
Value-transformation for Monotone Prediction by
Approximating Fuzzy Membership Functions

Tomáš Horváth∗§, Alan Eckhardt†, Krisztián Buza‡, Peter Vojtáš†, Lars Schmidt-Thieme∗
∗Information Systems and Machine Learning Lab, University of Hildesheim, Germany

Email: {horvath, schmidt-thieme}@ismll.uni-hildesheim.de
†Department of Software Engineering, Charles University in Prague. Czech Republic

Email: {Peter.Vojtas, Alan.Eckhardt}@mff.cuni.cz
‡Department of Computer Science and Information Theory, Budapest University of Technology and Economics, Hungary

Email: buza@cs.bme.hu
§Institute of Computer Science, Pavol Jozef Šafárik University in Košice, Slovakia

Email: Tomas.Horvath@upjs.sk

Abstract—Monotone prediction problems, in which the target
variable is non-decreasing given an increase of the explanatory
variables, have became more popular nowadays in many prob-
lem settings which fulfill the so-called monotonicity constraint,
namely, if an object is better in all attributes as another one then
it should not be classified lower. Recent approaches to monotone
prediction consider linear ordering on attribute domains, thus
the meaning of being better in an attribute is limited to having a
larger or a lower value in that attribute. However, this limitation
restricts the use of recent approaches in cases where middle
or marginal values of an attribute are better, what is natural
in many real-world scenarios. We present a simple attribute
value-transformation approach in this paper. The idea is to
map attribute domains to real values where the mapped values
express how the given value of an attribute contributes to higher
classification of objects. Thus, we are searching for an data-
specific approximation of a fuzzy membership function on the
domain of each (numerical) attribute. Then, instead of the orig-
inal attribute values we use their mapped values to mitigate the
violation of monotonicity constraints in the data. Our approach
is quite simple and is not limited to numerical attributes only.
The described approach was tested and evaluated on benchmark
datasets from the UCI machine learning repository.

I. INTRODUCTION

Ordinal classification is a common phenomenon in our
everyday life, however we often know it as rating or scoring.
We usually rate student performances by grades (A,B, . . .),
hotels by stars (?, ??, ? ? ?, . . .), bond of countries and in-
stitutions by levels (AAA,AAB, . . .), and so on. Moreover,
it seems to be natural – and easier for humans – to classify
objects in a natural language, e.g. ’good’, ’bad’, ’worst’ or
’big’, ’medium’, ’small’, etc. In all these cases there is a
presence of linear ordering between the classes the objects
belong to. Ordinal classification belongs to the set of monotone
prediction problems, which are characterized by two concepts,
namely, the comparability of objects and the monotonicity
induced by a labeling function on data.

We introduce the monotone prediction task in the next
chapter since this paper deals with a pre-processing step for
this problem. Then, the so-called monotonic noise is discussed,
followed by the description of our approach for attribute value-

transformation. Finally, the experiments and the corresponding
discussion will conclude the paper.

II. MONOTONE PREDICTION

First, the comparability of objects is defined. Assume a
space X = X1 × . . . × Xk with a total ordering ≤j defined
on each Xj for 1 ≤ j ≤ k. An element of X is called object
denoted as x = (x1, . . . , xk). A partial ordering � on X is
defined as

x � y ⇐⇒ (∀j ∈ {1, . . . , k}) xj ≤j yj (1)

We call two objects x, y ∈ X comparable if either x � y or
y � x, otherwise x and y are incomparable. Identical objects
will be denoted as x = y, non-identical as x 6= y.

Second, the labeling function and its interpretation from
the monotonicity point of view is discussed. We can define a
labeling function as l : X → L. If L ⊂ N we are talking about
classification function and if L ⊆ R then we are talking about
regression function. If L denotes the set of labeling functions
then we can define a function MP : X ×X × L → {0, 1} as

MP (x,y, l) =

 1 if (x � y ∧ x 6= y) ⇒ l(x) ≤ l(y)
or x = y ⇒ l(x) = l(y)

0 otherwise

We call the pair of objects (x,y) monotone under the labeling
l if MP (x,y, l) = 1. We call the labeling l monotone if all
the pairs of objects are monotone under l, i.e. the following
holds

(∀x,y ∈ X) MP (x,y, l) = 1 (2)

Such a monotone labeling isn’t rare in real life. For example,
let the results from several courses represent students attributes
and let’s have a given student with an aggregated rating B.
If any other student has at least as good results from all the
courses, she should be rated at least B, i.e. B or A.

As usual, we don’t know l exactly, instead we have a train-
ing sample T = {(xi, lT (x

i))} providing some information
about l, where 1 ≤ i ≤ n, xi ∈ XT ⊂ X and lT (x

i) ∈ L. We
call the sample T monotone, if the following holds:

(∀x,y ∈ XT) MP (x,y, lT) = 1 (3)

The goal of prediction is to approximate l by l̂ as closely as
possible, by learning l̂ from the given sample T . In monotone
prediction problems, l is assumed to be monotone and l̂ should
also fulfill the monotonicity constraint, i.e.

(∀x,y ∈ X) MP (x,y, l̂) = 1 (4)

After the monotone predictor l̂ is built, the estimation of
its prediction performance on a test set S = {(xi, lS(x

i))}
is the following important step, where 1 ≤ i ≤ m, xi ∈
XS ⊂ X ,XS ∩ XT = ∅ and lS(x

i) ∈ L. The usually used
prediction error measure for regression problems is the mean-
squared error MSE(l̂,S) =

∑
x∈XS

(lS(x)− l̂(x))2. For clas-
sification problems the misclassification error MCE(l̂,S) =∑

x∈XS
(1− b(lS(x) = l̂(x))) is usually used, where b(·) = 1

if the condition (·) in its parameter holds, otherwise b(·) = 0.
Cross-validation [16] is used in general to get a model with
good generalization capabilities and to avoid the so-called
overfitting. In cross-validation the sample T is divided into
training set and validation set, the model learned on the
training set is validated on the validation set, and finally, the
model with least prediction error is chosen.

Monotone prediction problems have in recent years became
attractive in data mining and machine learning communities.
Monotone approaches have been developed in a wide vari-
ety of machine learning and data mining models as regres-
sion [19], neural networks [8], support vector machines [7],
bayesian networks [1], nearest neighbor classification [10] and
decision trees [2], [5], [14], [21]. We will not discuss the
mentioned algorithms in details, since this paper does not
concern a monotone prediction algorithm, but, a data pre-
processing approach for such algorithms. A deep discussion
and a taxonomy of the above mentioned algorithms, as well
as their experimental comparison can be found in [4].

III. MONOTONIC NOISE

Usually, the prediction algorithms mentioned here assume
datasets with monotone labeling (monotone datasets) with
numerical attributes on input. An algorithm described in [14]
is able to handle all attribute types in data; however, the
resulting rules may not preserve monotonicity constraints.
On the other hand, algorithms introduced in [3], [6] can
classify monotonically even from non-monotone datasets but
assume only ordinal attributes on input. An experimental
comparison of classical and monotone prediction techniques
on real benchmark datasets [4] has concluded that there is
no significant improve on performance if monotonicity, as
an additional information, is utilized. This conclusion follows
from the observation of the presence of a so-called monotonic
noise in real datasets considered as an amount of violation
of monotonicity constraints in data. It is probably caused
by the fact that real datasets are usually noisy and this
noise causes some violation of the mentioned monotonicity
constraints. Such a noisy dataset will probably not be – totally
– monotone (with no violation of monotonicity constraints,
i.e. the monotonicity degree δ introduced in the equation
5 is 1) even if it represents a monotone problem setting.

Moreover, human ratings or scoring of objects often produce
some pairwise inconsistencies, too.

Such a monotonic noise in an arbitrary data sample D =
{(xi, lD(x

i))}, with xi ∈ XD ⊂ X , lD(x
i) ∈ L, can be

measured by the degree of monotonicity δ, which is the ratio
of monotone pairs to all comparable pairs in D. Formally, it
can be computed as

δ(D) =

∑
x,y∈XD

MP (x,y, lD)∑
x,y∈XD

b(x � y)
(5)

where b(·) is the former introduced indicator of truth of
the condition in its parameter. The higher the degree of the
monotonicity, the less is the monotonic noise in the dataset.

Forty datasets from the UCI Machine Learning repository
[23] were used in this paper. The goal is to test the mono-
tonicity degrees of these datasets before a pre-processing,
after a baseline pre-processing and finally, by examining the
pre-processing method described in this paper. There have
been some modifications made on these datasets, as removing
object identification attributes since these have no impact on
the monotonization, and, transforming non-numerical ordinal
attributes to numerical ones (e.g. the values low, middle, high
were transformed to 1, 2, 3, respectively).

The fifth column of the table I contains the monotonicity
degrees δorig of the datasets used in our experiments. δorig
was computed according to the equation 5 by taking into
account only the numerical attributes of instances, i.e. all the
nominal attributes were removed from the datasets. “NaN”
values mean division by zero, i.e. there were no comparable
pairs in the dataset, while “–” means that the monotonicity
degree could not be computed since after the removal of
nominal attributes as well as the object identifier attribute(s)
there have not been any numerical attributes left in the dataset
and thus, computation of the monotonicity degree would make
no sense. As we can see, there are only 5 datasets out of
40, which are totally monotone when considering only the
numerical attributes.

An usual data pre-processing approach for monotone pre-
diction, after removing all the nominal attributes from the
dataset, is to measure the direction of influence of each
(numerical) attribute on the target attribute, i.e. measuring
the correlation between each attribute and the target attribute
over all of the objects. If the correlation is negative for an
attribute, all the values of this attribute are multiplied with
−1. Similar transformation was used in [13] in the so-called
data preparation step. The monotonicity degree on a dataset
being pre-processed in this way is denoted δcorr in this paper
and its values for the datasets are shown in the sixth column
of the table I. As can be seen, such a pre-processing improves
the monotonicity degrees of the datasets, however in most of
the cases δcorr is still less than 1. In such cases, a further
monotonization of data is needed. Here it is important to note
that the datasets1 with low monotonicity degrees may probably

1e.g. communities, forestfires, servo, agaricus-lepiota, house-votes-84, nurs-
ery, poker-hand-train, tae and tic-tac-toe.

TABLE I
DATASETS USED IN THE EXPERIMENTS: # OBJ AND #NUM (#NOM)
REFERS TO THE NUMBER OF OBJECTS AND NUMERICAL (NOMINAL)

ATTRIBUTES, RESPECTIVELY.

Name #Obj #Num #Nom δorig δcorr δfuzzy
auto-mpg 398 7 2 0.204 0.977 0.979
breast-canc. 699 10 1 1 1 1
communities 1994 123 5 NaN NaN 1
concrete 1030 9 0 0.953 0.986 0.984
forestfir. 517 11 2 0.733 0.719 0.775
machine 209 7 3 0.918 0.954 0.958
servo 167 3 2 0.333 0.704 0.85
slump 103 8 3 NaN 1 1
wdbc 569 31 1 1 1 1
wine 178 13 1 0.333 1 1
winequal.-r 1599 12 0 0.82 0.965 0.966
winequal.-w 4898 12 0 0.786 0.919 0.899
wpbc 198 33 2 0.962 1 1
abalone 4177 8 1 0.829 0.829 0.854
adult 32561 7 8 0.966 0.965 0.988
agaricus 8124 1 22 – – 1
austral. 690 15 0 0.977 0.991 0.991
bands 540 21 19 1 0.957 1
car 1728 7 0 0.902 1 1
cmc 1473 8 2 0.8 0.818 0.845
crx 690 7 9 0.923 0.963 0.991
diagnosis 120 2 6 0.677 0.813 1
haberman 306 4 0 0.893 0.878 0.874
heart 270 14 0 0.988 0.996 0.995
hepatitis 155 7 13 0.98 0.993 0.996
horse-colic 300 17 11 1 1 1
house-v.-84 435 1 16 – – 0.986
ionosphere 351 35 0 1 1 1
magic04 19020 11 0 0.446 0.979 0.985
mammogr. 961 4 2 0.944 0.944 0.969
nursery 12960 2 7 0.694 0.694 1
parkinsons 195 23 1 NaN 0.995 0.997
pima-ind. 768 9 0 0.978 0.978 0.977
poker-hand 25010 11 0 0.693 0.735 0.734
post-oper. 90 9 0 0.772 0.825 0.857
shuttle-l. 15 7 0 0.833 0.833 1
spambase 4601 58 0 0.977 0.998 0.987
tae 151 2 4 0.644 0.677 0.882
tic-tac-toe 958 1 9 – – 0.961
transfusion 748 5 0 0.807 0.94 0.936

not belong to a monotone problem setting, and thus, using
monotone prediction as well as further monotonization would
be baseless.

To our best knowledge, there is only one approach to
dataset monotonization in recent literature. The basic idea
of this approach is to find inconsistent objects (violating the
monotonicity constraints) in the train set and relabel them, e.g.
as is done in [10]. A greedy relabeling algorithm is presented
in [9] where the number of non-monotone pairs of objects are
reduced by relabeling one object in each step. The problem
of relabeling is viewed as a problem of finding a maximum
independent set in the monotonicity violation graph in [22].
Another graph-based approach is presented in [13], where
the problem of relabeling is converted to an optimal flow
network problem in comparability graphs what can be solved
in polynomial time. The relabeling of the dataset S results
in the dataset S ′ with δ(S ′) = 1. The effectiveness of these
algorithms is measured in the minimal number of relabeled
objects necessary to reach the monotonicity of the dataset.

Relabeling was tested on 5 real datasets in [13] where the
average ratio of label changes to the number of objects was
about 10% (the lowest ratio was below 2%, the highest one
was above 18%).

A few methods for generating synthetic monotone datasets
were also developed. In [18] monotone data are generated
via the Markov Chain Monte Carlo Method. Two algorithms
for generating unstructured and structured monotone datasets
using directed graphs are presented in [20].

All of the recent approaches consider only linear ordering
on attribute domains, i.e. when the higher or the lower values
of an attribute have positive influence to the class value. In
contrast, we consider partial ordering on attribute domains,
allowing the middle or the marginal values to have positive
influence to the class value. The presented methods for learn-
ing such an ordering for each attribute domain (separately)
are a slightly refined versions of those we introduced in [11],
[17] for learning user preferences where we assumed that
users’ preferences on attributes of objects define some partial
ordering on the domains of these attributes, i.e. a user have
a “most favorite area” in the space of objects implied by the
“most preferred values” on attributes of these objects. The
same idea forms the basis for our approach, namely that the
certain parts of attribute domains influence the classification
of objects positively. Revealing these partitions enables us to
transform the original dataset to the dataset with the highest
degree of monotonicity. If the monotonicity degree is smaller
than 1 data re-labeling [9], [10], [22], [13] can be further used
to monotonize the dataset.

IV. LEARNING ORDERINGS ON ATTRIBUTE DOMAIN

Let us assume that the dataset (sample) D =
{(xi, lD(x

i))}, 1 ≤ i ≤ n, defined in the previous section
belongs to a monotone setting and may contain monotonic
noise higher than a certain threshold ε, i.e. δ(D) < 1 − ε.
Moreover, not all of the attributes in D need to be numerical.
In case that the monotonic noise is lower than the threshold,
i.e δ(D) ≥ 1− ε, we expect to use the relabeling approach for
data monotonization.

A transformation of the dataset D to a dataset DT ⊂ Rk is
supposed, such that all the attributes in DT are numerical,
and δ(DT) ≥ 1 − ε. We assume that there exist map-
pings fj : Xj → R for each attribute j, 1 ≤ j ≤ k
such that the monotonicity degree of the transformed dataset
DT = {(f(xi), lD(x

i))} is at least 1 − ε, where f(xi) =
(f1(x

i
1), . . . , fk(x

i
k)) is a transformed object xi for which we

keep its original label.
The main difference between our and other approaches is

that by using the mappings fj we are not limited only to linear
orderings (≤) on attribute domains. The comparison of two
objects as is defined in the equation 1 can thus be generalized
as

x � y ⇐⇒ (∀j ∈ {1, . . . , k}) fj(xj) ≤ fj(yj) (6)

Our goal is to approximate mappings fj by f̂j from the
dataset D. The learning of a given f̂j is done in an univariate

manner, i.e. from a “reduced“ dataset Dj = {(xi
j , lD(x

i))},
where xi ∈ XD and xi

j ∈ Xj denotes the value of the
j-th attribute of an object xi. Then, f̂j is induced using
simple statistical methods according to the type (numerical
or nominal) of the j-th attribute.

A. Numerical Attributes

Four main types of orderings on attribute domains are
considered in this work called lower-best, higher-best, middle-
best and marginal-best according to which values of a certain
attribute have more influence to the rating of objects. These
types of orderings are illustrated by solid lines on the figure
1, where the “best” value(s) of an attribute are labeled by b.

min max min max

min max min max

(c) (d)

(a) (b)
··········

··········
··········

··········
··········

···· ··

······
······

······
······

······
··································

······································
······

······
······

······
··

b b b

b b

Fig. 1. Four types of orderings on numerical attribute domains: (a) higher-
best, (b) lower-best, (c) middle-best, (d) marginal-best.

These orderings are common in human thinking – one can
prefer cars with low fuel consumption, notebooks with high-
speed processor, middle sized flat situated either close or far
from the work when she prefers walking and/or driving, etc.

Our approach learns the most simplest approximations of
these orderings, i.e. we focus on partially linear functions f̂j
as illustrated by dotted lines on the figure 1.

minj + βj maxj − βj

-� -�

Xj

minj + βj maxj − βj

-� -�

Xj

Aj

Bj

ej

Aj

Bj

Ej

ej

Fig. 2. Illustration of learning f̂j for numerical attributes.

The main idea of our approach is illustrated on the figure
22. The input is the dataset Dj for a given attribute j.

We fit Dj with a parabola pj(Xj) = αX2
j +βXj+γ, where

Xj is a variable. In other words, we estimate the class values
of objects from their values in the attribute Xj . Then, there
are two possibilities:

First, we can directly use this parabola as a basis function
for Xj in a monotone prediction algorithm. Thus, f̂j = pj ,
and instead of dealing with real values xj ∈ Xj of objects
(from the train set) we feed the prediction algorithm with
transformed values f̂j(xj). Similarly, we also need to use this
transformation for the test objects before predicting their class
values.

Second, sometimes we need to interpret the prediction
model. A well interpretable model is a monotone decision
tree [5], [14], [21] which represents a set of IF-THEN rules
with a conjunction of conditions in their bodies. Each of these
conditions can be of one of the following forms

Xj = v, Xj ≥ v, Xj ≤ v (7)

Since we learn the prediction model from a transformed
dataset, the values v in these conditions relate to transformed
values. Such rules are hardly interpretable and thus, we would
need to have inverse mappings f̂−1

j : R → Xj such that
f̂−1(v) = x, where x ∈ Xj . Unfortunately, pj is not an
invertible mapping and we have to (partially) linearize it in
the following way, as illustrated on the figure 2:
First, we need to find the global extreme ej of pj . Then, we
compute the value of pj in the minimal and maximal value
of the domain3 and in ej , illustrated on the figure 2 by points
Aj = pj(minj), Bj = pj(maxj) and Ej = pj(ej).
Finally, to define f̂j six possible cases are considered, depend-
ing if ej lies in the middle or in the – left or right – border
of the domain and if the parabola pj has a global minimum
or maximum in ej . The borders of the domain are expressed
by βj which is an external parameter of this procedure. If ej
lies on the border of the domain or outside the domain then
f̂j is a line defined by the points Aj and Bj . If ej lies in the
middle of the domain then f̂j consists of two lines f̂jAE , f̂jEB

defined by the points Aj , Ej and Ej , Bj respectively. f̂j is
illustrated with dashed lines on the figure 2.

Such mappings f̂j are invertible and the conditions intro-
duced in (7) can be converted to conditions with real attribute
values according to the type of f̂j in the following way

• If f̂j is of the type higher-best then the conditions in (7)
will be

Xj = f̂−1
j (v), Xj ≥ f̂−1

j (v), Xj ≤ f̂−1
j (v)

• If f̂j is of the type lower-best then the conditions in (7)
will be

Xj = f̂−1
j (v), Xj ≤ f̂−1

j (v), Xj ≥ f̂−1
j (v)

2We illustrate only two of the six possible cases, here. The other four cases
can be analogously shown.

3If we don’t have any domain knowledge about the possible values of the
domain, we compute the minimal and maximal value from the known values
which are present in the dataset.

• If f̂j is of the type middle-best then the conditions in (7)
will be

Xj = f̂−1
jAE

(v) ∧Xj = f̂−1
jEB

(v),

Xj ≥ f̂−1
jAE

(v) ∧Xj ≤ f̂−1
jEB

(v),

Xj ≤ f̂−1
jAE

(v) ∧Xj ≥ f̂−1
jEB

(v)

• If f̂j is of the type marginal-best then the conditions in
(7) will be

Xj = f̂−1
jAE

(v) ∧Xj = f̂−1
jEB

(v),

Xj ≤ f̂−1
jAE

(v) ∧Xj ≥ f̂−1
jEB

(v),

Xj ≥ f̂−1
jAE

(v) ∧Xj ≤ f̂−1
jEB

(v)

B. Nominal Attributes

In case of nominal attributes, we just simply compute for
every value of the domain the average of class values of objects
having a given value in j-th attribute

f̂j(x) =

∑
{xi∈XD|xi

j=x}
lD(x

i)

|{xi ∈ XD|xi
j = x}|

(8)

where x ∈ Xj .
Since f̂j is defined in an explicit form and stored in an

appropriate data structure, the computation of the inverse
mappings f̂−1j can be made directly from the data structures
used. Then the conditions in (7) will transformed to ones with
original values as

Xj ∈ {x ∈ Xj |f̂j(x) = v},
Xj ∈ {x ∈ Xj |f̂j(x) ≥ v},
Xj ∈ {x ∈ Xj |f̂j(x) ≤ v}

The presented approach uses the most simple technique to
approximate attribute value orderings in both cases of numer-
ical as well as nominal attributes. The presented techniques
are easy to implement, their complexity is linear, which
makes them as good baselines for other, more sophisticated
approaches to data pre-processing for monotone prediction.

V. EXPERIMENTS

In our experiments we used 40 datasets shown in Table I. We
performed two experiments. In the first one, we transformed
the datasets with our approach. we measured the monotonicity
degrees and ratios of comparable pairs to all pairs of objects
before and after the transformation. In the second experiment
we investigated how one of the state-of-the art monotone
prediction algorithms performs on the transformed datasets.

A. Settings

Two baselines were used: (i) a simple pre-processing by
removing the nominal attributes and (ii) a correlation based
preprocessing using only the numerical attributes. The mono-
tonicity degrees of datasets transformed in these ways are

denoted as δbase and δcorr in the table I, and were already
discussed before.

The parameter β (related to borders of numerical attributes
considered in our approach) was set as follows: for the
datasets with smaller number of numerical attributes all the
combinations of βj ∈ 10%, 30%, 50% were tried out. Thus 3k

′

cases were tested for each dataset, where k′ refers to number of
ordinal attributes. Since the small amount of datasets and the
number of ordinal attributes in these datasets, this experiment
was manageable in feasible time. The communities, wdbc and
wpbc datasets were first tested with fixed β = 10%, β = 30%
and β = 50% for each ordinal attribute. Since, these tests
resulted in a totally monotone datasets we did not have to try
all combinations (which would be very expensive).

In the second experiment, we evaluated our approach in
context of one of the state-of-the art monotone prediction
algorithms, concretely the one proposed by Duivesteijn and
Feelders [10]. We compared the performance of this monotone
prediction algorithm on the transformed datasets. We used the
implementation provided by the authors of [10]. The accuracy
of the algorithm was tested using 10-fold cross validation with
fixed k = 3.

B. Results

Table I contains the best monotonicity degrees δfuzz for
each dataset reached across the various combinations on βj .
The best values found for βj were almost always 30%.
As we see, our approach performs quite well, 14 datasets
were transformed to totally monotone datasets. In case of 22
datasets δfuzzy is higher than both δcorr and δbase and in other
10 cases δfuzzy is at least as high as one of the δcorr or δbase.
Here, we also have to mention that our approach deals with
all the attributes, not only with the numerical ones.

Besides the monotonicity degrees the percentages of compa-
rable pairs of objects (1) to all pairs of objects (n(n−1)/2) in
the transformed datasets were measured, denoted as %CPbase,
%CPcorr and %CPfuzzy , respectively. The average results
over all datasets are the following: %CPbase = 27.74,
%CPcorr = 29.90 and %CPfuzzy = 15.04. This is caused
by the fact that the dimensionality in the case of our approach
is usually higher that in the case of the two baselines since we
keep also the nominal attributes. However, we have found out
that there is no strong correlation between the ratio of %CP
and δ in the transformed datasets in all of the three cases. The
concept of monotonicity of the dataset doesn’t deal with the
issue of the number of comparable pairs, it depends only on
the number of pairs in the dataset violating the monotonicity
constraints. Although, this issue should be further investigated
since it can be interesting in further development of monotone
prediction algorithms.

As mentioned above, in the second experiment we evalu-
ated our approach in the context of the monotone prediction
algorithm proposed by Duivesteijn and Feelders [10], i.e., we
compared the accuracy of classification on the datasets trans-
formed by various methods, that were our approach (fuzzy),
the correlation based approach (corr) and the basic approach

(base). The algorithm presented in [10] is a nearest-neighbor
algorithm performing a relabeling data monotonization step
before the computation. Out of the 40 datasets of Table
I, we could only use 27 in this experiment because the
implementation of the used monotone prediction algorithm
did not terminate in reasonable time for the other datasets
(auto-mpg, abalone, adult, agaricus-lepiota, cmc, horse-colic,
house-votes-84, magic04, nursery, poker-hand, shuttle-landing,
tae, tic-tac-toe). In case of 17 and 14 datasets, our approach
outperformed the corr and the base approaches, respectively. In
some cases, our approach performed significantly better (e.g.
diagnosis and bands datasets).

VI. CONCLUSIONS

A data pre-processing (value-transformation) approach for
monotone prediction problems was proposed in this paper. The
main idea, similar to one for user preference learning presented
in [17], is to approximate certain types of partial orderings
on the domains of attributes of objects. We have chosen the
most simple types of orderings which are quite common in
human thinking and can be represented by fuzzy membership
functions (here, we have to note that we did not normalize
the mapped values to the [0, 1] unit interval since it is not
necessary because we are interested in orderings).

The presented approach is quite simple, easy to implement,
runs in linear time and is not limited to numerical attributes
only.

We have used 40 datasets with different characteristics from
the UCI machine learning repository [23] in our experiments,
where we have tested monotonicity degrees of the transformed
datasets as well as how a monotone prediction algorithm from
[10] performs on these transformed datasets.

In further investigation of our approach we would like to
focus on the following issues: Since outliers have impact on
regression, we would like to develop more robust algorithms
capable to deal with outliers. As we have mentioned before,
an interesting issue would be to investigate how the dimen-
sionality of a dataset influences its monotonicity degree and
the data pre-processing approaches.

In comparison to two baselines, our approach was quite suc-
cessful what makes the plans for further research promising.

ACKNOWLEDGEMENTS

Tomáš Horváth was supported by the grant VEGA
1/0131/09 and the centre of excellence in computer science
and knowledge systems (CaKS - ITMS 26220120007).
Krisztián Buza is supported by the grant TÁMOP-4.2.2.B-
10/1–2010-0009. We would like to thank to Alexandros
Nanopoulos for his comments and suggestions. Finally, our
special thanks go to Wouter Duivesteijn and Ad Feelders
for providing us their implementation of their algorithm
introduced in [10].

REFERENCES

[1] E. Altendorf, A. Restificar and T. Dietterich, Learning from Sparse Data
by Exploiting Monotonicity Constraints, in: 21st Annual Conference on
Uncertainty in Artificial Intelligence, AUAI Press, Arlington, Virginia,
USA, 2005, pp. 18–26.

[2] A. Ben-David, Monotonicity Maintenance in Information-Theoretic Ma-
chine Learning Algorithms, Machine Learning 19 (1995), 29–43.

[3] A. Ben-David, L. Sterling and Y. Pao, Learning and classification of
monotonic ordinal concepts, Computational Intelligence 5, 1 (1989), 45–
49.

[4] A. Ben-David, L. Sterling and T. Tran, Adding monotonicity to learning
algorithms may impair their accuracy, Expert Systems with Applications
36 (2009), 6627–6634.

[5] J. C. Bioch and V. Popova, Induction of Ordinal Decision Trees: An
MCDA Approach, in: ERIM Report Series Reference No. ERS-2003-
008-LIS (2003).

[6] K. Cao-Van, Supervised Ranking, from semantics to algorithms, Ph.D.
dissertation, Faculty of Science, University of Ghent, Belgium (2003).

[7] W. Chu and S.S. Keerthi, New approaches to support vector ordinal
regression, in: 22nd International Conference on Machine Learning,
ACM, New York, USA, 2005, pp. 145–152.

[8] H. Daniels and B. Kamp, Application of MLP networks to bond rating
and house pricing, Neural Commuting & Applications 8 (1999), 226–234.

[9] H. Daniels and M. Velikova, Derivation of monotone decision models
from non-monotone data, Discussion Paper 30, Tilburg University, Center
for Economic Research, 2003.

[10] W. Duivesteijn and A. Feelders, Nearest Neighbour Classification with
Monotonicity Constraints, in: European Conference on Machine Learning
and Knowledge Discovery in Databases - Part I, LNAI vol. 5211,
Springer-Verlag, Berlin Heidelberg, 2008, pp. 301–316.

[11] A. Eckhardt, T. Horváth and P. Vojtáš, PHASES: A User Profile Learning
Approach for Web Search, in: IEEE/WIC/ACM International Conference
on Web Intelligence, IEEE Computer Society, 2007, pp. 780–783.

[12] R. Fagin, A. Lotem and M. Naor, Optimal Aggregation Algorithms
for Middleware, in: 20th ACM Symposium on Principles of Database
Systems, ACM, 2001, pp. 102–113.

[13] A. J. Feelders, M. Velikova and H. Daniels, Two polynomial algorithms
for relabeling non-monotone data, Technical Report UU-CS-2006-046,
Utrecht University, Niederland, 2006, pp: 12.

[14] E. Frank and E. Hall, A Simple Approach to Ordinal Classificaiton,
in: 12th European Conference on Machine Learning, LNCS vol. 2167,
Springer-Verlag London, UK (2001), pp. 145–156.

[15] J. Gama and P. Brazdil, Characterization of Classification Algorithms,
in: 7th Portuguese Conference on Artificial intelligence, Lecture Notes In
Computer Science, vol. 990, Springer-Verlag, 1995, pp. 189–200.

[16] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical
Learning (2nd edition), Springer-Verlag, 2008.

[17] T. Horváth, A Model of User Preference Learning for Content-Based
Recommender Systems, COMPUTING AND INFORMATICS Vol. 28, No.
4 (2009), 453–881.

[18] K. De Loof, B. De Baets and H. De Meyer, On the random generation of
monotone data sets, Information Processing Letters 107 (2008), 216–220.

[19] P. McCullagh, Regression models for ordinal data, Journal of Royal
Statistical Society, 42(2) (1980), 109–142.

[20] R. Potharst, A. Ben-David and M. van Wezel, Two algorithms for gener-
ating structured and unstructured monotone ordinal data sets, Engineering
Applications of Artificial Intelligence 22 (2009), 491–496.

[21] R. Potharst and A. J. Feelders, Classification trees for problems with
monotonicity constraints, SIGKDD Explorations Newsletter 4, 1 (2002),
1–10.

[22] M. Rademaker, B. De Baets and H. De Meyer, Loss optimal monotone
relabeling of noisy multi-criteria data sets, Information Sciences 179, 24
(2009), 4089–4096.

[23] A. Asuncion and D.J. Newman, UCI Machine Learning Repository.
http://www.ics.uci.edu/∼mlearn/MLRepository.html, University of Cali-
fornia, School of Information and Computer Science, Irvine, CA, 2007.

[24] M. Velikova, Monotone Models for Prediction in Data Mining, PhD
Thesis, Tilburg University, Netherland, 2006.

[25] M. Velikova and H. Daniels, On Testing Monotonicity of Datasets,
in: Workshop on Learning Monotone Models from Data at European
Conference on Machine Learning and Principles of Knowledge Discovery
in Databases, Bled, Slovenia, 2009, pp. 11–22.

