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Abstract. The growing interest in time-series classification can be at-
tributed to the intensively increasing amount of temporal data collected
by widespread sensors. Often, human experts may only review a small
portion of all the available data. Therefore, the available labeled data
may not be representative enough and semi-supervised techniques may
be necessary. In order to construct accurate classifiers, semi-supervised
techniques learn both from labeled and unlabeled data. In this paper,
we introduce a novel semi-supervised time-series classifier based on con-
strained hierarchical clustering and dynamic time warping. We discuss
our approach in the framework of graph theory and evaluate it on 44 pub-
licly available real-world time-series datasets from various domains. Our
results show that our approach substantially outperforms the state-of-
the-art semi-supervised time-series classifier. The results are also justified
by statistical significance tests.

Keywords: time-series, semi-supervised classification, constrained clus-
tering, hubs, dynamic time warping

1 Introduction

In the last decades, various types of sensors became cheaper and spread widely.
Most of them record the values of some attributes continuously over time which
results in extremely high number of very large time series. While such huge
amounts of temporal data have never been seen before, they motivate the grow-
ing interest in time-series research. In the financial domain, for example, due to
their huge volume, even storage of temporal data is challenging [14]. In general,
one of the most prominent problems associated with temporal data is classi-
fication of time-series which is the common theoretical background of various
recognition and prediction tasks ranging from handwriting, speech [20] and sign
language recognition over signature verification [8] to problems related to medi-
cal diagnosis such as classification of electroencephalogram (EEG, ”brain wave”)
and electrocardiograph (ECG) signals [2].

While the amount of temporal data grows drastically, in many cases, human
experts only have the chance to review and label a small portion of all the
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available data. Therefore, the labeled data may not be representative enough
which may result in suboptimal classifiers. This problem is amplified by the high
intrinsic dimensionality of time-series [16],[17]. As in high dimensional spaces the
data becomes inherently sparse – a phenomenon often referred to as the curse of
dimensionality – it is even more difficult to find a representative training set. In
order to alleviate this problem, besides learning from the labeled data, we aim to
use additional unlabeled data to construct more accurate time-series classifiers.

In this paper, we introduce a novel semi-supervised time-series classifier based
on constrained hierarchical clustering [13] and dynamic time warping [20]. We
call our approach SUCCESS: Semi-sUpervised ClassifiCation of timE SerieS. We
discuss semi-supervised classification in the framework of graph theory: in par-
ticular, we show that semi-supervised classification is analogous to the minimal
spanning tree problem. We explain our algorithm within this framework and ex-
plain its differences to the state-of-the-art semi-supervised time-series classifier.
We evaluate our approach on 44 publicly available real-world time-series datasets
from various domains. Our results show that our approach substantially outper-
forms the state-of-the-art semi-supervised time-series classifier. The results are
also justified by statistical significance tests.

The remainder of the paper is organized as follows. In Section 2, we introduce
the field of semi-supervised time-series classification and review the most impor-
tant related works. Section 3 presents our approach followed by the experiments
in Section 4. We conclude in Section 5.

2 Background

Both semi-supervised learning and time-series classification have been actively
researched in the last decades. From the point of view of our current study, most
relevant works deal with constrained clustering, cluster-and-label paradigm, self-
training and semi-supervised classification of time-series. We will review these
fields in the subsequent sections.

For an overview of further semi-supervised techniques and time-series classi-
fication approaches we refer to [3], [21], [25] and the references therein.

2.1 Constrained clustering

With clustering the data, we mean the automatic identification of groups of
similar instances. Such groups are called clusters. In case of constrained clus-
tering, the algorithm is provided with some pieces of a priori information in
the form of cannot-link-constraints (or must-link-constraints) that describe that
some instances can not be (or must be) in the same cluster. In case of hierarchi-
cal agglomerative clustering (HAC) algorithms, each instance initially belongs
to a separate cluster. Clusters are then merged in an iterative process. In each
iteration, the two most similar clusters are merged. The process is finished when
the number of clusters has reached the expected number of clusters (or when
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Fig. 1. Unconstrained and constrained single-link hierarchical agglomerative clustering
with the dendograms illustrating the merge steps performed during the iterative process

the two most similar clusters are too far from each other respectively). The ex-
pected number of clusters (or the distance threshold) is an external parameter
set by the user. In case of single link, the similarity of two clusters is determined
by the distance of their closest instances. Must-link (ML) and cannot-link (CL)
constraints were shown to improve clustering accuracy and robustness [11], [13]
compared to the case of unconstrained hierarchical clustering. Unconstrained
and constrained single-link hierarchical agglomerative clustering algorithms are
illustrated in Figure 1.

2.2 Cluster-and-label

In the cluster-and-label approach, unconstrained or constrained clustering is per-
formed first. Clusters are then mapped to classes by some algorithm. A possible
mapping can be constructed by majority vote, i.e., each cluster gets mapped to
the class of which the most labeled instances it contains.

Cluster-and-label performs well if the particular clustering algorithm cap-
tures the true structure of the data. Dara et al. [5] and Demiriz et al. [6] applied
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Fig. 2. Simple self-training algorithm.

the cluster-and-label paradigm with self-organizing maps and genetic algorithms
for semi-supervised classification.

2.3 Self-training

Self-training is one of the most commonly used semi-supervised algorithm. Self-
training is a wrapper method around a supervised classifier, i.e., one may use self-
training to enhance various classifiers. To apply self-training, for each instance
x to be classified, besides its predicted class label, the classifier must be able
to output a certainty score, i.e., an estimation of how likely the predicted class
label is correct.

Self-training is an iterative process during which the set of labeled instances
is grown until all the instances become labeled. Let L1 denote the set of initially
labeled instances, and, more generally, let Lt denote the set of labeled instances
in the t-th iteration (t ≥ 1). In each iteration of self-training, the base classifier
is trained on the labeled set Lt. Then, the base classifier is used to classify
the unlabeled instances. Finally, the instances with highest certainty scores are
selected. These instances, together with their predicted labels, are added to the
set of labeled instances, in order to construct Lt+1 the set of labeled instance for
the next iteration. In the simplest case, one instance is added in each iteration,
the pseudocode of this algorithm is shown in Figure 2. In context of nearest
neighbor classification, the algorithm are illustrated in Figure 3. Other variants
of self-training include e.g. Yarowsky’s algorithm [23].

2.4 Semi-supervised classification of time-series

One of the most surprising recent results in the time-series classification do-
main is that simple nearest neighbor classifiers using a special distance measure
called dynamic time warping (DTW) are generally competitive with, if not bet-
ter than, many complicated approaches [7]. Therefore, we build our approach on
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Fig. 3. Self-training with nearest neighbor. There are two classes, circles and triangles.
Bold symbols correspond to instances of the initially labeled training set L1, while
unlabeled instances are marked with crosses, see Subfigure (a). Subfigures (c) – (e)
show the first three iterations of Self-Training. The final output of self-training is
shown in Subfigure (f).

the DTW-based nearest neighbor classification of time-series. DTW was origi-
nally introduced for speech recognition [20]. The key feature of DTW is that is
allows for siftings and elongations while it compares two time-series. We refer to
[3] for a detailed description of DTW.

Despite its relevance, there are just a few works on the semi-supervised clas-
sification of time-series. Wei and Keogh proposed a self-training based approach
[22] which was enhanced by Ratanamahatana et al. [18] by the introduction
of a new stopping criterion. Nguyen et al. used k-Means and principal compo-
nent analysis for semi-supervised time-series classification [15]. All these works
focused on the case when labeled instances are only available for one of the
classes. In contrast, we assume that there are some labeled instances for each
class, like in the example shown in Figure 3. Furthermore, our approach is much
simpler than that of Nguyen et al., as we do not use dimensionality reduction.
Instead, we compare time-series directly by DTW. Zhong used self-training with
Hidden Markov Models [24] for the semi-supervised classification of small time-
series datasets. In contrast to previous works, we base our approach on the
cluster-and-label paradigm and use a constrained hierarchical single link clus-
tering algorithm.
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3 Our approach: SUCCESS

We consider the semi-supervised classification problem, in which a set of labeled
time-series L = {(xi, yi)}li=1 and a set of unlabeled time-series U = {xi}ni=l+1 is
available as train data to a classifier. The labeled time series (elements of L) are
called seeds. We wish to construct a classifier that can accurately classify any
time-series, i.e., not only elements of U . For this problem, we propose a novel
semi-supervised time-series classification approach, called SUCCESS. SUCCESS
has the following phases:

1. The labeled and unlabeled instances of the training set are clustered with
constrained single-linkage hierarchical agglomerative clustering. While doing
so, we measure the distance of two instances (time-series) as their DTW-
distance and we include cannot-link constraints for each pair of labeled seeds
even if the both seeds have the same class labels.

2. The resulting top-level clusters are labeled by their corresponding seeds.
3. The final classifier is 1-nearest neighbor trained on the resulting labeled data.

This classifier can be applied to unseen test data.

While the components of the algorithm (like DTW or single-link clustering)
are well-known, we emphasize that the algorithm as a whole is new for semi-
supervised time-series classification. Next, we explain the difference between
self-training and our approach using the framework of graph theory.

3.1 A graph-theoretic view of semi-supervised time-series
classification

The presented semi-supervised time-series classification algorithms can be con-
sidered as algorithms that aim at finding the minimum spanning tree of a graph.

Consider the set of all, labeled and unlabeled, train instances X = L ∪ U =
{xi}ni=1. Let G = (X,V ) be an undirected complete graph, the vertices of which
correspond the instances of the database, and the weights of the edges correspond
the distance of two instances (DTW-distance in our case): wi,j = d(xi, xj).

We define a spanning forest as a set of trees T = {Ti}li=1 that satisfy the
following properties:

– The trees are disjoint, i.e. ∀i : xi ∈ V (Ta) ∧ xi ∈ V (Tb)⇒ a = b.

– The trees together span the entire set of instances, i.e.
⋃l

i=1 V (Ti) = X.
– The ith tree contains the i labeled instances, i.e. ∀1 ≤ i ≤ l : xi ∈ V (Ti).

Note that we consider forests where the number of trees equals the number of
labeled instances, and each tree corresponds to a labeled instance.

A spanning forest is a minimum spanning forest if the sum of its edge weights
W (T ) =

∑l
i=1

∑
e∈E(Ti)

w(e) is minimal.

Let us define the graph G? = (X ∪{?}, E?), which is an extension of G with
a super-vertex ?. This super-vertex ? is connected to the labeled examples with
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0-weight edges, i.e., E? = E ∪ {{xi, ?} : 1 ≤ i ≤ l}, and w({xi, ?}) = 0 for all
vertices xi.

Consider the tree T ? which contains ? and the new edges from ?, ant the union
of the trees in a minimum spanning forest T of G. The sum of edge-weights in
T ? is not greater than that of a minimum spanning tree of G?, therefore, T ? is
a minimum spanning tree of G?.

The self-training algorithm with the 1-nearest neighbor classifier can be
viewed as a specific way of finding a minimum spanning tree of G?. In par-
ticular, if all the edge weights wi,j in G are strictly positive, except the weights
of edges that connect ? and the seeds, instance based self-training is equivalent to
running Prim’s algorithm [4] with ? as the root node. In the first l iterations, the
algorithm adds the labeled instances {xi}li=1 to the tree. In every subsequent
iteration, the set nodes in the growing tree equals the set of already labeled
instances.

Therefore, we can see that self-training corresponds to Prim’s minimal span-
ning tree algorithm. Next, we show that our approach, SUCCESS, in contrast,
corresponds Kruskal’s algorithm [4].

Notice that the forest which is gradually joined by Kruskal’s algorithm is a set
of clusters at some level of a single-linkage (SLINK) hierarchical agglomerative
clustering dendrogram.

Due to ? and the 0-weight edges connecting ? with the labeled instances,
in the first l iterations, Kruskal’s greedy algorithm will select all the labeled
instances into the minimal spanning tree. Therefore, after the l-th iteration, the
tree has l branches, each one corresponding to a labeled instance. In the subse-
quent iterations the tree grows along these branches, however, no new branch is
created from node ? as all of the edges of ? are already contained in the tree after
the l-th iteration. We call the aforementioned branches main branches. When
the algorithm terminates, each of the main branches corresponds to a cluster.
This is analogous to having cannot-link constraints in the hierarchical clustering
between each pair of labeled instances.

4 Experiments

In order to assist reproducibility, we provide a detailed description of the exper-
iments we performed.

Methods – We compared our approach, SUCCESS, against Wei’s approach [22],
which is one the most prominent state-of-the-art semi-supervised time-series clas-
sifiers. While Wei’s approach is based on self-training, SUCCESS is based on the
cluster-and-label paradigm as explained before.

Datasets – We evaluated both Wei’s approach and SUCCESS on 44 pub-
licly available real-world datasets from the UCR time-series repository [10].
These datasets originate from various domains ranging from handwriting recog-
nition [19] and user identification with graphical passwords [1] over biological
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Table 1. Summary of the results. The number of datasets on which our approach
wins/looses against Wei’s approach. The numbers in parenthesis show how many times
the difference is statistically significant.

Unlabeled Train Test

Wins 29 (14) 30 (6)
Ties - 2
Looses 15 (5) 12 (3)

shape recognition [9] and electrocardiograph classification to gesture recogni-
tion [12]. The names of these datasets as well as the number of classes are shown
in the first two columns of Table 2.

Comparison Protocol – We run experiments separately on each of the 44
datasets. For each experiment, we split the data into 3 disjoint subsets: the
first one, denoted as L, contains around 10% of the instances. The second split,
U , contains around 80% of the instances while the remaining instances are in
the third split. We used the first split, L, as the initially labeled instances of the
semi-supervised algorithm. U served as the set of unlabeled training instances the
labels of which were unavailable to the algorithm but the instances themselves
were available at training time. The third split was used as test data that was
completely unavailable to the algorithm at the training time. The instances of the
test set were classified one by one without updating the classification model. We
measured the performance both on the set of unlabeled training instances (U)
and on the test set. This allowed us to simulate two, slightly different, real-world
situations. Measuring the performance on U corresponds to the case of having
a large set of unlabeled instances and a small set of labeled instances with the
goal of correctly classifying the unlabeled instances. Measuring the performance
on the test set simulates the situation where we have a large set of unlabeled
instances and a small set of labeled instances and we aim at constructing a
classifier that should be used to classify new instances that may be different
from the unlabeled instances available at training time.

We used misclassification ratio to measure the performance of the baseline
and our approach. For each dataset, we repeated all experiments 10 times, i.e.,
we split the data into the above three splits 10 times by random and measured
the performances of our approach and the baseline. In Table 2, we report av-
erage performances. In order to check whether the differences are statistically
significant, we used t-tests at significance level α = 0.05.

Results – We show the average misclassification ratios on the 44 datasets in Ta-
ble 2. We use the + symbol to denote that an approach statistically significantly
outperformed its competitor. The results of our experiments are summarized
in Table 1. As it can be seen, in clear majority of the datasets, our approach,
SUCCESS, outperforms Wei’s approach. For each dataset, we also performed
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Table 2. Misclassification ratio of Wei’s approach and SUCCESS. Bold font denotes the
winner, + denotes statistically significant difference. (While determining the winner,
we took the non-shown digits into account as well.)

Dataset Number Unlabeled train Test
of classes Wei SUCCESS Wei SUCCESS

50 Words 50 0.432 0.398+ 0.436 0.414
Adiac 37 0.607 0.582+ 0.601 0.595
Beef 5 0.683 0.656 0.617 0.600
Car 4 0.484 0.457 0.458 0.450
CBF 3 0.007 0.002 0.005 0.003
ChlorineConcentration 3 0.373 0.062+ 0.350 0.101+
CinC ECG Torso 4 0.021 0.001+ 0.019 0.001+
Coffee 2 0.429 0.368+ 0.460 0.440
Cricket X 12 0.477 0.425+ 0.465 0.444
Cricket Y 12 0.463 0.405+ 0.433 0.396+
Cricket Z 12 0.443 0.395+ 0.459 0.423+
DiatomSizeReduction 4 0.018 0.017 0.031 0.025
ECG200 2 0.237 0.225 0.239 0.195
ECGFiveDays 2 0.051 0.021+ 0.053 0.030
FaceFour 4 0.201 0.191 0.182 0.200
FacesUCR 14 0.080 0.062+ 0.083 0.070+
Fish 7 0.424 0.449 0.403 0.434
GunPoint 2 0.089 0.039 0.075 0.045
Haptics 5 0.671+ 0.706 0.704 0.730
InlineSkate 7 0.693 0.679 0.683 0.663
ItalyPowerDemand 2 0.063 0.073 0.066 0.076
Lighting2 2 0.355 0.322 0.342 0.317
Lighting7 7 0.463 0.477 0.536 0.529
Mallat 8 0.042 0.041 0.042 0.037
MedicalImages 10 0.379 0.386 0.394 0.393
MoteStrain 2 0.124 0.129 0.115 0.107
OliveOil 4 0.300 0.315 0.367 0.383
OSULeaf 6 0.550 0.512+ 0.532 0.466+
Plane 7 0.050 0.049 0.038 0.038
SonyAIBORobotS. 2 0.052+ 0.090 0.060+ 0.110
SonyAIBORobotS.II 2 0.088 0.094 0.079 0.087
StarLightCurves 3 0.119+ 0.200 0.140+ 0.200
SwedishLeaf 15 0.330+ 0.369 0.364 0.379
Symbols 6 0.033 0.022+ 0.025 0.019
SyntheticControl 6 0.051 0.029 0.065 0.045
Trace 4 0.054 0.001+ 0.050 0.000
TwoLeadECG 2 0.004 0.001 0.003 0.001
TwoPatterns 4 0.000 0.000 0.000 0.000
uWaveGestureX 8 0.276 0.284 0.284 0.286
uWaveGestureY 8 0.356 0.368 0.377 0.377
uWaveGestureZ 8 0.359+ 0.378 0.368+ 0.385
Wafer 2 0.009 0.009 0.009 0.009
WordsSynonyms 25 0.414 0.378+ 0.410 0.382
Yoga 2 0.148 0.149 0.152 0.151
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experiments with 20% of the data being labeled train data L (and 70% being
the unlabeled train data U respectively) and we observed very similar results.

5 Conclusion

In this paper, we proposed SUCCESS, a novel semi-supervised time-series clas-
sifier. We discussed the relation between the minimal spanning tree problem and
semi-supervised classification. We pointed out the analogy between a state-of-
the-art semi-supervised time-series classifier and Prim’s algorithm as well as our
approach and Kruskal’s greedy algorithm. We performed exhaustive experimen-
tal evaluation that showed that our approach is able to outperform that state-
of-the-art semi-supervised time-series classifier on many real-world datasets.

Besides time-series, huge amounts of other types of sequential data are being
collected, e.g., DNA-sequence of a persons and other organisms. Therefore, as
future work, one may consider to use similar approaches for the semi-supervised
classification of other types of sequential data.
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