

SOHAC: Efficient Storage of Tick Data That Supports Search and Analysis

Gabor I. Nagy, Krisztian Buza Budapest University of Technology and Economics gnagy@tmit.bme.hu, buza@cs.bme.hu

Acknowledgements:

Discussions with Dr. Ferenc Bodon and Zoltan Papp, Morgan Stanley Analytics, Budapest, Hungary are greatly appreciated. TÁMOP - 4.2.2.B-10/1–2010-0009

Outline

- Introduction
- Problem Formulation
- Our approach
- Experiments
- Conclusions and Future Work

Introduction

- Real-world phenomena
 - described by several attributes
 - the dynamics of these attributes matters
- Illustrative example: weather observations
- Application domains
 - finance (tick data), seismology, medicine, sensor data...

Time	Temp. (°C)	Hum. (%)	Press. (Pa)	Wind (v) (km/h)	Wind (dir.)	Radiation	Outlook
10:21	15	20	100 200	5	SW	low	*
10:22	16	20	100 200	5	SW	low	*
10:38	16	30	100 100	5	SW	low	*
10:40	17	30	100 100	5	SW	medium	*
10:43	18	30	100 100	10	SW	medium	<u></u>
10:44	18	30	100 100	15	W	medium	*
10:51	18	20	100 200	15	W	medium	*

Storage of tick data

- Omit rows where no attribute changes
- Challange: Find balance between two criteria
 - Storage space occupation
 - Quick access to the data \rightarrow search & analysis

Time	Temp. (°C)	Hum. (%)	Press. (Pa)	Wind (v) (km/h)	Wind (dir.)	Radiation	Outlook
10:21	15	20	100 200	5	SW	low	*
10:22	16	20	100 200	5	SW	low	**
10:38	16	30	100 100	5	SW	low	*
10:40	17	30	100 100	5	SW	medium	<u></u>
10:43	18	30	100 100	10	SW	medium	<u>*</u>
10:44	18	30	100 100	15	W	medium	***
10:51	18	20	100 200	15	W	medium	*

Decomposition of a tick data table (illustrative example)

	Tin	ne	Tem (°C)).	Hum (%)	-	Pres (Pa)	s.	Wind (km/h		Wind (dir.)	Radia	ation	Outio	ok	
	10:2	21	15		20		100 2	200	5		SW	low		*		
	10:2	22	16		20		100 2	200	5		SW	low		**		
	10:3	38	16		30		100 1	00	5		SW	low		**		
	10:4	40	17		30		100 1	00	5		SW	mediu	m			
	10:4	43	18		30		100 1	00	10		SW	mediu	m	*		
	10:4	44	18		30		100 1	00	15		W	mediu	m	**		
	10.5	51	18		20	_	100.2	00	15		\٨/	mediu	m	SHILE		
Tir		Hu (%		Pres (Pa)			Time	Tem (°C)		Win (km	d (v) /h)	Wind (dir.)	Radi	ation	Out	look
10:	21	20		100 2	200	- 1	10:21	15		5		SW	low		***	
10:	38	30		100 1	00		10:22	16		5		SW	low		**	
10:	51	20		100 2	200		10:40	17		5		SW	mediu			
							10:43	18		10		SW	mediu	ım	W.	

15

W

10:44

18

*

medium

Decomposition of a tick data table (illustrative example)

	Tin	ne	Tem (°C)	p.	Hun (%)	1.	Pres (Pa)	: S.	Wind (km/h		Wind (dir.)	Radia	ation	Outlo	ook	
	10:2	21	15		20		100 2	200	5		SW	low		**		
	10:2	22	16		20		-1307	200	5		SW	low		**		
	10:3	38	16		30		100 1	00	5		SW	low		*		
	10:4	40	17		30		100 1	198	5		SW	mediu	m	<u></u>		
	10:4	43	18		30		100 1	00	10		SW	mediu	m	**		
	10:4	44	18		30		100 1	09	15		W	mediu	m	Northern		
	10.6	51	18		20		100 1		15		\٨/	mediu	m	SHILE		
Ti	me	Hu (%		Pres (Pa)			Time	Tem (°C)	p.	Win (km	d (v) /h)	Wind (dir.)	Radi	ation	Out	look
10:	21	20		100 2	200		10:21	15		5		SW	low		***5	
10:	38	30		100 1	100		10:22	16		5		SW	low		**	
10:	51	20		100 2	200		10:40	17		5		SW	mediu	ım		
										need to be a set of the			1000		140	

10

15

SW

W

medium

medium

10:43

10:44

18

18

黨

<u>*</u>

Problem Formulation

 Given a number k, find a decomposition into k tables so that the storage space is minimized

- Usually: k = 2 or k = 3 in practice

- Clustering problem
 - Domain-specific notion of similarity

Time	Hum. (%)	Press. (Pa)
10:21	20	100 200
10:38	30	100 100
10:51	20	100 200

Time	Temp. (°C)	Wind (v) (km/h)	Wind (dir.)	Radiation	Outlook
10:21	15	5	SW	low	2
10:22	16	5	SW	low	<u>ﷺ</u>
10:40	17	5	SW	medium	<u>*</u>
10:43	18	10	SW	medium	<u>*</u>
10:44	18	15	W	medium	*

Decomposition of a tick data table (illustrative example)

	Tim	e	Temp (°C)).	Hum (%)) .	Pres (Pa)	s.	Wind (km/h		Wind (dir.)	Radia	ation	Outlo	ok	
	10:2	1	15		20		100 2	200	5		SW	low		**		
	10:2	2	16		20		100 2	00	5		SW	low		**		
	10:3	8	16		30		100 1	00	5		SW	low		**		
	10:4	0	17		30		100 1	00	5		SW	mediu	m	<u> </u>		
	10:4	3	18		30		100 1	00	10		SW	mediu	m	**		
	10:4	4	18		30		100 1	00	15		W	mediu	m	*		
	10.5	1	18		20		100.2	00	15		۱۸/	mediu	m	SHE		
Tir		Hu (%)	m.)	Pres (Pa)	s.		Time	Tem (°C)		Win (km	d (v) /h)	Wind (dir.)	Radi	ation	Out	look
10:	21 2	20		100 2	200		10:21	15		5		SW	low		**	
10:	38 3	30		100 1	00	-	10:22	16		5		SW	low		**	
10:	51 2	20		100 2	200		10:40	17		5		SW	mediu		W.	
							10:43	18		10		SW	mediu	ım	*	
															140	

10:44

18

15

W

medium

Preprocessing: Construction of a binary change indicator matrix

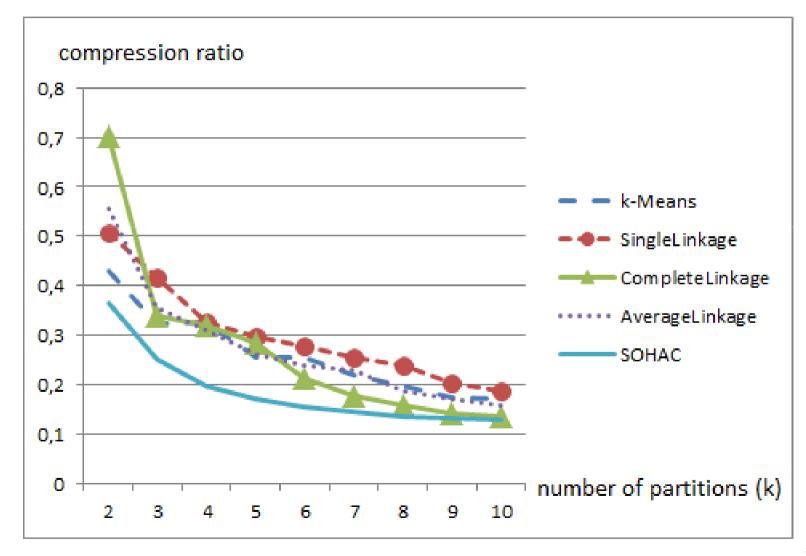
Time	Ter (°C	np.)	Hum. (%)	Press. (Pa)		Wind (v) (km/h)	Wind (dir.)	Radiation	Outlook
10:21	15		20	100 200	1	5	SW	low	**
10:22	16		20	100 200		5	SW	low	**
10:38	16		30	100 100		5	SW	low	**
10:40	17		30	100 100		5	SW	medium	<u> </u>
10:43	18		30	100 100		10	SW	medium	<u>;;;</u>
10:44	18		30	100 100		15	W	medium	*
10:51	18		20	100 200		15	W	medium	**
Time	Те	mp.	Hum.	Press.		Wind (v)	Wind	Radiation	Outlook
	(°()	(%)	(Pa)		(km/h)	(dir.)		
10:21		1	1	1		1	1	1	1
10:22	•	1	0	0		0	0	0	0
10:38		0	1	1		0	0	0	0
10:40		1	0	0		0	0	1	1
10:43		1	0	0		1	0	0	0
10:44		0	0	0		1	1	0	0
10:51		0	1	1		0	0	0	0

Our approach

- SOHAC: Storage-Optimizing Hierarchical Agglomerative Clustering
 - Clustering algorithm in order to find an (approximately) optimal partitioning of columns
 - Basic idea:
 - cluster: set of columns
 - initially: each column is a separate cluster
 - in each iteration of HAC, we merge those clusters that lead to optimal storage

Experiments

- Datasets
 - Morgan Stanley Tick Data (30 columns, ≈4M rows)
 - Publicly availabe real-world datasets
 - Some of the most popular datasets from the UCI repository: Adult, Breast Cancer Wisconsin (Diagnostic), Car Evaluation, Forest Fires and Poker Hand
- *Performance measure*: compression ratio


 $CR = \frac{\text{number of cells after decomposition}}{\text{number of cells in the original matrix}}$

- 10 disjoint splits \rightarrow average + standard deviation
- Baselines:
 - Hierarchical clustering algorithms and k-Means with various distance measures
 - In total: 38 clustering algorithms from the literature

Results on Morgan Stanle **Tick Data**

	verage- inkage	Dice Jaccard Kulczynski Nominal	$\begin{array}{c} 0.9799 {\pm} 0.0016 \\ 0.9799 {\pm} 0.0016 \\ 0.9799 {\pm} 0.0016 \end{array}$	0.5805±0.0596 0.5805±0.0596	0.3094 ± 0.1311 0.3094 ± 0.1311
	inkage	Kulczynski Nominal	$0.9799 {\pm} 0.0016$		$0.3094{\pm}0.1311$
	_	Nominal		0 5005 1 0 0500	
gan Stanley				0.5805 ± 0.0596	$0.3094 {\pm} 0.1311$
		Description The strength of	$0.7385 {\pm} 0.1072$	$0.6309 {\pm} 0.0731$	$0.5612 {\pm} 0.0753$
San Junicy		Rogers-Tanimoto	$0.7320 {\pm} 0.1032$	$0.6339 {\pm} 0.0696$	$0.5312 {\pm} 0.1184$
0 1		RussellRao	$0.9799 {\pm} 0.0016$	$0.5805 {\pm} 0.0596$	$0.3094{\pm}0.1311$
Data		SimpleMatching	$0.7320{\pm}0.1032$	$0.6339 {\pm} 0.0696$	$0.5312{\pm}0.1184$
Data		Chebychev	$0.9799 {\pm} 0.0016$	$0.7169 {\pm} 0.0412$	$0.6836 {\pm} 0.0413$
		Cosine	$0.5556 {\pm} 0.2659$	$0.3560{\pm}0.0852$	$0.3084{\pm}0.0601$
		Euclidean	$0.7320{\pm}0.1032$	$0.6339 {\pm} 0.0696$	$0.5312{\pm}0.1184$
		Manhattan	$0.7320 {\pm} 0.1032$	$0.6339 {\pm} 0.0696$	$0.5312 {\pm} 0.1184$
		Overlap	$0.9605 {\pm} 0.0172$	$0.8788 {\pm} 0.0129$	$0.7734 {\pm} 0.0222$
C	Complete-	Dice	0.7415 ± 0.1020	$0.5805 {\pm} 0.0596$	0.3094 ± 0.1311
Li	inkage	Jaccard	$0.7415 {\pm} 0.1020$	$0.5805 {\pm} 0.0596$	$0.3094 {\pm} 0.1311$
		Kulczynski	$0.7415 {\pm} 0.1020$	$0.5805 {\pm} 0.0596$	$0.3094{\pm}0.1311$
		Nominal	$0.7044 {\pm} 0.0462$	$0.3460{\pm}0.1328$	$0.3254 {\pm} 0.1361$
		RogersTanimoto	$0.7013 {\pm} 0.0446$	$0.3388 {\pm} 0.1273$	$0.3190 {\pm} 0.1299$
		RussellRao	$0.9799 {\pm} 0.0016$	$0.5805 {\pm} 0.0596$	$0.3094 {\pm} 0.1311$
		SimpleMatching	$0.7013 {\pm} 0.0446$	$0.3388 {\pm} 0.1273$	$0.3190 {\pm} 0.1299$
		Chebychev	$0.9799 {\pm} 0.0016$	0.7169 ± 0.0412	$0.6836 {\pm} 0.0413$
		Cosine	0.8303 ± 0.0762	0.7306 ± 0.1298	0.3075 ± 0.0875
		Euclidean	$0.7013 {\pm} 0.0446$	0.3388 ± 0.1273	0.3190 ± 0.1299
		Manhattan	$0.7013 {\pm} 0.0446$	$0.3388 {\pm} 0.1273$	$0.3190 {\pm} 0.1299$
		Overlap	$0.8696 {\pm} 0.0475$	$0.7620 {\pm} 0.0408$	$0.6970 {\pm} 0.0441$
Si	ingle-	Dice	$0.9799 {\pm} 0.0016$	0.7301 ± 0.1952	$0.3338 {\pm} 0.1629$
L	inkage	Jaccard	$0.9799 {\pm} 0.0016$	0.7301 ± 0.1952	$0.3338 {\pm} 0.1629$
		Kulczynski	$0.9799 {\pm} 0.0016$	0.7301 ± 0.1952	$0.3338 {\pm} 0.1629$
		Nominal	0.7607 ± 0.1379	0.7296 ± 0.1511	0.5612 ± 0.0753
		RogersTanimoto	$0.7520{\pm}0.1329$	0.7228 ± 0.1441	0.5587 ± 0.0714
		RussellRao	$0.9799 {\pm} 0.0016$	0.9055 ± 0.0264	0.4820 ± 0.3088
		SimpleMatching	0.7520 ± 0.1329	0.7228 ± 0.1441	$0.5587 {\pm} 0.0714$
		Chebychev	0.9799 ± 0.0016	0.7169 ± 0.0412	0.6836 ± 0.0413
		Cosine	0.5072 ± 0.2641	0.4150 ± 0.1893	0.3254 ± 0.0683
		Euclidean	0.7520 ± 0.1329	$0.7228 {\pm} 0.1441$	$0.5587 {\pm} 0.0714$
		Manhattan	0.7520 ± 0.1329	0.7228 ± 0.1441	0.5587 ± 0.0714
		Overlap	$0.9799 {\pm} 0.0016$	0.9466 ± 0.0016	$0.9134 {\pm} 0.0018$
k	-Means	Euclidean	$0.4291 {\pm} 0.1821$	0.3242 ± 0.1216	0.3244 ± 0.1309
our approach		Manhattan	0.8084 ± 0.1219	0.6029 ± 0.1224	0.4437 ± 0.1274
our approach $\longrightarrow \underline{s}$	SOHAC		$0.3649 {\pm} 0.0772$	$0.2526 {\pm} 0.0587$	$0.1960 {\pm} 0.0499$

Varying the number of partitions

Results on publicly available real-world datasets

Dataset	SOHAC	Single Linkage	Avg. Linkage	Complete Linkage
k = 2				
Adult	$0.8051 {\pm} 0.0256$	$0.8672 {\pm} 0.0473$	$0.8558 {\pm} 0.0408$	$0.8558 {\pm} 0.0408$
Breast C.W.	$0.5040{\pm}0.2420$	$0.5708 {\pm} 0.2243$	$0.5478 {\pm} 0.2181$	$0.5142{\pm}0.2243$
Car	$0.5199{\pm}0.0291$	$0.6347{\pm}0.0806$	$0.6108 {\pm} 0.0733$	$0.5909{\pm}0.0660$
ForestFires	$0.7816{\pm}0.0208$	$0.7887 {\pm} 0.0286$	$0.7834{\pm}0.0288$	$0.7925{\pm}0.0389$
Poker Hand	$0.5490 {\pm} 0.0001$	$0.7582{\pm}0.0572$	$0.7582{\pm}0.0572$	$0.7871 {\pm} 0.0018$
k = 3				
Adult	$0.7101{\pm}0.0251$	$0.8018{\pm}0.0515$	$0.7884{\pm}0.0397$	$0.7876{\pm}0.0388$
Breast C.W.	$0.4451 {\pm} 0.2424$	$0.5022{\pm}0.2167$	$0.4915 {\pm} 0.2189$	$0.4628 {\pm} 0.2292$
Car	$0.3869 {\pm} 0.0190$	$0.4389{\pm}0.0235$	$0.4391{\pm}0.0238$	$0.4391{\pm}0.0238$
ForestFires	$0.7242{\pm}0.0202$	$0.7406{\pm}0.0212$	$0.7402{\pm}0.0213$	$0.7387{\pm}0.0178$
Poker Hand	$0.4477 {\pm} 0.0003$	$0.5978 {\pm} 0.0011$	$0.5978{\pm}0.0011$	$0.5978{\pm}0.0011$
k = 4				
Adult	$0.6491 {\pm} 0.0222$	$0.7402{\pm}0.0125$	$0.7437 {\pm} 0.0215$	$0.7501{\pm}0.0272$
Breast C.W.	$0.4068 {\pm} 0.2344$	$0.4414{\pm}0.2199$	$0.4394{\pm}0.2215$	$0.4289{\pm}0.2183$
Car	$0.3141{\pm}0.0206$	$0.3146{\pm}0.0198$	$0.3146{\pm}0.0198$	$0.3146{\pm}0.0198$
ForestFires	$0.6857 {\pm} 0.0191$	$0.7144{\pm}0.0214$	$0.7113 {\pm} 0.0226$	$0.7105{\pm}0.0177$
Poker Hand	$0.4016{\pm}0.0004$	$0.4272{\pm}0.0005$	$0.4272{\pm}0.0005$	$0.4272{\pm}0.0005$
	. 1			

our approach

Outlook & Future work

- Other algorithms for finding the optimal decomposition
- Study the stability of the algorithm and speed-up
- Study the presence of hubs and hub-based clustering algorithms
- New domains
 - multivariate time-series
 - sensor data
 - biomedical data

Conclusion

- Reduction of storage space while allowing quick access to the data
- Use clustering algorithms for the above problem
- SOHAC: Storage-Optimizing Hierarchical Agglomerative Clustering
- Extensive experiments: our approach outperformed other clustering algorithms