Combinatorics and Graph Theory 1.

Exercise-set 4. Solutions

- 1. a) Yes (2 triangles), b) No (n - e + r = 2).
- 2. No $(n e + 2n = 2 \implies e = 3n 2$, contradiction).
- 3. n = 8, r = 10.
- 4. $n = 20, r = 12, k \cdot r = 2e, n e + r = 2 \Longrightarrow k = 5$ (dodecahedron).
- 5. If there are a quadrangular and b octogonal faces, then 3n = 4a + 8b, 2e = 3n, $r = a + b \Longrightarrow a b = 6$.
- 6. Like the proof of Corollary 1 (of Euler's theorem), but with equalities.
- 7. a) Otherwise 3n ≤ e ≤ 3n 6, contradiction.
 b) I k vertices have degree 5 and n k more than 5, then 5k + 6(n k) ≤ 6n 12 ⇒ k ≥ 12.
 c) No, e.g. icosahedron.
- 8. a) $2(3n-6) \le n(n-1)/2$ holds only if $n \ge 11$. b) E.g.: G is an 8-cycle with all the shortest diagonals and 2 longest diagonals.
- 9. At most 2: $e \leq 3n 6$. Adding 2 edges is possible.
- 10. Then $|E| = 3(n-1) > 3n-6 \Longrightarrow G$ cannot be planar.
- 11. Then |E| = 2n > 2n 4, and all cycles are even $\Longrightarrow G$ cannot be planar.
- 12. a) |E(K₈) = 28 = (3 ⋅ 8 6) + 10, and each "additional" edge creates a new crossing with the "planar" ones.
 b) |E(K_{4.4}) = 16 = (2 ⋅ 8 4) + 4 ⇒ ∃ ≥ 4 edge-crossings.
- 13. a) 205,
 - b) 492.
- 14. b), f) and k) are planar, the rest are nonplanar.
- 15. G cannot contain a subgraph homomorphic to K_5 or $K_{3,3}$.
- 16. Yes, G cannot contain a subgraph homomorphic to K_5 or $K_{3,3}$.
- 17. a) A nonplanar graph has at least 9 edges.
 - b) The complement of a K_5 subgraph contains $K_{3,3}$.