
SOHAC: Efficient Storage of Tick Data That
Supports Search and Analysis

Gabor I. Nagy, Krisztian Buza

Budapest University of Technology and Economics
Magyar tudósok körútja 2, H-1117 Budapest, Hungary

gnagy@tmit.bme.hu,buza@cs.bme.hu

http://www.bme.hu

Abstract. Storage of tick data is a challenging problem because two
criteria have to be fulfilled simultaneously: the storage structure should
allow fast execution of queries and the data should not occupy too much
space on the hard disk or in the main memory. In this paper, we present
a clustering-based solution, and we introduce a new clustering algorithm
that is designed to support the storage of tick data. We evaluate our algo-
rithm both on publicly available real-world datasets, as well as real-world
tick data from the financial domain provided by one of the world-wide
most renowned investment bank. In our experiments we compare our ap-
proach, SOHAC, against a large collection of conventional hierarchical
clustering algorithms from the literature. The experiments show that our
algorithm substantially outperforms – both in terms of statistical signif-
icance and practical relevance – the examined clustering algorithms for
the tick data storage problem.

1 Introduction

In order to describe objects or phenomena in real-world applications, usually, a
relatively large set of attributes (or features) are necessary. The values of these
attributes often change over time, e.g., prices on the stock market, temperature
and humidity of the air, blood pressure or pulse of a person, etc. In most cases,
the dynamics of these attributes, i.e., how they change their values, are almost
as important as (or sometimes even more important than) the current values of
the attributes. Therefore, we need to keep track of the changes of those values
which results in very large collections of data.

In particular, the size of data describing financial transactions of stock mar-
kets may be several tera or even petabytes. Such data is often called tick data,
see e.g. [14]. Tick data can be considered as a matrix that represents trades of
financial assets. Columns of this matrix correspond different properties of trans-
actions, such as price, volume of the trade, the symbol of an asset, etc. Every
time a transaction is executed or a quote is given for a stock, a row is appended
to this matrix. Therefore, this matrix grows rapidly while a technology is nec-
essary that allows efficient storage and quick retrieval of the data. Solutions are
often built over database technology such as a KDB database.1 However, as we

1 http://kx.com/

2 Gabor I. Nagy, Krisztian Buza

will describe in more detail, a straightforward application of such technology
leads to suboptimal storage of stock market data.

The major reason for the aforementioned storage to be suboptimal is the
redundancy of conventional techniques: in case of a straightforward solution,
one would use orders of magnitudes more storage space (either disk space or
main memory) than required, therefore, storage, access, search and analysis of
the data becomes computationally more expensive than necessary. One way to
alleviate this problem is the usage of regular data compression methods (see
e.g. [16] for an excellent overview). This approach is well-suited for cheap storage
of large, historical archives of the data. However, it does not support quick
access to the data: if the data is compressed, in order to be able to execute an
analytic or search query, a large archive (or at least some parts of that) must
be decompressed which might be computationally expensive and therefore the
procedure could become highly inefficient. This problem becomes crucial if many
queries has to be executed which is usually the case in real-life applications, e.g.
when trading on a stock market.

In this paper, we aim at finding a compromise between the both aforemen-
tioned cases, i.e., we aim at developing a storage structure for tick data that
reduces the storage space required by the straightforward approach while it
allows to execute search and analytic queries efficiently. In particular, our ap-
proach is based on the decomposition of a large tick data matrix into two (or
three) much smaller matrices. We achieve this decomposition by the clustering of
the columns of the matrix. Although, conventional clustering algorithms achieve
significant improvements, motivated by hierarchical clustering algorithms, we
develop a new clustering algorithm that minimizes storage space required for a
tick data matrix. Therefore we call our approach SOHAC, Storage-Optimizing
Hierarchical Agglomerative Clustering. We evaluate SOHAC both on publicly
available real-world datasets, as well as real-world tick data from the financial
domain provided by Morgan Stanley, one of the world-wide most renowned in-
vestment bank. In our experiments we compare our approach against a large
collection of conventional hierarchical clustering algorithms from the literature.
The experiments show that our algorithm significantly – both in terms of statis-
tical significance and practical relevance – outperforms the examined clustering
algorithms for the tick data storage problem.

This paper is organized as follows: Section 2 reviews related works. Our
approach is described in Section 3, followed by our experiments in Section 4.
Finally, we conclude in Section 5.

2 Related work

The availability of high-resolution data describing transactions on financial mar-
kets, especially tick data (also known as tick-by-tick data) allows thorough anal-
ysis of the markets and their dynamics. Some of the most relevant recent works
focused for example on currency exchange rates [24], [15], [18], [17], stock market
tick data [14], risk analysis [7] and and the dynamics of stock markets [3]. Based

SOHAC: Efficient Storage of Tick Data 3

on tick data, Akram et al. empirically studied the law of one price on different
financial markets [2], while Ahamad et al. focused on the summarization of tick
data time series [1].

Although, storage of tick data is a core component of the systems performing
the above analysis tasks, none of the above works focused on how to develop stor-
age structures for tick data. As we will demonstrate it in Section 3.1, the storage
of tick data is a non-trivial task: widely-used techniques result in redundant
and therefore suboptimal solutions. Conventional compression techniques, such
as run-length encoding, may result in massive reduction of the required storage
space. We refer to [16] for an excellent overview of conventional compression
techniques. As mentioned in Section 1, such techniques are well-suited for cheap
storage of large, historical archives of the data. However, they do not support
quick access to the data: if the data is compressed, in order to access the data
and execute an analytic or search query, a large archive (or at least some parts
of that) must be decompressed which might be computationally expensive and
therefore the procedure could become highly inefficient. Therefore, in contrast to
the previously discussed techniques, we build our approach on clustering which
is known to have a high potential to reduce both the volume of data and its
redundancy.

In the last decades, very large number of clustering algorithms were devel-
oped for various tasks (see e.g. [5], [9], [11], [12], [13] and [21]). We refer to [19]
and [23] for excellent surveys of clustering algorithms. Although one can achieve
substantial improvements if one uses general-purpose clustering algorithms in our
approach, such conventional clustering algorithms were originally not designed
for storage optimization of tick data. In contrast, the clustering algorithms we
propose in Section 3 directly minimize the storage space required for tick data.

In the context of data compression, Han and Yand [10] used clustering as
preprocessing for conventional data compression techniques. As they perform
the actual compression by a conventional compressor, 7-zip2, this approach does
not support fast enough execution of search and analytic queries. Instead of
using clustering as a preprocessing step for standard compressors, we build our
approach on the cluster-based decomposition of tick data matrices.

3 Decomposition of Tick Data Matrix based on
Clustering

In this section, we describe our approach in more detail. First, we motivate
our approach with an illustrative example, then we develop a new clustering
algorithm that supports efficient storage of tick data.

3.1 An Illustrative Example

Suppose that a weather station monitors features of weather conditions. In this
example, such features are the temperature, humidity and pressure of the air, the

2 http://www.7-zip.org

4 Gabor I. Nagy, Krisztian Buza

Fig. 1. An illustrative example for tick data. Features describing the weather are mon-
itored continuously. Whenever the value of one of the features changes, a new row is
inserted into the recordings (see the table in the top). Decomposition of such tables by
features (columns) that change their values simultaneously may substantially reduce
the required storage space (see the tables in the bottom of the figure).

velocity and direction of the wind, the intensity of the radiation of the sun and
the overall outlook (such as sunny, cloudy, raining or snowing). These features
are monitored continuously over the time. Whenever the value of one of these
features changes, new raw is inserted into the recordings. This new row contains
the values of the features as well as time-stamp indicating when the observations
were made. See the matrix in the top of Figure 1.

This representation, called tick data, is well-suited for queries: for example,
if we are interested for the features of the weather at 10:30 o’clock, we only need
to find the raw corresponding the most recent observation before 10:30, i.e., we
have to consider the raw at 10:22. This raw describes the ”state of the world”,
i.e., it contains the values of all the features that are relevant in the current
application. Such queries regarding the ”state of the world” at a given time can
be effectively supported by indexing techniques.

The only disadvantage of the representation shown in the top of Figure 1 is
that the total size of the matrix may become much larger than actually required.
In order to illustrate this we stored the same information in two smaller matrices
in the bottom of Figure 1. In our approach such decompositions are based on the
clustering of columns: in the example, we consider two clusters of columns. One
of the clusters contains Humidity and Pressure, while the other cluster contains

SOHAC: Efficient Storage of Tick Data 5

the other columns, i.e., Temperature, Velocity of the wind, Direction of the wind,
Radiation and Outlook. As shown in the example, due to the decomposition, we
can save storage space: the total number of cells required to store the data was
reduced from 7 × 7 = 49 to 3 × 2 + 5 × 5 = 31 (without counting the cells
in the column Time which acts like an index column). This corresponds to a
compression ratio of 31/49 ≈ 0, 633.

While the decomposition reduces the required storage space, in the worst
case, the computational complexity of a query may increase moderately: if we
are interested for all the features describing the weather at 10:30, we have to
execute two queries instead of one, however, both queries are executed on much
smaller datasets (and therefore the overall execution time is expected to grow
only moderately compared to the previous case). Whereas if we are only inter-
ested for the temperature and radiation we have to execute just one query on a
dataset of reduced size (and therefore the overall execution time is expected to
be reduced too).

The example in Figure 1 illustrates the decomposition of a tick data matrix
in an intuitive way. Next, we systematically study such decompositions and
develop an algorithm that aims at minimizing the storage space required after
the decomposition.

3.2 Definitions and Problem Formulation

In general, a tick data matrix M is a matrix where columns correspond attributes
or features while rows correspond observations of the same features at different
moments of time. Rows of the matrix are ordered according to the order of
observations, i.e., the values of the i-th row were observed before the values of
the j-th row if and only if i < j. While the observations are made, a new row is
added whenever the value of an attribute changes. However, as long as none of
the attribute-values changes no new row is added to the matrix, therefore two
rows of a tick data matrix differ in the value of at least one attribute. There is
an additional column that is used to index the rows of a tick data matrix. This
additional index column may contain, for example, ascending integer numbers
(like the number of the corresponding row) or a time-stamp (see the Time column
in the example in Section 3.1). We use the term regular column for all the columns
other than the index column.

With decomposition of a tick data matrix M we mean the partitioning of
the regular columns of M into k disjoint partitions Pi, 1 ≤ i ≤ k, i.e., for each
regular column cj of M :

cj ∈ P1 ∨ cj ∈ P2 ∨ ... ∨ cj ∈ Pk

and for all i, j with i 6= j
Pi ∩ Pj = ∅.

Note that this partitioning refers to the regular columns only, i.e., in this for-
mulation, the index column does not belong to any partition. Then, for each
partition Pi, a matrix Mi is derived from M by selecting the index column and

6 Gabor I. Nagy, Krisztian Buza

those columns of M that belong to partition Pi. Subsequent rows of a derived ma-
trix Mi may contain the same values in all the regular columns. In such cases we
only keep the first row. For example, in Figure 1, P1 = {Humidity, Pressure},
P2 = { Temperature, Wind (velocity), Wind (direction), Radiation, Outlook }
and the corresponding matrices M1 and M2 are shown in the bottom left and
bottom right of the Figure.

We can easily see that the original matrix can be reconstructed from the
decomposition described above, and therefore, instead of the original matrix M ,
one can use this decomposition to calculate the results of search and analytic
queries.

In this paper, we target the problem of finding a decomposition so that
the required storage space is minimized. In particular, for a given number of
partitions k, we aim at finding a decomposition so that the total number of all
the cells in all the matrices Mi (without counting the cells in the index column) is
minimized. Our approach can simply be adapted for the case of more advanced
storage models, where we do not assume uniform storage cost for each cells
and/or the storage costs of the index cell is also taken into account. We plan to
access this issue in our future work.

We note that k is usually relatively small: for example, for the storage of tick
data of financial transactions, the user is most interested for the decomposition
into k = 2 or k = 3 partitions.

3.3 Clustering of Columns of Tick Data Matrix

In the literature, there are many clustering algorithms that are able to produce
non-overlapping partitions in a way that these partitions together cover all the
instances. Therefore, one solution for the problem defined in the previous section
is to cluster the columns of a tick data matrix using one of the conventional
clustering algorithms.

In the context of our problem, two regular columns are considered to be
similar, if they often change values in the same row. In order to be able to reuse
proximity measures from the literature, we define a binary change indicator
matrix I over a tick data matrix M . Except the entries of the index column, all
the entries of the binary change indicator matrix I are either 0 or 1 depending
on whether or not the value of a cell in the tick data matrix M is equal to the
value of the cell in the same column and the previous row of M :

I(i, j) =

M(i, j) if the j-th column is the index column in M
0 if i > 1 and M(i, j) = M(i− 1, j)
1 otherwise

where M(i, j) and I(i, j) denote the entries in the i-th row and j-th column
of the tick data matrix M and binary change indicator matrix I respectively.

As an example, Figure 2 shows how the binary change indicator matrix is
derived from a tick data matrix. The index column is the Time column in this
example.

SOHAC: Efficient Storage of Tick Data 7

Fig. 2. Construction of a binary change indicator matrix from a tick data matrix. The
tick data matrix is shown in the top of the figure, while the corresponding indicator
matrix is shown in the bottom. The index column is the Time column in this example.

After constructing the binary change indicator matrix I, we can use its reg-
ular columns (i.e., all the columns except the index column) as instances in
conventional clustering algorithms. Despite the fact that conventional cluster-
ing algorithms are not designed to produce optimal partitions in terms of our
problem from Section 3.2, as we will show in the experiments, if we use the par-
titioning of the columns produced by conventional clustering algorithms we can
achieve substantial improvements w.r.t. the required storage space compared to
the case of storing the original tick data matrix. In the next section, we develop
a clustering algorithm that directly optimize the storage space required to store
the decomposed tick data matrix.

3.4 SOHAC: Storage-Optimizing Hierarchical Agglomerative
Clustering

In this section we propose our new clustering algorithm, SOHAC, Storage-
Optimizing Hierarchical Agglomerative Clustering that is designed for clustering
columns of a tick data matrix. The algorithm builds on the hierarchical agglom-
erative strategy. Therefore, initially, all the objects belong to separate clusters.
Then, clusters are iteratively merged together as long as the current number of
clusters is more than k, the user-defined number of partitions. Therefore, at the
end of this iterative process, k clusters are produced.

8 Gabor I. Nagy, Krisztian Buza

Algorithm 1 SOHAC: Storage-Optimizing Hierarchical Agglomerative Cluster-
ing for Tick Data

Require: Tick data matrix M , number of partitions k
Ensure: Partitioning of the columns of M

1: Construct the binary indicator matrix I from M

2: P =
{
{c1}, {c2}, ..., {cn}

}
(Initially, each column cj of M is a separate cluster)

3: while |P | > k do
4: s←∞ (Storage size for the best partitioning found so far)
5: for all pairs of clusters (Ci, Cj), with Ci ∈ P , Cj ∈ P do
6: C′i ← Ci ∪ Cj (Merge clusters Ci and Cj into the new cluster C′i)
7: P ′ ← P \ {Ci} \ {Cj} ∪ {C′i}
8: s′ = storage size required to store the decomposition corresponding to P ′

9: (This can simply be computed based on I.)
10: if s′ < s then
11: P ∗ ← P ′

12: s← s′

13: end if
14: P ← P ∗

15: end for
16: end while
17: return P

The key feature of our algorithm is that in each iteration it merges those
two clusters that lead to minimal storage size of the decomposed matrix. This
storage size can simply be calculated based on the binary change indicator ma-
trix. For each examined partitioning of the columns, we decompose the binary
change indicator matrix. Then, we consider the rows that contain only zeros
in the regular columns. The cells of such rows can be eliminated in the exam-
ined decomposition without loss of information. Therefore, in order to determine
the number of cells required for the storage of the examined decomposition, we
only need to count the cells in the rows that contain only zeros in their regular
columns. The pseudocode of our algorithm is shown in Algorithm 1.

4 Experiments

In this section, we describe the experiments we performed in order to evaluate
our approach used and discuss the results.

4.1 Experimental Settings

Datasets — We tested our approach both on a real-world tick data describing
financial transactions and several publicly available real-world dataset.

The real-world tick data from the financial domain was provided us by Mor-
gan Stanley, one of the most renowned investment bank of the world. Therefore,

SOHAC: Efficient Storage of Tick Data 9

in this paper, we call this dataset MorganStanleyTickData. MorganStanleyTick-
Data contains 30 regular columns and 4.080.431 rows.

Additionally, we used publicly-available real-world datasets: we used some
of the most popular datasets from the UCI machine learning repository [8]. In
particular, these datasets were: Adult, Breast Cancer Wisconsin (Diagnostic),
Car Evaluation, Forest Fires [6] and Poker Hand. As the datsets in the UCI
repository do not contain tick data, in order to be able to perform reasonable
experiments, as preprocessing, we removed the id values from the UCI datasets
(if present) and sorted the records of the UCI datasets in lexicographical order.
After sorting, the values of cells in the same columns and subsequent rows were
often equal, this is the key property of tick data that our approach exploits.

Experimental Protocol — In our experiments we compared the decomposi-
tion of a tick data matrix resulting from the clusters produced by our approach,
SOHAC, with the decomposition of the same tick data matrix using other cluster-
ing algorithms from the literature. We measured the quality of a decomposition
by the compression ratio (CR), i.e., the ratio of the number of cells in regular
columns after the decomposition and the number of cells in regular columns in
the original matrix:

CR =
number of cells in regular columns after decomposition

number of cells in regular columns in the original matrix

An example for the calculation of compression ratio can be found in Section 3.1.

We used a procedure that is similar to 10-fold-crossvalidation. In particular,
we split the entire tick data matrix into 10 disjoint sub-matrices, and we repeated
all the experiments 10 times: in each of the 10 rounds of the process, we used a
different sub-matrix, and clustered the columns of that sub-matrix. Therefore,
we could calculate the average and standard deviation of the compression ratio.

Baselines — As our approach, SOHAC, is built on hierarchical agglomera-
tive clustering, in our experiments we focused on comparing the partitioning
produced by SOHAC against the partitioning produced by different variants
of hierarchical agglomerative clustering algorithms. Additionally, we compared
the partitioning produced by SOHAC against the partitioning produced by k-
Means [22].

Regarding the variants of hierarchical agglomerative clustering algorithms,
we used Single Linkage, Complete Linkage and Average Linkage with the follow-
ing proximity measures: Euclidean Distance, Cosine Similarity, Dice Similarity,
Jaccard Similarity, Kulczynski Similarity, Nominal Similarity, Rogers-Taminoto
Similarity, Russell-Rao Similarity Simple Matching Similarity, Chebychev Dis-
tance, Manhattan Distance and Overlap Similarity. Implementations of these
proximity measures are available in the RapidMiner software tool3. In our ex-
periments, we used this software to calculate the partitioning with the baseline

3 http://www.rapidminer.com/

10 Gabor I. Nagy, Krisztian Buza

Fig. 3. Performance of our approach, SOHAC, and Complete Linkage with Euclidean
distance, Single Linkage and Average Linkage with Cosine Similarity for the case of
varying the number of partitions, k, between 2 and 10. The number of partitions
are shown on the horizontal axis. The performance is measured in compression ratio
(vertical axis) and is averaged for 10 splits.

algorithms, more details about these baseline algorithms can be found in the
documentation of RapidMiner and the reference therein.

In total, taking all the examined variants of the baselines into account, we
compared our approach against 38 clustering algorithms from the literature.

4.2 Results

In our first experiment, we tested our approach on MorganStanleyTickData.
We tried three different values for the number of partitions, k. Table 1 shows
the results for k equal to 2, 3 and 4 respectively. Figure 3 shows the results of
our approach and some of the baseline algorithms, namely k-Means and Com-
plete Linkage with Euclidean distance, Single Linkage and Average Linkage with
Cosine Similarity for the case of varying k between 2 and 10.

As we can see from Table 1, our algorithm substantially outperformed its 38
competitors. In many cases, the difference was significant in terms of average
and standard deviation.

We performed our second experiment on datasets from the UCI machine
learning repository. For simplicity, in Table 2, we only show the results for our
approach and three baselines, Single Linkage, Complete Linkage and Average
Linkage with Euclidean distance. We considered these algorithms as representa-
tives of all the examined 38 baselines. The other examined algorithms performed
similar to the ones shown in Table 2. As one can see, our approach outperformed
the baselines again.

Just like in the first experiment, we additionally tested other values for the
number of partitions, k, in the second experiment too. The results were similar

SOHAC: Efficient Storage of Tick Data 11

Table 1. Performance of our approach, SOHAC, and the baselines on MorganStanleyT-
ickData. The performance is measured by compression ratio, smaller values indicate
better performance. Values are averaged for 10 splits, standard deviation is shown af-
ter the ± symbol. For each value of k, the number of partitions, bold font denotes the
winner.

Algorithm Distance Measure k = 2 k = 3 k = 4

Average- Dice 0.9799±0.0016 0.5805±0.0596 0.3094±0.1311
Linkage Jaccard 0.9799±0.0016 0.5805±0.0596 0.3094±0.1311

Kulczynski 0.9799±0.0016 0.5805±0.0596 0.3094±0.1311
Nominal 0.7385±0.1072 0.6309±0.0731 0.5612±0.0753
Rogers-Tanimoto 0.7320±0.1032 0.6339±0.0696 0.5312±0.1184
RussellRao 0.9799±0.0016 0.5805±0.0596 0.3094±0.1311
SimpleMatching 0.7320±0.1032 0.6339±0.0696 0.5312±0.1184
Chebychev 0.9799±0.0016 0.7169±0.0412 0.6836±0.0413
Cosine 0.5556±0.2659 0.3560±0.0852 0.3084±0.0601
Euclidean 0.7320±0.1032 0.6339±0.0696 0.5312±0.1184
Manhattan 0.7320±0.1032 0.6339±0.0696 0.5312±0.1184
Overlap 0.9605±0.0172 0.8788±0.0129 0.7734±0.0222

Complete- Dice 0.7415±0.1020 0.5805±0.0596 0.3094±0.1311
Linkage Jaccard 0.7415±0.1020 0.5805±0.0596 0.3094±0.1311

Kulczynski 0.7415±0.1020 0.5805±0.0596 0.3094±0.1311
Nominal 0.7044±0.0462 0.3460±0.1328 0.3254±0.1361
RogersTanimoto 0.7013±0.0446 0.3388±0.1273 0.3190±0.1299
RussellRao 0.9799±0.0016 0.5805±0.0596 0.3094±0.1311
SimpleMatching 0.7013±0.0446 0.3388±0.1273 0.3190±0.1299
Chebychev 0.9799±0.0016 0.7169±0.0412 0.6836±0.0413
Cosine 0.8303±0.0762 0.7306±0.1298 0.3075±0.0875
Euclidean 0.7013±0.0446 0.3388±0.1273 0.3190±0.1299
Manhattan 0.7013±0.0446 0.3388±0.1273 0.3190±0.1299
Overlap 0.8696±0.0475 0.7620±0.0408 0.6970±0.0441

Single- Dice 0.9799±0.0016 0.7301±0.1952 0.3338±0.1629
Linkage Jaccard 0.9799±0.0016 0.7301±0.1952 0.3338±0.1629

Kulczynski 0.9799±0.0016 0.7301±0.1952 0.3338±0.1629
Nominal 0.7607±0.1379 0.7296±0.1511 0.5612±0.0753
RogersTanimoto 0.7520±0.1329 0.7228±0.1441 0.5587±0.0714
RussellRao 0.9799±0.0016 0.9055±0.0264 0.4820±0.3088
SimpleMatching 0.7520±0.1329 0.7228±0.1441 0.5587±0.0714
Chebychev 0.9799±0.0016 0.7169±0.0412 0.6836±0.0413
Cosine 0.5072±0.2641 0.4150±0.1893 0.3254±0.0683
Euclidean 0.7520±0.1329 0.7228±0.1441 0.5587±0.0714
Manhattan 0.7520±0.1329 0.7228±0.1441 0.5587±0.0714
Overlap 0.9799±0.0016 0.9466±0.0016 0.9134±0.0018

k-Means Euclidean 0.4291±0.1821 0.3242±0.1216 0.3244±0.1309
Manhattan 0.8084±0.1219 0.6029±0.1224 0.4437±0.1274

SOHAC 0.3649±0.0772 0.2526±0.0587 0.1960±0.0499

12 Gabor I. Nagy, Krisztian Buza

Table 2. Performance of our approach, SOHAC, and Single Linkage, Average Linkage
and Complete Linkage (with Euclidean Distance) on datasets from the UCI reposi-
tory of machine learning datasets. The performance is measured by compression ratio,
smaller values indicate better performance. Values are averaged for 10 splits, standard
deviation is shown after the ± symbol. For each dataset, bold font denotes the winner.

Dataset SOHAC Single Linkage Avg. Linkage Complete Linkage

k = 2

Adult 0.8051±0.0256 0.8672±0.0473 0.8558±0.0408 0.8558±0.0408
Breast C.W. 0.5040±0.2420 0.5708±0.2243 0.5478±0.2181 0.5142±0.2243
Car 0.5199±0.0291 0.6347±0.0806 0.6108±0.0733 0.5909±0.0660
ForestFires 0.7816±0.0208 0.7887±0.0286 0.7834±0.0288 0.7925±0.0389
Poker Hand 0.5490±0.0001 0.7582±0.0572 0.7582±0.0572 0.7871±0.0018

k = 3

Adult 0.7101±0.0251 0.8018±0.0515 0.7884±0.0397 0.7876±0.0388
Breast C.W. 0.4451±0.2424 0.5022±0.2167 0.4915±0.2189 0.4628±0.2292
Car 0.3869±0.0190 0.4389±0.0235 0.4391±0.0238 0.4391±0.0238
ForestFires 0.7242±0.0202 0.7406±0.0212 0.7402±0.0213 0.7387±0.0178
Poker Hand 0.4477±0.0003 0.5978±0.0011 0.5978±0.0011 0.5978±0.0011

k = 4

Adult 0.6491±0.0222 0.7402±0.0125 0.7437±0.0215 0.7501±0.0272
Breast C.W. 0.4068±0.2344 0.4414±0.2199 0.4394±0.2215 0.4289±0.2183
Car 0.3141±0.0206 0.3146±0.0198 0.3146±0.0198 0.3146±0.0198
ForestFires 0.6857±0.0191 0.7144±0.0214 0.7113±0.0226 0.7105±0.0177
Poker Hand 0.4016±0.0004 0.4272±0.0005 0.4272±0.0005 0.4272±0.0005

to the ones reported in Table 2, i.e., our approach outperformed the baselines
for other k values too.

The reason for the good performance of our approach is that it directly
optimizes compression ratio by searching for the partitioning that corresponds to
minimal storage size, while other, general-purpose clustering algorithms optimize
other criteria, e.g., k-Means aims at minimizing the sum of squared distances
from the centroids [19].

Additionally, we note that our partners at Morgan Stanley were extraordi-
narily satisfied with the results of our approach.

5 Conclusion

In this paper we focused on the storage of tick data. Our approach aimed at
reducing the disk/memory occupied by the data while it allowed quick access to
the data.

In particular, we developed a new clustering algorithm, SOHAC, Storage-
Optimizing Hierarchical Agglomerative Clustering that is designed for partition-
ing the columns of a tick data matrix. This partitioning allows efficient storage
of the data by the decomposition of tick data matrices. In our experiments,
we compared our approach, SOHAC, against a large number of other clustering

SOHAC: Efficient Storage of Tick Data 13

algorithms both on real-world tick data provided by Morgan Stanley and on pub-
licly available real-world datasets from the UCI repository. The results showed
that our approach, SOHAC, substantially outperforms (in term of statistical
significance and practical relevance, respectively) the examined other clustering
algorithms. Furthermore, our partners at Morgan Stanley were extraordinarily
satisfied with the results.

Future works may include various topics. For example, in this paper, we
used a simplified model to calculate the disk/memory space required to store a
tick data matrix, as we assumed uniform costs for the storage of each cell of a
regular column. Additionally, one could consider other algorithms (local search,
genetic algorithms, gradient descent, etc.) for finding the optimal partitioning.
As a by-product of our experiments, we observed that our algorithm produced
very similar clusterings on different splits of the data. This could motivate to
speed-up the algorithm by sampling and the study of its stability, which could
be interesting in the light of recent results concerning the theory of clustering [4].
Furthermore, one could examine whether some of the columns of the tick data
matrix act as hubs and explore hub-based algorithms, such as k-Hubs [21], for
the tick data storage problem. Moreover, factorization techniques, see e.g. [20],
might also serve as the basis for column clustering algorithms. Last but not least,
we mention that our algorithm can be applied in other domains, such as storage
of multivariate time series or sensor data.

Acknowledgment. Discussions with Dr. Ferenc Bodon and Zoltan Papp, Mor-
gan Stanley Analytics, Budapest, Hungary are greatly appreciated. The work
reported in the paper has been developed in the framework of the project ”Tal-
ent care and cultivation in the scientific workshops of BME” project. This project
is supported by the grant TÁMOP - 4.2.2.B-10/1–2010-0009

References

1. Ahmad, S., Taskaya-Temizel, T., Ahmad, K.: Summarizing time series: Learning
patterns in volatileseries. Intelligent Data Engineering and Automated Learning–
IDEAL 2004 pp. 523–532 (2004)

2. Akram, Q., Rime, D., Sarno, L.: Does the law of one price hold in international
financial markets? evidence from tick data. Journal of Banking & Finance 33(10),
1741–1754 (2009)

3. Bartiromo, R.: Dynamics of stock prices. Physical Review E 69(6), 067108 (2004)

4. Ben-David, S., Von Luxburg, U., Pál, D.: A sober look at clustering stability.
Learning Theory pp. 5–19 (2006)

5. Buza, K., Buza, A., Kis, P.: A distributed genetic algorithm for graph-based clus-
tering. Man-Machine Interactions 2 pp. 323–331 (2011)

6. Cortez, P., Morais, A.: A Data Mining Approach to Predict Forest Fires using
Meteorological Data. In: New Trends in Artificial Intelligence, Proceedings of the
13th EPIA 2007 - Portuguese Conference on Artificial Intelligence. pp. 512–523
(2007)

14 Gabor I. Nagy, Krisztian Buza

7. Dionne, G., Duchesne, P., Pacurar, M.: Intraday value at risk (ivar) using tick-
by-tick data with application to the toronto stock exchange. Journal of Empirical
Finance 16(5), 777–792 (2009)

8. Frank, A., Asuncion, A.: Uci machine learning repository (2010), http://archive.
ics.uci.edu/ml

9. Guha, S., Rastogi, R., Shim, K.: Rock: A robust clustering algorithm for categorical
attributes. Information Systems 25(5), 345–366 (2000)

10. Han, B., Yang, Z.: Data matrix compression by using co-clustering. In: Fuzzy
Systems and Knowledge Discovery (FSKD), 2011 Eighth International Conference
on. vol. 4, pp. 2600 –2604 (july 2011)

11. Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: An effi-
cient k-means clustering algorithm: Analysis and implementation. Pattern Analysis
and Machine Intelligence, IEEE Transactions on 24(7), 881–892 (2002)

12. Kurucz, M., Benczur, A., Csalogány, K., Lukács, L.: Spectral clustering in tele-
phone call graphs. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007
workshop on Web mining and social network analysis. pp. 82–91. ACM (2007)

13. Nanopoulos, A., Gabriel, H., Spiliopoulou, M.: Spectral clustering in social-tagging
systems. Web Information Systems Engineering-WISE 2009 pp. 87–100 (2009)

14. Oh, K., Kim, K.: Analyzing stock market tick data using piecewise nonlinear model.
Expert Systems with Applications 22(3), 249–255 (2002)

15. Ohnishi, T., Mizuno, T., Aihara, K., Takayasu, M., Takayasu, H.: Statistical prop-
erties of the moving average price in dollar–yen exchange rates. Physica A: Statis-
tical Mechanics and its Applications 344(1), 207–210 (2004)

16. Salomon, D.: Data compression: the complete reference. Springer-Verlag New York
Inc (2004)

17. Sazuka, N.: Analysis of binarized high frequency financial data. The European
Physical Journal B-Condensed Matter and Complex Systems 50(1), 129–131 (2006)

18. Takayasu, M., Takayasu, H., Okazaki, M.: Transaction interval analysis of high
resolution foreign exchange data. Empirical Science of Financial Fluctuations-The
Advent of Econophysics 18, 25 (2002)

19. Tan, P., Steinbach, M., Kumar, V., et al.: Introduction to data mining. Pearson
Addison Wesley Boston (2006)

20. Thai-Nghe, N., Drumond, L., Horváth, T., Schmidt-Thieme, L.: Multi-relational
factorization models for predicting student performance. In: KDD 2011 Workshop
on Knowledge Discovery in Educational Data (KDDinED 2011) (2011)

21. Tomasev, N., M. Radovanovic, D. Mladenic, M.I.: The Role of Hubness in Cluster-
ing High-Dimensional Data. In: 15th Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining (PAKDD), LNCS/LNAI, vol. 6634, pp. 183–195. Springer
(2011)

22. Witten, I., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann (2011)

23. Xu, R., Wunsch, D., et al.: Survey of clustering algorithms. Neural Networks, IEEE
Transactions on 16(3), 645–678 (2005)

24. Zhou, B.: High-frequency data and volatility in foreign-exchange rates. Journal of
Business & Economic Statistics 14(1), 45–52 (1996)

