

Feedback Prediction for Blogs

Krisztián Buza

Department of Computer Science and Information Theory Budapest University of Technology and Economics buza@cs.bme.hu

Introduction

- Scope
 - data mining in social media
- Goal

- prediction of relevance of recently-appeared social media entries in the near future (like weather forecasts)
- Major results
 - We developed and tested a proof-of-concept prototype
 - Publication of the collected data

Domain-specific concepts

- *Source*: generates documents
- Document
 - *Main text* (or: *text*)
 - (text may change over time \rightarrow potentially several versions of document texts)
 - Feedbacks
 - Links
 - Temporal aspects are relevant for all the above components of a document

Domain-specific Concepts

Document

Source of the document: torokgaborelemez.blog.hu

Main text of the document

Links to other documents (Trackbacks)

Feedbacks

Domain-specific concepts

Thousands of blogs, tweets,... appeared about our company in the last days. Which ones should we reply to?

Problem Formulation

For the documents that appeared in the last 72 hours, predict the number of new feedbacks, i.e., the number of feedbacks in the next 24 hours.

System schema

Crawler

🖇 Social Web Miner									
Crawler Ext	tractors	Extractor Assi	gnments	Sear	ch & Trends	Data Exploration	Prediction		
Domain:	Config	jure Information I blog.hu	Extractors						
Seeds:	Seeds:								
http://torokgal	borelemez alo.blog.hu	.biog.nu/					De	lete	
http://telefonk	ozpont.blo	g.hu/					CI	ear	
http://kerekag	y.blog.hu/						In	vert	
http://autozz.b	a hu/					•			-
									_
(type new see	d here)						A	dd	
Special Paran	neters:								_
blog.hu,?fullc	blog.hu,?fullcommentlist=1#comments						De	lete	
						CI	ear		
						In	vert	- I	
(type special p	(type special parameter setting here) Add								
				_					
Max. number (of pages to	o crawl:	50000						
Max. crawling	depth:		12						
Delay (ms):			200]	100				
✓ Save crawled pages									
✓ Log crawling process									
	Save			Re	set				

Information Extractors

Social Web Miner							
Crawler Extra	actors Extractor Assignments	Search & Trends Data Exp	Ioration Prediction				
Available Extractors							
BlogURLExtrac	tor1	Delete					
BlogURLExtrac	torKonsprialo						
BlogURLExtrac	torNapizeje		Clear				
TrackbackExtra	actor						
FeedbackExtra	ctor		_				
Textextractor							
FeedbackExtrac	tor		Add new				
Tags and pieces	s of information to extract						
	Open Tag	Closing Tag	Extraction constraints				
List tags	<a <="" name="comments" td=""><td></td><td>Link before Text</td>		Link before Text				
Entity tags	<div <="" class="comment" td=""><td></td><td>Text before Link</td></div>		Text before Link				
✓ Text	<div <="" class="commenttext" td=""><td></td></div>		Text before Time				
URL			Time before Link				
✓ Date/Time	<a <="" class="commenttime" td=""><td></td>						
Date/Time extra	oction						
Extract date	Extract date/time from URL URL time tag:						
Set date/time as current if no date/time can be extracted							
Text extraction							
Extracted text should contain HTML-tags							
			=> Update Selected				

Search & Trends

Data Exploration

Prediction

🛃 Social Web Miner		_ _ X
Crawler Extractors Ext	tractor Assignments Search & Trends Data Exploration Prediction	n
Feature extraction	Additic	onal features Weekday indicators
Train data from:	2010.01.01.00:00 to: 2011.12.15.00:00	Derent features
Prediction (test) data from:	2012.02.01.00:00 to: 2012.02.28.00:00	Text features (TF)
Forecast period:	24 hours Lookback period: 72 hours	Number of TF: 100
Step:	24 hours	Min.support: 20
File name prefix:	extractedFeatures	Go!
Prediction model		
Multilayer perceptron	Structure: 5,2 Epochs: 1000 Learning Rate: 0.05	Momentum: 0.01
k-NN k: 5	RBF Network Num	ber of clusters: 100
REP-tree	M5P-tree	Linear Regression
Bagging Number of	elementary models: 100 Train	& Evaluate
Results		
1.2778759 1.0	http://boldogokasajtkeszitok.blog.hu/2012/02/26/ecrasez_1	inf_me?fullco
0.22766016 0.0	http://kkbk.blog.hu/2012/02/27/megvedte_a_fidesz_a_kommuni	zmus_ugynokei
0.22663249 0.0	http://envezettem.blog.hu/2012/02/25/a_resti_fontosabb_min	nt_a_nyugdij?f
0.1031/9865 0.0	http://telefonkozpont.blog.nu/2012/02/26/masok_irtak_a_fa	ceboog_a_lanci
Summary		
(Please note that evalu	ation is meaningless if predictions are made for future.)	
Hits @ 10 6.178571	1.6701926	
Hits @ 20 12.821428	2.3153784	
AUC @ 10 0.8944222	0.084635146	
	0.000102005	

System schema

Machine Learning

ID	Age	Weight	Sport	Purchase chocolate cake
1	Jung	Low	Yes	Yes
2	Old	Middle	No	No
3	Middle	Hi	No	Yes
4	Old	Middle	Yes	No
5	Jung	Hi	No	Yes

ID	Age	Weight	Sport	Purchase
101	Middle	Low	No	?
102	Old	Low	No	?
103	Jung	Middle	No	?

Machine Learning

- Models we used:
 - Regression trees:
 M5P, REPTree
 - Neural networks
 - RBF Networks
 - K-NN
 - (Linear) Regression
 - Ensemble Models:
 bagging, stacking

Feature Extraction

- In total, we extract up to several hundreds of features, for example:
 - Basic Features
 - Number of links/feedbacks in the last 24 hours
 - How the number of feedbacks/links increase
 - Aggregation of such features by source
 - Textual Features
 - Most significant bag of words features (language specific preprocessing)
 - Weekday Features
 - Parent Features

Evaluation

- Data:
 - 37 279 documents collected from Hungarian blogs
 - 6,17 GB (plain HTML, without images, sounds, etc.)
- Temporal train and test split
 - Train data: Year 2010 and 2011
 - Test data: February and March 2012
- We tried various models and feature sets
 - In total: several months of computational time

Evaluation Procedure

- Select a base date/time
 - e.g. 2012.03.01.12:00
- Simulate that the current time is the selected base date/time, and make predictions according to that time
 - e.g. we predict the number of feedbacks in the time interval between 2012.03.01.12:00 and 2012.03.02.11:59
- Compare the predictions with what happened in the next 24 hours relative to the base date/time
- Various base dates/times average results

Evaluation Metrics

- Average of Hit@10
 - out of the 10 documents predicted to be the most relevant, how many belong to the most relevant 10 documents
- AUC@10
 - consider the 10 most relevant documents according to the ground truth
 - let these 10 documents belong to the positive class,
 other documents belong to the negative class
 - calculate AUC of the predictions

Performance of the examined models

Hits@10

AUC@10

All Features

(Basic features + Textual Features (200) + Weekday Features + Parent Features)

Effect of the Feature Set

Model	Basic	Basic + Weekday	Basic + Parent	Basic + Textual
MLP (3)	5,533 ± 1,384	5,550 ± 1,384	5,612 ± 1,380	4,617 ± 1,474
	0,886 ± 0,084	0,884 ± 0,071	0,894 ± 0,062	0,846 ± 0,084
MLP (20,5)	5,450 ± 1,322	5,483 ± 1,323	5,383 ± 1,292	5,333 ± 1,386
	0,900 ± 0,080	0,910 ± 0,056	0,914 ± 0,056	0,896 ± 0,069
k-NN (k: 20)	5,433 ± 1,160	5,083 ± 1,345	5,400 ± 1,172	3,933 ± 1,223
	0,913 ± 0,051	0,897 ± 0,061	0,911 ± 0,052	0,850 ± 0,060
RBF Net	4,750 ± 1,456	4,667 ± 1,300	4,517 ± 1,284	3,567 ± 1,359
(clusters: 500)	0,876 ± 0,067	0,871 ± 0,062	0,877 ± 0,061	0,824 ± 0,066
Linear	5,283 ± 1,392	5,217 ± 1,343	5,283 ± 1,392	5,083 ± 1,215
Regression	0,876 ± 0,088	0,869 ± 0,097	0,875 ± 0,091	0,864 ± 0,096
REP Tree	5,767 ± 1,359	5,583 ± 1,531	5,683 ± 1,420	5,783 ± 1,507
	0,936 ± 0,038	0,931 ± 0,042	0,932 ± 0,043	0,902 ± 0,086
M5P Tree	6,133 ± 1,322	6,200 ± 1,301	6,000 ± 1,342	6,067 ± 1,289
	0,914 ± 0,073	0,907 ± 0,084	0,913 ± 0,081	0,914 ± 0,068

Effect of Bagging

Model	Basic	Basic + Bagging (100)
MLP (3)	5,533 ± 1,384 0,886 ± 0,084	5,467 ± 1,310 0,890 ± 0,080
MLP (20,5)	5,450 ± 1,322 0,900 ± 0,080	5,633 ± 1,316 0,903 ± 0,069
k-NN (k: 20)	5,433 ± 1,160 0,913 ± 0,051	5,450 ± 1,102 0,915 ± 0,051
RBF Net (clusters: 20)	4,117 ± 1,253 0,854 ± 0,063	4,333 ± 1,135 0,867 ± 0,054
Linear Regression	5,283 ± 1,392 0,876 ± 0,088	5,150 ± 1,327 0,881 ± 0,082
REP Tree	5,767 ± 1,359 0,936 ± 0,038	5,850 ± 1,302 0,934 ± 0,039
M5P Tree	6,133 ± 1,322 0,914 ± 0,073	5,783 ± 1,305 0,926 ± 0,048
		\odot

Experimental Results – Lessons Learned

- Hit@10: around 5-6
 - Much better prediction than naïve models (e.g. averaging by source or random)
- M5P tree and REPTree seem to work best
- Neural networks work fine
- SVM: inacceptable training time
- Ensembles:
 - do not really improve (bagging, stacking)
- Basic features are the most relevant ones

Source: http://www.sterlingtimes.org

Can YOU do it better?

- Show it!
- Download the data from <u>http://www.cs.bme.hu/</u> ~buza/blogdata.zip

Possible future work

- Advanced search
 - logic operations between keywords, ontologies, synonyms, inferencing, LSA, ranking of results...
- Enhanced prediction
 - higher accuracy, more detailed prediction: predict positive / negative feedbacks separately, personalized prediction: who comments what?, methods: matrix factorization, graph-based techniques, enhanced ensembles, enhanced classifiers (more options)
 - Concept drift, transfer learning techniques
- Clustering of documents (e.g. by topic)
- Topic tracking, and topic evolution
- Advanced visualization: standard deviation in plots, etc.
- Further domains (not only Hungarian blogs)
- Scaling: develop new, specialized index structures?
- Technology: use database server? Save trained prediction model?
- Non-textual entries (image, audio, video, etc.)

Conclusion

- Unbelievable growth of the importance of social media: US president elections, Revolutions in the Islamic world...
- Industrial proof-of-concept application for data mining in social media

Focus: feedback prediction for blogs

 Publication of the collected data <u>http://www.cs.bme.hu/~buza/blogdata.zip</u>