
A Distributed Genetic Algorithm for
Graph-based Clustering

Krisztian Buza, Antal Buza, and Piroska B. Kis

Abstract Clustering is one of the most prominent data analysis techniques
to structure large datasets and produce a human-understandable overview.
In this paper, we focus on the case when the data has many categorical at-
tributes, and thus can not be represented in a faithful way in the Euclidean
space. We follow the graph-based paradigm and propose a graph-based gen-
etic algorithm for clustering, the flexibility of which can mainly be attributed
to the possibility of using various kernels. As our approach can naturally be
parallelized, while implementing and testing it, we distribute the computa-
tions over several CPUs. In contrast to the complexity of the problem, that
is NP-hard, our experiments show that in case of well clusterable data, our
algorithm scales well. We also perform experiments on real medical data.

Key words: Graph-based Clustering, Genetic Algorithms

1 Introduction

Since the middle of the twentieth century, computers are applied for data
analysis and decision support. In some cases, like systems that select which
products should be advertised for users, an automatic decision, without any
detailed explanation, might be sufficient. In more serious tasks, such as the

Krisztian Buza

Information Systems and Machine Learning Lab, University of Hildesheim,
Marienburger Platz 22, D-31141 Hildesheim, Germany, e-mail: buza@ismll.de and

Dpt. of Information Theory and Computer Science, Budapest Univ. of Technology and
Economics, H-1117 Budapest, Magyar tudósk körútja 2., Hungary, e-mail: buza@cs.bme.hu

Antal Buza and Piroska B. Kis
College of Dunaujvaros,

Tancsics Mihály u. 1/a, H-2400 Dunaujvaros, Hungary, e-mail: {buza,piros}@mail.duf.hu

1

2 K. Buza, A. Buza, P. B. Kis

ones in engineering, industry or medicine, a human-understandable expla-
nation is crucial in order to justify semi-automatic decisions, and in order
to turn the data into stable, transferable and well-founded knowledge. One
of the most prominent analytic tasks, that contribute to knowledge discov-
ery in the above sense, is clustering. In case of clustering, the computer is
aimed at structuring a large set of data by producing groups of similar ob-
jects. From the user’s perspective, such groups, called clusters, allow for more
understandable and more transparent representation of a large datasets.

Throughout the analytic process, man-machine interaction is crucial in at
least two steps: (i) when the user describes her requirements to the computer
(e.g. what kind of groups would be beneficial in the underlying application,
when should two objects be considered to be similar), and (ii) when the result
of the analysis is presented to the user. In many cases, the user is unable to
formulate her requirements in a completely exact way (e.g. in terms of logical
formulas), but she has some intuition, e.g. regarding the number of objects
in a group and variance of their attribute-values, etc. Through the usage of
kernels, our approach allows the user to set such requirements for (a) the
clustering as a whole, (b) each cluster, and (c) the similarity of two objects.

In the most simple (and most studied) case, a dataset consists of vectors of
real numbers. Such data is usually considered as points in the Euclidean space.
In contrast, in many applications (e.g. medical and psychological surveys),
large amount of categorical attributes are present, and therefore the data can
not be represented in a natural and faithful way in the Euclidean space.

In this paper, we focus on the above case and follow the graph-based data
representation paradigm [9]. In particular, we propose a flexible graph-based
genetic algorithm for clustering. Kernels, that allow for flexibility, are one of
the core components of our approach. Therefore, we study kernels and identify
the class of effective kernels (limited change kernels). As our approach can
naturally be parallelized, while implementing and testing it, we distribute
the computations over several CPUs. In contrast to the complexity of the
problem, which is NP-hard, experiments show that in case of well clusterable
data, our algorithm scales well. We also perform experiments on real medical
data that provides further evidence about the applicability of our approach.

2 Related Work

By developing our algorithm and especially by its thorough analysis, we aim
at better understanding clustering problems in general. Such goal has been
followed by many authors recently. After Kleinberg [10] introduced his cri-
teria for clustering, Ackerman and Ben-David [2] presented a refined theory.
The stability of clustering was analyzed in e.g. [3] and [4], while Shamir
and Tishby related the rate of convergence to model selection [13]. From
the complexity point of view, several clustering problems were shown to be

Graph-based Clustering 3

NP-hard. In order to alleviate computational expenses, sampling was pro-
posed [8], [11], [12], [14]. Ackerman and Ben-David developed the notion of
’clusterability’ and showed, that ”the more clusterable a data set is, the easier
it is (computationally) to find a close-to-optimal clustering of that data” [1].

As an alternative of the widely-used vector representation, algorithms
working on graph-based representation were proposed [9]. Most closely re-
lated to our work is Brown’s genetic algorithm for clustering [6] which, simi-
larly to our approach, uses an external objective function. However, in con-
trast to [6], we do not focus on the chemical domain, furthermore our dis-
tributed implementation is a unique property of our approach.

3 Graph-based Genetic Algorithm for Clustering

High dimensional Euclidean spaces suffer from many problems, the conglom-
eration of them is known as the curse of dimensionality. These problems are
amplified in case of categorical, due to the presence of a natural and faithful
mapping to ordered values, see [9] for an excellent illustration.

Therefore, we follow the graph-based data representation paradigm [9],
where each record (object) of the original data corresponds a vertex of a
graph and similar objects are connected by edges. (We define similarity
later.) In our approach, we build on the genetic strategy, as genetic algo-
rithms are powerful in finding (approximate) solutions to optimization and
search problems [5], which is also justified by the fact in AusDM 2009, a re-
cent data mining challenge, a genetic algorithm based solution won, see also:
http://www.tiberius.biz/ausdm09/AusDM09EnsemblingChallenge.pdf).

Basically, our approach searches for an appropriate set of cutting vertices
nodes in the graph representing the data. This search is performed with a
genetic algorithm. After removing the nodes of the found cutting set, the
components of the remaining graph correspond to the clusters.

What an ideal clustering is, highly depends on the underlying application.
In order to allow for generality, in our algorithm, the ideal clusters can be
characterized with an external cluster quality function, that we call kernel.
This is in line with the direction followed in [6].

Definitions, Notations and Problem Formulation. Let c be a function
which assigns a positive real number to a sub-graph (a potential cluster). Let
h be a function which assigns a real number to any set of real numbers, e.g.,
h({1,3,10}) = 8. Functions c and h together constitute our two-component
clustering kernel, i.e. the external quality function used to measure the good-
ness of a clustering: first the function c is applied for each cluster, and the
returned values are aggregated by h. Then quality of the clustering is char-
acterized by the value returned by h. (We suppose that the functions c and
h assign greater value to better clusters and clusterings, respectively.)

4 K. Buza, A. Buza, P. B. Kis

Each set of vertices corresponds to a clustering of the graph: the vertices
of the set are removed, the remaining components constitute the clusters.
The clustering task is to find the cutting set of vertices at which the function
h has its maximal value: Let g0 denote the graph that is to be clustered.
Let V (g0) be the set of vertices of g0. Let g1Cg2 denote that the graph g1
is a component of the graph g2. Let X ⊂ V (g0). Let g0\X denote the graph
which is derived from graph g0 by removing the vertices in X. (As usual, the
corresponding edges are also removed.) The clustering problem is to search
for the set of nodes X ⊂ V (g0) that maximizes h:

argmaxX(h({c(g′)|g′C(g0\X)})). (1)

We introduce the concept of limited change kernels (LCK) which we use
in our analysis later on. If a cutting vertex set gives a good clustering, a
slightly different vertex set is also likely to give a good clustering. Therefore,
the cluster quality, i.e. the value returned by h should be similar for similar
vertex sets, which allows for the genetic algorithm to find a close-to-optimum
solution efficiently. Let us call the operation of inserting or removing an
element into or from a set as an editing step. The distance between two sets
m1 and m2, denoted by dist(m1,m2), is the minimal number of the editing
steps required to transform m1 to m2. Given a graph g0 a clustering kernel
consisting of the functions c and h is a limited change kernel, if for any
number ε > 0 there is a finite threshold d so that:

∀m1 ⊂ V (g0),∀m2 ⊂ V (g0) : (2)

dist(m1,m2) < ε =⇒ |h({c(g′)|g′K(g0\m1)})−h({c(g′)|g′K(g0\m2)})| < d

Note, that Equation 2 generalizes the notion of continuous functions for
the case of graph kernels. Throughout the paper, we denote the number of
vertices and edges in a (sub)graph g with |V (g)| and |E(g)| respectively.

Complexity analysis.

Theorem 1. The clustering problem (see Equation 1) is NP-hard.

Proof. In a complete graph, two arbitrary vertices are connected by an edge.

Let function c be the following: c(g) =

{
|V (g)| if the graph g is complete
0 else

Let h be the maximum-function: h({x1, x2, ..., xn}) = max(x1, x2, ..., xn) .
We allow the cutting vertex set to be the empty set. This way the ”clique-

problem” (search for the maximal full sub-graph) is reduced to our clustering
problem: h is maximized exactly when one of the clusters is the maximal
clique. If an algorithm solving our problem outputs a clustering where one
of the clusters corresponds to the maximal clique, one can easily select this
cluster in a postprocessing step. As the ”clique-problem” is NP-complete [7],
our problem is NP-hard. (Note that even if the cutting vertex set is not

Graph-based Clustering 5

allowed to be the empty set, the clique-problem can still be reduced to our
problem by simply checking in the first step whether g is complete.) ut

In general, special cases of NP-hard problems may be much simpler. Our
problem, however, is NP-hard even in case of limited change kernels:

Theorem 2. Let c(g) =

{
1− 1

|V (g)| if the graph g is complete

0 else
and let h be the maximum-function. This is a limited change kernel.

Proof. For any graph g, 0 ≤ c(g) < 1 and 0 ≤ h(...c(g)...) < 1. Thus, any
d > 1 is an appropriate change threshold in Equation 2. ut

Corollary : On the analogy of Theorem 1, using the kernel of Theorem 2, the
clique-problem can be reduced to our clustering problem (Equation 1). Thus
our clustering problem is NP-hard for limited change kernels too.

Our approach: Genetic algorithm for clustering. From now on, we
assume that the clustering kernel is a limited change kernel.

Genetic algorithms iteratively simulate the biological evolution. We fol-
lowed one of the usual ways to start this process: we begin with a population
of randomly generated individuals. Individuals are vertex sets in our case.
The fitness of a given individual is the value returned by the clustering ker-
nel when partitioning the graph according to that individual. In each iteration
the fitness is calculated for each individual of the population. In order to form
the new population (i) according to their fitness some individuals are selected
from the current population, and (ii) descendants of the selected individuals
are formed (by their recombination and mutation). In the first step we select
the N best individuals from the current population of 2N individuals. In the
second step we form further N descendants of the selected individuals. Then
the new population (for the next iteration) consists in total of 2N individuals
again. The algorithm terminates, if the best individual becomes stable, i.e.
the same individual is the best for kstop iterations.

The descendant s3 of two individuals (vertex sets) s1 and s2 is computed
as follows. In the description, g0 denotes the graph to be clustered:

1. Put all vertices of s1 ∩ s2 into s3.
2. Each vertex in s1\s2 and s2\s1 have the same chance to be included in s3,

i.e. put each vertex from s1\s2 or s2\s1 into s3 with a probability of 0.5.
This way the algorithm is unbiased with respect to the size of sets.

3. Add/remove some random vertices to/from s3. First, we decide whether
add or remove vertices, the probability of both cases is 0.5. Then each
v ∈ V (g) \ s3 will be added (removed respectively) with probability p.

Steps 1 and 2 realize crossbreeding, step 3 realizes mutation.
According to our observation, the most time-consuming phase in the gen-

etic algorithm is the calculation of fitness, i.e. the calculation of the value of

6 K. Buza, A. Buza, P. B. Kis

the clustering kernel for each individual. In our implementation, we paral-
lelized these computations by letting different CPUs to calculate it for differ-
ent individuals in a distributed environment.

Note that we are concerned with the exploration of the high-level structure
of the data (graph) by finding characteristic groups of objects (vertices). For
this reason, we allow our to omit the vertices in the cutting vertex sets. If,
however, it is relevant to which clusters (components) these objects (vertices)
belong, they can be assigned to clusters in a postprocessing step.

4 Experiments

Scalability experiments. In the first experiment, our approach was tested
on three types of artificial benchmark graphs: (i) The star consists of k com-
plete graph components of the same size and an additional vertex, called cen-
tral vertex, that is connected with one vertex from each component. (ii) The
tricky star is similar to star, but all vertices of all components are connected
to the central vertex. (iii) The ring consists of k complete graph components
of the same size and additional k edges that connect these components.

For each of the benchmarks we performed experiments in two versions: in
the first case the number of components k was varied at fixed component-size
of 20, while in the second case we varied the size of the components at fixed
k = 5 . We set the parameters of the genetic algorithm N = 200, p = 0.2,
kstop = 10 and used the following clustering kernel:

c(g) =
2|E(g)|

|V (g)|(|V (g)| − 1)
+
(

1− 1

|V (g)|

)
, h({x1, ..., xn}) =

x1 + ...+ xn
n

In all these test cases the algorithm found an appropriate cutting vertex
set. Table 1 shows the numbers of iterations of the genetic algorithm averaged
over 3 runs. Although the set of all possible solutions grows exponentially,
we observed moderate growth in the number of required iterations.

Table 1 Average number of generations in the genetic algorithm

Size of the grapha Graph Type
STAR I T.STAR I RING I STAR II T.STAR II RING II

100 21.00 19.33 18.66 20.00 19 28.5
200 25.00 24.67 32.66 26.00 24 33

300 27.67 27.00 41.00 27.00 25 40

400 29.67 28.33 43.66 30.00 30 40.5
500 31.00 29.33 56.00 30.50 30.5 40.5

...
1000 36.00 36.00 44.33 36.50 35 53
a total number of vertices, without the central vertex in case of Star and TrickyStar

Graph-based Clustering 7

Experiments on real data. For our experiments we used a subset of WHO
Europe’s dataset of the Countrywide Integrated Noncommunicable Diseases
Intervention (CINDI). This contains persons’ answers to various questions
about their health status. We selected those 887 persons who did not visit
the doctor and the attributes that were most interesting for the domain expert
like the indicators for high blood pressure or diabetes.

In this case, vertices of the graph correspond to persons. In order to de-
termine the similarity of two persons (which allows us to decide whether or
not they are connected in the graph), we used the following formula:

s(r1, r2) =

∑
i∈C

f(i, r1, r2) +
∑
j∈I

(1− |r1.j−r2.j|
|max(j)−min(j)|)

|C ∪ I|

where C is the set of categorical attributes; I is the set of numeric attributes;
r1, r2 are records of the database (persons); max(j),min(j) stands for the
maximal/minimal value of the numerical attribute j and f(i, r1, r2) = 1 −

v
nsize

if the values of the i-th attributes of the records r1 and r2 are equal;
f(i, r1, r2) = 0 otherwise; here v is the number of the records for which the
value of the attribute i is equal to r1.i and nsize is the total number of the
records in the data set. Thus, for categorical attributes: a rare value being
equal for two objects counts more, as if a frequent value would be equal.

In the graph we connected two vertices (persons) if s(r1, r2) > 0.1, which
resulted in total in almost 200,000 edges. We used the following kernel:

c(g) =
2|E(g)|

|V (g)|(|V (g)| − 1)
+
|V (g)|
4000

, h({x1, ..., xn}) =
x1 + ...+ xn

n

Further parameters of our algorithm were set to N = 500, p = 0.2, kstop = 10.
Our algorithm produced an easily interpretable clustering. Three clusters

were identified, the fist one corresponds to healthy persons, the second one
corresponds to persons having at least one disease (in the most cases back-
ache), in the third cluster we found persons that consequently did not answer
to any questions. We clustered the same data with k -Means and Farthest-
First from WEKA (http://www.cs.waikato.ac.nz/ml/weka/) as well. Using
k -Means one of the clusters was poorly established. FarthestFirst catego-
rized almost all the patients into one cluster, except 17 patients. Thus our
clustering algorithm promisingly outperformed these two methods.

5 Conclusions

In this paper we proposed a new clustering method based on the search for
cutting vertex sets using a genetic algorithm, that can easily be customized for
various tasks by the choice of clustering kernel. We analyzed the complexity

8 K. Buza, A. Buza, P. B. Kis

of our problem, experimentally investigated the scalability of our method and
demonstrated its applicability on real-world data. Graph-based clustering is
not limited to the studied problem, therefore we hope that it will be applied
in other domains in the future.

References

1. Ackerman, M., Ben-David, S.: Which data sets are clusterable?-a theoretical study of

clusterability (2008). URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.123.3549&rep=rep1&type=pdf

2. Ben-David, S., Ackerman, M.: Measures of clustering quality: A working set of axioms

for clustering. In: Advances in Neural Information Processing Systems 21, pp. 121–128
(2009)

3. Ben-David, S., Pál, D., Simon, H.: Stability of k-means clustering. In: 20th Annual
Conference on Learning theory, pp. 20–34. Springer (2007)

4. Ben-David, S., Von Luxburg, U.: Relating clustering stability to properties of cluster

boundaries. In: International Conference on Computational Learning Theory (COLT)
(2008)

5. Beyer, H.: The theory of evolution strategies. Springer (2001)

6. Brown, N., McKay, B., Gilardoni, F., Gasteiger, J.: A graph-based genetic algorithm
and its application to the multiobjective evolution of median molecules. Chemical

Information and Computer Sciences 44(3), 1079–1087 (2004)

7. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms. The MIT
Press / McGraw Hill (2003)

8. Czumaj, A., Sohler, C.: Sublinear-time approximation algorithms for clustering via

random sampling. Random Structures & Algorithms 30(1-2), 226–256 (2007)
9. Guha, S., Rastogi, R., Shim, K.: Rock: A robust clustering algorithm for categorical

attributes. Information Systems 25(5), 345–366 (2000)

10. Kleinberg, J.: An impossibility theorem for clustering. In: Advances in Neural Infor-
mation Processing Systems 15, p. 463 (2003)

11. Meyerson, A., O’Callaghan, L., Plotkin, S.: A k-median algorithm with running time
independent of data size. Machine Learning 56(1), 61–87 (2004)

12. Mishra, N., Oblinger, D., Pitt, L.: Sublinear time approximate clustering. In: 12th

Annual ACM-SIAM Symposium on Discrete algorithms, pp. 439–447. Society for In-
dustrial and Applied Mathematics (2001)

13. Shamir, O., Tishby, N.: On the reliability of clustering stability in the large sample

regime. In: Advances in Neural Information Processing Systems 21, pp. 1465–1472
(2009)

14. de la Vega, W., Karpinski, M., Kenyon, C., Rabani, Y.: Approximation schemes for

clustering problems. In: 35th Annual ACM Symposium on Theory of Computing, pp.
50–58. ACM (2003)

