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Monotone Prediction

A labeling l : X → N is called monotone if for
all pair of objects x,y ∈ X ⊆ X1×· · ·×Xk holds
that if x � y then l(x) ≤ l(y), where

x � y ⇔ (∀j ∈ {1, . . . , k}) xj ≤j yj (1)

Example

Recent Approaches

Monotone Prediction

• numerical attributes only

• linear ordering ≤j on attribute domains,
i.e. when the lower or higher values are the
better

• Most of them assume monotone train-
ing sets without monotone noise

Data pre-processing

1. multiply attribute values with −1 if their
negatively correlate with class values

2. if there is still some monotone noise, rela-
bel non-monotone pairs of objects

Our Approach

Replace ≤j in equation (1) by fuzzy membership
functions fj : Xj → R approximated from data.

Algorithm
1. compute a parabola pj(Xj) = αX2

j +βXj+γ
from the projection πj ⊂ Xj ×N of the values of
the jth attribute to class labels
2. compute A = pj(minj), B = pj(maxj) and
E = pj(ej), where ej is the extreme of pj
3. if ej lies on the border of the domain or out-
side the domain then f̂j is a line de�ned by the
points Aj and Bj . If ej lies in the middle of the
domain then f̂j consists of two lines f̂jAE , f̂jEB
de�ned by the points Aj , Ej and Ej , Bj

In case of nominal attributes, we compute f̂j as

f̂j(x) =

∑
{xi∈X|xij=x}

l(xi)

|{xi ∈ X |xij = x}|

Inverse mappings

The conditions in bodies of Monotone Deci-
sion Tree rules can be one of the following form:

Xj = v, Xj ≥ v, Xj ≤ v

where v ∈ R is a transformed value.

To interpret these rules we use the inverse map-
pings f̂−1j depending on the type of f̂j .

For example, if f̂j is of type (c), then the above
conditions will be interpreted as

Xj = f̂−1jAE(v) ∧Xj = f̂−1jEB(v)

Xj ≥ f̂−1jAE(v) ∧Xj ≤ f̂−1jEB(v)

Xj ≤ f̂−1jAE(v) ∧Xj ≥ f̂−1jEB(v)

Experiment (1)

Baselines � use only the numerical attributes

• orig : no pre-processing

• corr : correlation-based pre-processing

Monotonicity degree δ of the transformed
(pre-processed) datasets X ′ measured

δ =
# of monotone pairs in X ′

# of comparable pairs in X ′

Tested on 40 datasets from the UCI machine
learning repository

Results

Name #Obj #Num/#Nom δorig δcorr δfuzzy
auto-mpg 398 7 / 2 0.204 0.977 0.979

breast-c. 699 10 / 1 1 1 1
communit. 1994 123 / 5 NaN NaN 1

concrete 1030 9 / 0 0.953 0.986 0.984
forestf. 517 11 / 2 0.733 0.719 0.775

machine 209 7 / 3 0.918 0.954 0.958

servo 167 3 / 2 0.333 0.704 0.85

slump 103 8 / 3 NaN 1 1
wdbc 569 31 / 1 1 1 1
wine 178 13 / 1 0.333 1 1
wineq.-r 1599 12 / 0 0.82 0.965 0.966

wineq.-w 4898 12 / 0 0.786 0.919 0.899
wpbc 198 33 / 2 0.962 1 1
abalone 4177 8 / 1 0.829 0.829 0.854

adult 32561 7 / 8 0.966 0.965 0.988

agaricus 8124 1 / 22 � � 1

austral. 690 15 / 0 0.977 0.991 0.991
bands 540 21 / 19 1 0.957 1
car 1728 7 / 0 0.902 1 1
cmc 1473 8 / 2 0.8 0.818 0.845

crx 690 7 / 9 0.923 0.963 0.991

diagnosis 120 2 / 6 0.677 0.813 1

haberman 306 4 / 0 0.893 0.878 0.874
heart 270 14 / 0 0.988 0.996 0.995
hepatitis 155 7 / 13 0.98 0.993 0.996

horse-c. 300 17 / 11 1 1 1
house-v. 435 1 / 16 � � 0.986

ionosph. 351 35 / 0 1 1 1
magic04 19020 11 / 0 0.446 0.979 0.985

mammogr. 961 4 / 2 0.944 0.944 0.969

nursery 12960 2 / 7 0.694 0.694 1

parkins. 195 23 / 1 NaN 0.995 0.997

pima 768 9 / 0 0.978 0.978 0.977
poker 25010 11 / 0 0.693 0.735 0.734
post-oper. 90 9 / 0 0.772 0.825 0.857

shuttle-l. 15 7 / 0 0.833 0.833 1

spambase 4601 58 / 0 0.977 0.998 0.987
tae 151 2 / 4 0.644 0.677 0.882

tic-tac-t. 958 1 / 9 � � 0.961

transfu. 748 5 / 0 0.807 0.94 0.936

Experiment (2)

Measuring the in�uence of pre-processing
to Monotone Classi�cation

Baselines: orig, corr

Monotone Classi�cation algorithm used:
� W. Duivesteijn and A. Feelders: Nearest

Neighbour Classi�cation with Monotonicity

Constraints. Proceedings of ECML/PKDD '08

10-fold cross-validation to measure the
average accuracy of classi�cation on 10 folds

Results:
� Algorithm computed only for 27 datasets
� in 17 cases fuzz outperformed orig
� in 14 cases fuzz outperformed corr
� in 2 cases, the improvement was signi�cant
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