

A Distributed Genetic Algorithm for Graph-Based Clustering

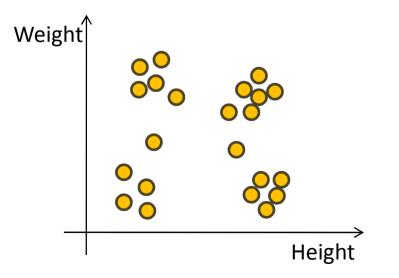
Krisztian Buza Budapest University of Technology and Economics, Hungary buza@cs.bme.hu

> Antal Buza, Piroska Buzáné Kis Polytechnic of Dunaújváros, Hungary {buza,piros}@mail.duf.hu

ID	Weight (kg)	Height (cm)	
1	105	182	
2	95	195	
3	60	160	

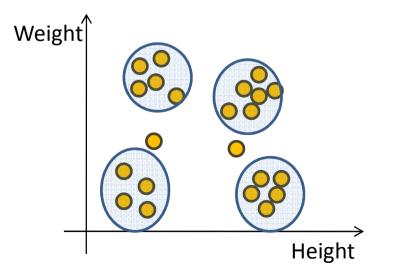
- Fundamental approach in analysis of massive datasets: explore the (highlevel) structure of data
- Identification of groups so that similar objects belong to the same group, dissimilar objects belong to different groups

ID	Weight (kg)	Height (cm)	
1	105	182	
2	95	195	
3	60	160	

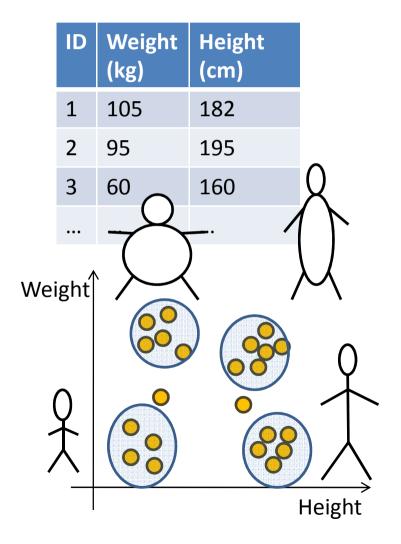


- Fundamental approach in analysis of massive datasets: explore the (highlevel) structure of data
- Identification of groups so that similar objects belong to the same group, dissimilar objects belong to different groups

ID	Weight (kg)	Height (cm)
1	105	182
2	95	195
3	60	160



- Fundamental approach in analysis of massive datasets: explore the (highlevel) structure of data
- Identification of groups so that similar objects belong to the same group, dissimilar objects belong to different groups



- Fundamental approach in analysis of massive datasets: explore the (highlevel) structure of data
- Identification of groups so that similar objects belong to the same group, dissimilar objects belong to different groups

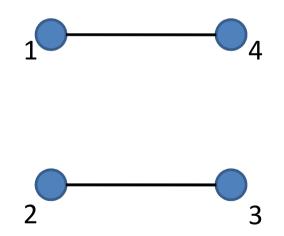
Budapest University of Technology and Economics (BME) Problems with conventional clustering algorithms

- Mapping complex data into a vector space (categorical attributes, sequences, transactional data, heterogeneous data...)
- Curse of dimensionality
 - Distances and density become less meaningful
- Alleviation of the problem:
 - Objects \rightarrow vertices of a graph
 - Graph-based clustering algorithms

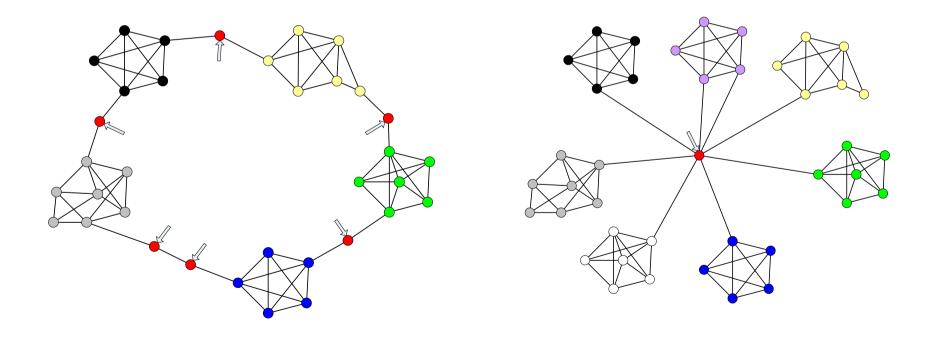
Graph-based cluserting

- Objects: vertices
- Two objects are similar → edge between the corresponding vertices

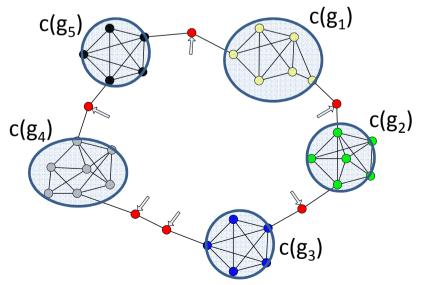
ID	Age	Weight	Height
1	59	70	170
2	35	85	180
3	36	86	179
4	64	69	172



• Search for a set of cutting vertices



- Clustering kernel
 - subgraph-quality function: $c(g): G \rightarrow R$
 - clustering-quality function: h: $R^n \rightarrow R$
- Search for a set of cutting vertices so that the value returned by the clustering kernel is maximized



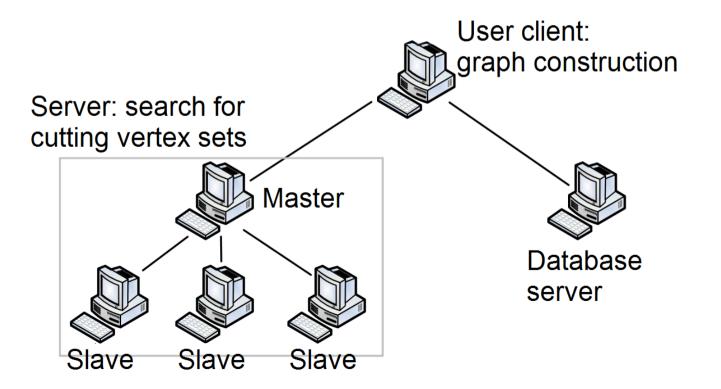
h(($c(g_1), c(g_2), c(g_3), c(g_4), c(g_5)$))

The above-defined problem is **NP-hard** Proof: See Paper (reduction of the Clique-problem to our problem).

- Search the set of cutting vertices with genetic algorithm
- Individuals: vertex sets
- Fitness function: clustering kernel
- Descendant s_3 of two individuals s_1 and s_2
 - Put all vertices of $s_1 \cap s_2$ into s_3 .
 - Put each vertex from $s_1 \ s_2$ (and from $s_2 \ s_1$ respectively) into s_3 with a probability of 0.5.
 - We add (or remove) some random vertices to (from) s_3 .

• Implementation:

distributed architecture – parallelize calculations



Experiments

- 3 benchmark tasks: Ring, Star, Tricky Star
- Clustering kernel:

$$c(g) = \frac{2|E(g)|}{|V(g)|(|V(g)| - 1)} + \left(1 - \frac{1}{|V(g)|}\right) , \quad h(\{x_1, ..., x_n\}) = \frac{x_1 + ... + x_n}{n}$$

• Vary the number/size of clusters

Size of the graph ^a	¹ Graph Type					
	STAR I	T.STAR I	RING I	STAR II	T.STAR II	RING II
100	21.00	19.33	18.66	20.00	19	28.5
200	25.00	24.67	32.66	26.00	24	33
300	27.67	27.00	41.00	27.00	25	40
400	29.67	28.33	43.66	30.00	30	40.5
500	31.00	29.33	56.00	30.50	30.5	40.5
1000	36.00	36.00	44.33	36.50	35	53

Table 1 Average number of generations in the genetic algorithm

^a total number of vertices, without the central vertex in case of Star and TrickyStar

12

Conclusion

- Graph-based clustering algorithm
- Quality function: clustering kernel
- Search for a set of cutting vertices with genetic algorithm (<u>NP-hard</u> in general)
- Implementation: distributed environment
- Experiments on benchmark tasks show scalability of the approach
- Experiments on real data: meaningful clusters