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1. Background 4. Hubs in databases of real
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various recognition and prediction
problems associated with biomedical
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- We aim at solving such problems automatically.
Approach: nearest neighbor models with
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dynamic time warping (D TW) 5. Our approaCh
. _ Rank instances using a hubness-based score,
2. Speeding up nearest neighbor such as GN(x) or GN(x) — 2BN(x),
classification by instance selection and select the top-ranked instances
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A A hub-based selection according to GN(x),
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e e - EEG data: from UCI machine learning repository,
_ hub-based selection according to GN(x) — 2 BN(x),
3. Good and bad nelghbors, for Tormene's DTW [5] we normalized the time-series
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