Exercise-set 4.

1. a) Is there a plane graph in which the number of vertices, edges and regions are all divisible by 3?
b) Is there a connected graph with the above properties?

2. Is there a simple connected plane graph which has half as many vertices as regions?

3. In a simple, connected plane graph the degree of each vertex is 4, and the number of the edges is 16. Determine the number of regions of the drawing.

4. A convex polyhedron has 20 vertices and 12 faces. Each face of the polyhedron is bounded by the same number of edges. What is this common number?

5. Each face of a convex polyhedron is a (not necessarily regular) quadrangle or an octagon. Furthermore we know that exactly 3 faces meet at each vertex of the polyhedron. What is the difference of the number of quadrangular and octogonal faces?

6. Let \(G \) be a simple, connected plane graph on \(n \geq 3 \) vertices, all of whose regions are triangles. Show that \(G \) has exactly \(3n - 6 \) edges. Draw such a graph.

7. a) Show that in a simple planar graph the minimum degree is at most 5.
b) In the simple planar graph \(G \) the minimum degree is 5. Show that in this case \(G \) contains at least 12 vertices of degree 5.
c) Is the statement true with 13 instead of 12?

8. a) Prove that if \(G \) is a simple planar graph on at least 11 vertices then at least one of \(G \) and its complement \(\overline{G} \) is not planar.
b) Give a simple graph \(G \) on 8 vertices such that both \(G \) and \(\overline{G} \) are planar.

9. At most how many edges can be added to the graph below in such a way that we get a simple planar graph? (We add edges only between already existing vertices.)

10. Suppose that \(G = (V,E) \) is a simple graph whose set of edges \(E \) is the union of the disjoint sets of edges \(E_1, E_2 \) and \(E_3 \), where all the three subgraphs \((V,E_1), (V,E_2)\) and \((V,E_3)\) are spanning trees of \(G \). Show that in this case \(G \) is not planar.

11. (MT+’19) Let \(G \) be a simple 4-regular bipartite graph (i.e. in which the degree of each vertex is 4). Can \(G \) be a planar graph?

12. a) Show that in a drawing of \(K_8 \) in which three edges cannot go through a common point there are at least 10 edge-crossings.
b) At least how many edge-crossings are there in a drawing of \(K_{4,4} \) if three edges cannot go through a common point?

13. a) Determine the maximum of \(n(G) + e(G) - 2r(G) \) over all connected simple plane graphs on 100 vertices.
b) Determine the maximum of \(n(G) + 2e(G) - r(G) \) over all connected simple plane graphs on 100 vertices.

14. Decide whether the following graphs are planar or not:
15. In the graph G the degree of each vertex is at most 3. Furthermore we know that each cycle of G contains at most 5 edges. Show that G is a planar graph.

16. The graph G doesn’t contain a subgraph homeomorphic to $K_{2,3}$ (the complete bipartite graph on 2+3 vertices). Does it follow that G is planar?

17. a) Let G be a simple graph on at most 6 vertices. Prove that at least one of G and its complement \overline{G} is planar.
 b) Give a simple graph G on 8 vertices such that neither G nor \overline{G} is planar.