_1 is obtained from G by adding edges between the second neighbors, i.e. and u and v are adjacent in $G_1 \iff \text{the 2}$ people know each other or they have a common friend. Then $\deg_{G_1}(v) \geq 5 + 5 \cdot 4 = 25$ (using the property of G) \implies by Dirac's theorem \exists a Hamilton cycle in G_1 .
- 26. a) A cycle on n vertices is like that (check). b) E.g. K_7 with the edge $\{u, v\}$ missing and the 8th vertex is connected to u.
- 27. Add a new vertex to G, and connect it to all the old vertices. Then the new graph contains a Hamilton cycle from which we can get a Hamilton path of G.
- 28. Delete v from G. Then the new graph contains a Hamilton cycle from which we can get a Hamilton path of G.
- 29. The 8 edges must have pairwise no common endpoints (i.e. be independent). Every second edge of a Hamilton cycle will do (which exists because $deg(v) \ge n/2 \ \forall v$).
- 30. We can add the edges of a Hamilton cycle of \overline{G} .
- 31. Need to add k pairwise non-adjacent edges (from \overline{G}). \overline{G} contains a Hamilton cycle ($\deg_{\overline{G}}(v) = k, \forall v \in V(G)$). Every second edge of it will do.