
Semantic and Declarative Technologies

Péter Szeredi

szeredi@cs.bme.hu
Aquincum Institute of Technology

Budapest University of Technology and Economics
Department of Computer Science and Information Theory

2012 Spring Semester

Revision 653:654M | Generated: Thu May 17 14:46:22 CEST 2012

Part I: Declarative Programming – the Prolog language

Prolog – PROgramming in LOGic (PROgrammation en LOGique)
The program = statements in (simplified) first-order pred. calculus
The execution of a program is a (very simple) reasoning process
pattern-based procedure invocations and backtracking

Dual semantics: declarative and procedural
WHAT rather than HOW
(focus on the logic first, but then think over Prolog execution, too).

A single predicate – multiple functions
An example: concatenating two lists – pay one, get many free!
% Concatenate two lists

| ?- append([1,2], [3,4], L). =⇒ L = [1,2,3,4] ? ; no
% Check if one list is a prefix of another

| ?- append([1,2], _, [1,2,3,4,5]). =⇒ yes
% Split a list into two

| ?- append(L1, L2, [1,2]). =⇒ L1 = [], L2 = [1,2] ? ;
L1 = [1], L2 = [2] ? ;
L1 = [1,2], L2 = [] ? ; no

(AIT) Semantic and Declarative Technologies 2012 Spring Semester 3 / 335

Part II: Declarative Programming – Constraints

The CLP(X) schema

Prolog or some
other prog. lan-
guage, e.g. C++

+

“strong” reasoning capabilities on a re-
stricted domain X involving specific
constraint (relation) and function sym-
bols.

Examples for the domain X :
X = Q or R (rational or real numbers)
constraints: linear equalities and inequalities
reasoning techniques: Gauss elimination and the simplex method
X = FD (Finite Domains, e.g. of integers)
constraints: various arithmetic, logic, and combinatorial relationships
reasoning techniques: those developed for Constraint Satisfaction
Problems (CSPs)

(AIT) Semantic and Declarative Technologies 2012 Spring Semester 4 / 335

Part I

Declarative Programming with Prolog

1 Declarative Programming with Prolog

2 Declarative Programming with Constraints

3 The Semantic Web

Declarative Programming with Prolog Declarative and imperative programming

Contents

1 Declarative Programming with Prolog
Declarative and imperative programming
Propositional Prolog
Prolog with Simple Data Structures
Compound Data Structures in Prolog
Lists
Prolog implementation – a brief overview
Prolog execution – definitions
Prolog syntax
Syntactic sugar: operators
Further control constructs
BIPs 1 – meta-preds, all solutions, dynamic preds
BIPs 2 – higher order programming, loops, modules
Efficient programming in Prolog

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 7 / 335

Declarative Programming with Prolog Declarative and imperative programming

A Classification of some programming languages

Programming languages – programming styles

Imperative

Fortran
Algol
C
C++
. . .

Declarative

Functional

LISP
ML
Haskell
. . .

Logic

SQL
Prolog
CLP lang.
. . .

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 8 / 335

Declarative Programming with Prolog Declarative and imperative programming

Imperative and declarative programming styles

A sample imperative program
Imperative style: use commands
Variable: a mutable location
example in C:
int pow0(int a, int n) { // pow0(a,n) = an, n is an integer, n≥O

int p = 1; // Set variable p to 1.
while (n > 0) { // Repeat while n>0 :

n = n-1; // Decrease n by 1.
p = p*a; } // Multiply p by a.

return p; } // Return the value of p.

The same task solved declaratively
Declarative style: state truths
Variable: as in math, a single, yet unknown value
int powr(int a, int n) { // powr(a,n) = an, n is an integer, n≥O

if (n > 0) // If n > 0
return a*powr(a,n-1); // then an = a*an−1

else return 1; } // else an = 1

This kind of recursion is expensive, requires non-constant memory

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 9 / 335

Declarative Programming with Prolog Declarative and imperative programming

Declarative programming languages — motto

WHAT rather than HOW: The program describes the task to be solved
(WHAT to solve), rather than the exact steps of the solution process
(HOW to solve).
In practice, both aspects have to be taken care of – dual semantics:

Declarative semantics — What (kind of task) does the program solve;
Procedural semantics — How does the program solve it.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 10 / 335

Declarative Programming with Prolog Declarative and imperative programming

A Short and Slightly Biased Overview of early Prolog/LP history

1960s Early theorem proving programs
1970-72 The theoretical basis of logic programming (R A Kowalski)
1972 The first Prolog interpreter (A Colmerauer)
1975 The second (?) Prolog interpreter (P Szeredi)1

1977 The first Prolog compiler (D H D Warren)
1977–85 Several experimental Prolog applications in Hungary
1981 The Japanese 5th Generation Project chooses Logic Program-

ming as the basis for intelligent parallel computing
1982 The Hungarian MProlog is one of the first commercial Prolog

implementations
1983 A new compiler model, the WAM abstract machine

(D H D Warren)
1986 The beginning of the Prolog standardization
1987– New logic programming languages (CLP, Mercury, Gödel etc.)
1987–. . . Parallel Prolog implementations

.....

1http://dtai.cs.kuleuven.be/projects/ALP/newsletter/nov04/nav/articles/szeredi/
szeredi.html
Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 11 / 335

http://dtai.cs.kuleuven.be/projects/ALP/newsletter/nov04/nav/articles/szeredi/szeredi.html
http://dtai.cs.kuleuven.be/projects/ALP/newsletter/nov04/nav/articles/szeredi/szeredi.html

Declarative Programming with Prolog Declarative and imperative programming

Information about Logic Programming – LP systems

Some free logic programming systems:
SWI Prolog – (semantic) Web interfaces (Univ. of Amsterdam)

http://www.swi-prolog.org/
GNU Prolog – constraints (INRIA) http://www.gprolog.org/
XSB – a LP and Deductive Database system with tabling (Univ.
Stony Brook) http://xsb.sourceforge.net/
The ECLiPSe Constraint Programming System (CISCO)

http://eclipseclp.org/
YAP – Yet another Prolog (Univ. Porto) http://yap.sourceforge.net/
Mercury – types, modes, efficiency (Univ. Melbourne)

http://www.mercury.csse.unimelb.edu.au/index.html

Some commercial logic programming systems:
Visual Prolog (Windows integration) http://www.visual-prolog.com/
Quintus Prolog http://www.sics.se/quintus
SICStus Prolog, used in this course http://www.sics.se/sicstus

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 12 / 335

Declarative Programming with Prolog Declarative and imperative programming

Information about Logic Programming – Resources

The WWW Virtual Library, Logic Programming:
http://www.fmi.uni-sofia.bg/fmi/logic/skordev/ln/lp/logic-prog.html

CMU Prolog Repository:
http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/prolog/

Main page: . . . 0.html
Prolog Resource Guide: . . . faq/prg_1.faq, . . . faq/prg_2.faq

The Association for Logic Programming http://www.cs.nmsu.edu/ALP/

Conference series: Int. Conference on Logic Programming (ICLP)
28th ICLP will be held in Budapest, 4-8 September 2012

http://www.cs.bme.hu/iclp2012/

Journal: Theory and Practice of Logic Programming
(Cambridge Univ. Press) http://journals.cambridge.org/tlp

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 13 / 335

Declarative Programming with Prolog Declarative and imperative programming

Information on Prolog

In this course we use the SICStus Prolog system, version 4.2
http://www.sics.se/sicstus

SICStus documentation:
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html

Some textbooks on Prolog

Programming in PROLOG: Using the ISO Standard, C.S. Mellish,
W.F. Clocksin, Springer-Verlag Berlin, Paperback – July 2003
Logic, Programming and Prolog, 2nd Ed., by Ulf Nilsson and Jan
Maluszynski, Previously published by John Wiley & Sons Ltd. (1995)
Downloadable as a pdf file from
http://www.ida.liu.se/~ulfni/lpp
Prolog Programming for Artificial Intelligence, 3rd Ed., Ivan Bratko,
Longman, Paperback – March 2000
The Art of PROLOG: Advanced Programming Techniques, Leon
Sterling, Ehud Shapiro, The MIT Press, Paperback – April 1994

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 14 / 335

Declarative Programming with Prolog Propositional Prolog

Contents

1 Declarative Programming with Prolog
Declarative and imperative programming
Propositional Prolog
Prolog with Simple Data Structures
Compound Data Structures in Prolog
Lists
Prolog implementation – a brief overview
Prolog execution – definitions
Prolog syntax
Syntactic sugar: operators
Further control constructs
BIPs 1 – meta-preds, all solutions, dynamic preds
BIPs 2 – higher order programming, loops, modules
Efficient programming in Prolog

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 15 / 335

Declarative Programming with Prolog Propositional Prolog

The “happy” example

We describe a world in which certain facts hold, and there are rules for
being happy:
% happy: I’m happy.
happy :- % I’m happy if

workday, good_lecture. % it’s a workday and I’m at a good lecture.
happy :-

hot, swimming. % I’m happy if it’s hot and I’m swimming.
happy :-

my_partner_is_happy. % I’m happy if my partner is happy.

% workday: It’s a workday. % swimming: I’m swimming.
workday. swimming.

% my_partner_is_happy: My partner is happy.
my_partner_is_happy.

To express that some statements do not hold, we use the built-in
predicate false:
% good_lecture: I’m at a good lecture. % hot: It’s hot.
good_lecture :- false. hot :- false.

Alternatively, this directive makes Prolog return false if an undefined
predicate is called:
:- initialization set_prolog_flag(unknown, fail).

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 16 / 335

Declarative Programming with Prolog Propositional Prolog

The structure of Prolog programs

A Prolog program is a sequence of clauses. A clause can be a
a 〈 fact 〉 of the form “〈head 〉.”, e.g. my_partner_is_happy.
a 〈 rule 〉 of the form “〈head 〉 :- 〈body 〉.”,
e.g. happy :- my_partner_is_happy.

The meaning of the clauses:
A 〈 fact 〉 is unconditionally true.
A 〈 rule 〉 states that its 〈head 〉 is true if its 〈body 〉 is true.
Read “:-” as “if”.

A 〈body 〉 is a sequence of one or more 〈goal 〉s, separated by commas.
A 〈body 〉 is true if all its 〈goal 〉s are true. Read “,” as “and”.
The 〈goal 〉 and 〈head 〉 are both Prolog 〈 term 〉s, initially just names.
Names are alphanumeric sequences starting with a lower case letter –
these are called atoms in Prolog. Alphanumeric characters include
letters, digits and the underline.
The clauses with the same (or similar, see later) head form a predicate.
Precede each predicate by a head comment describing its meaning.
A comment lasts from a “%” until the end of line, or from “/*” to “*/”.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 17 / 335

Declarative Programming with Prolog Propositional Prolog

Executing Prolog programs

To execute the “happy” program, load it into the Prolog system and issue
a 〈query 〉:
| ?- happy.
yes

A 〈query 〉 is a 〈body 〉, i.e. a sequence of goals. It may
succeed, i.e. return true (cf. the above yes answer) – in which case it
may also bind some variables, possibly in several alternative ways,
see later; or
fail, i.e. return false (displaying no) – in which case it will not bind any
variables.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 18 / 335

Declarative Programming with Prolog Propositional Prolog

Executing the “happy” example

% happy: I’m happy.
happy :-

workday, good_lecture.
happy :-

hot, swimming.
happy :-

my_partner_is_happy. | ?- trace, happy.
% The debugger will first creep -- showing everything

workday. 1 1 Call: happy ?
2 2 Call: workday ?

swimming. 2 2 Exit: workday ?
3 2 Call: good_lecture ?

my_partner_is_happy. 3 2 Fail: good_lecture ?
4 2 Call: hot ?
4 2 Fail: hot ?
5 2 Call: my_partner_is_happy ?
5 2 Exit: my_partner_is_happy ?
1 1 Exit: happy ?

yes
% trace
| ?-

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 19 / 335

Declarative Programming with Prolog Propositional Prolog

Summary of “propositional” Prolog

So far we discussed a sublanguage of Prolog where predicates have no
arguments (cf. propositional logic).
A Prolog program is a collection of predicates (also called procedures), a
predicate is a list of clauses.
A clause can be a fact “H.”, or a rule “H :- B.”. Both have a head H
(consequence), and a rule has a body B (precondition). A fact can be
viewed as a rule with an empty body, or as a rule of the form “H :-
true.” (where true is a built-in predicate which always succeeds).
The declarative meaning of a clause “H :- B.” is the implication: H
follows from B.
The procedural meaning of a clause “H :- B.” is the following: in order to
find out that H is true, try to find out if B is true.
When executing a procedure, its clauses are considered in the order they
are written.

If a body is found which executes successfully, then the procedure
exits with success, otherwise it fails
A body conjunction is executed from left to right until a conjunct fails.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 20 / 335

Declarative Programming with Prolog Prolog with Simple Data Structures

Contents

1 Declarative Programming with Prolog
Declarative and imperative programming
Propositional Prolog
Prolog with Simple Data Structures
Compound Data Structures in Prolog
Lists
Prolog implementation – a brief overview
Prolog execution – definitions
Prolog syntax
Syntactic sugar: operators
Further control constructs
BIPs 1 – meta-preds, all solutions, dynamic preds
BIPs 2 – higher order programming, loops, modules
Efficient programming in Prolog

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 21 / 335

Declarative Programming with Prolog Prolog with Simple Data Structures

Adding arguments to heads and goals

So far we used just names for clause heads and body goals.
We now extend this to allow names followed by arguments, e.g. the term
happy(P, D) may have the meaning: Person P is happy on day D.
A callable Prolog term may thus be an atom (an alphanumeric sequence
starting with a lower case letter), or an atom followed by a parenthesised,
comma-separated list of arguments.
An argument is a Prolog term, for now it may be an atom, a number, or a
variable (an alphanumeric sequence starting with an upper case letter or
an underline)
An example:
% happy(P, D): Person P is happy on day D.
happy(P, D) :- % For all P and D: person P is happy on day D if

hot(D), % it’s hot on day D and
swimming(P, D). % person P is swimming on day D.

The head comment of the predicate takes the form of an English
sentence describing the relationship between the predicate arguments
(and all arguments have to be present).
All variables in a clause are universally quantified, so the scope of a
variable is a single clause.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 22 / 335

Declarative Programming with Prolog Prolog with Simple Data Structures

Selecting clauses – unification

Clause selection uses bi-directional pattern matching, called unification.
Prolog terms A and B can be unified if there is a (possibly empty)
substitution σ of variables by Prolog terms, which makes the terms
identical: Aσ = Bσ, e.g.

sw(john,mon) and sw(john,mon) unify, σ = {}
sw(john,When) and sw(john,mon) unify, σ = {When←mon}
sw(john,When) and sw(Who,mon) unify, σ = {When←mon, Who←john}
happy(john,When) and happy(P,D) unify, σ = {P←john, D←When}
(a variable can be substituted by another variable)
happy(john,When) and happy(P,D) also unify using
σ = {P←john, D←mon, When←mon}.

As the last two examples show, two terms can be unified by several
substitutions.
Prolog uses the most general unifier (mgu) substitution. This is a
substitution from which all other unifying substitutions can be obtained by
specialisation, i.e. applying another substitution.
The substitutions in all but the last example are mgu’s.
It can be shown that apart from variable renaming, mgu is unique.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 23 / 335

Declarative Programming with Prolog Prolog with Simple Data Structures

Predicates

Two Prolog terms unify only if they have the same name and the same
number of arguments (also called arity, cf. the term “n-ary relation”).
If a term has the name f and the arity n, then the expression f/n is
referred to as the functor of the given term.
Refine the notion of predicate: Two clauses belong to the same predicate
if their heads have the same functor (the functor of the predicate).
The predicate below has the functor swimming/2.
swimming(kate, tue). | swimming(claire, mon).
swimming(claire, thu). | swimming(john, mon).
swimming(claire, wed). | swimming(john, sat).

| ?- swimming(john, mon). | | ?- swimming(Who, mon).
yes | Who = claire ? ;
| ?- swimming(john, tue). | Who = john ? ;
no | no
| ?- swimming(claire, When). | | ?- swimming(Who, When).
When = thu ? ; | Who = kate, When = tue ? ;
When = wed ? ; | Who = claire, When = thu ? ;
When = mon ? ; | Who = claire, When = wed ? ;
no | (...)

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 24 / 335

Declarative Programming with Prolog Prolog with Simple Data Structures

The procedure-box of the happy example

happy(P, D) :- hot(mon). swimming(kate, tue). swimming(claire, mon).
hot(D), hot(wed). swimming(claire, thu). swimming(john, mon).
swimming(P, D). hot(fri). swimming(claire, wed). swimming(john, sat).

Call Exit

Fail Redo

hot(D)

happy(P,D)

swimming(P,D)

D=mon

D=wed

D=fri

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 25 / 335

Declarative Programming with Prolog Prolog with Simple Data Structures

The ports of the procedure-box

A procedure has four ports:
Call: The procedure is entered, the arguments are supplied.
Exit: The procedure is successfully completed. Variable
substitutions representing the solution may be returned.
Fail: The procedure completes with failure.
Redo: The procedure is re-entered, for requesting another solution.
The last port passed through must have been an Exit port.

A Prolog procedure = an object (in OO sense) with the two methods:
Call and Redo, each returning a Boolean value
(true→Exit and false→Fail)
A procedure may throw an exception – this is often considered a port.
The question mark “?” at the beginning of the debugger output line for the
Exit box means that the Prolog engine thinks there may be further
solutions within the given procedure invocation.
No question mark in an Exit line means that the Prolog engine knows
that there are no more solutions within the given procedure invocation.
The Redo port will not be entered in this case.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 26 / 335

Declarative Programming with Prolog Prolog with Simple Data Structures

Tracing “happy”

% happy(P, D): Person P is happy on D. | ?- trace, happy(P, W).
happy(P, D) :- 1 1 Call: happy(_P,_W) ?

hot(D), 2 2 Call: hot(_W) ?
swimming(P, D). ? 2 2 Exit: hot(mon) ?

3 2 Call: swimming(_P,mon) ?
% hot(D): it’s hot on D. ? 3 2 Exit: swimming(claire,mon) ?
hot(mon). ? 1 1 Exit: happy(claire,mon) ?
hot(wed). P = claire, W = mon ? ;
hot(fri). 1 1 Redo: happy(claire,mon) ?

3 2 Redo: swimming(claire,mon) ?
% swimming(P, D): P is swimming on D. ? 3 2 Exit: swimming(john,mon) ?
swimming(kate, tue). ? 1 1 Exit: happy(john,mon) ?
swimming(claire, thu). P = john, W = mon ? ;
swimming(claire, wed). 1 1 Redo: happy(john,mon) ?
swimming(claire, mon). 3 2 Redo: swimming(john,mon) ?
swimming(john, mon). 3 2 Fail: swimming(_P,mon) ?
swimming(john, sat). 2 2 Redo: hot(mon) ?

? 2 2 Exit: hot(wed) ?
| ?- happy(P, W). 4 2 Call: swimming(_P,wed) ?
P = claire, W = mon ? ; ? 4 2 Exit: swimming(claire,wed) ?
P = john, W = mon ? ; ? 1 1 Exit: happy(claire,wed) ?
P = claire, W = wed ? ; P = claire, W = wed ? ;
no (...)

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 27 / 335

Declarative Programming with Prolog Prolog with Simple Data Structures

Bi-directional nature of unification

% happy(P, D): Person P is happy on day D.
happy(P, D) :-

hot(D),
swimming(P, D).

% hot(D): it’s hot on day D.
hot(_). % Every day is hot.

% swimming(P, D): Person P is swimming on day D.
swimming(kate, mon).
swimming(claire, _X). % Claire is swimming every day.
swimming(john, wed).

| ?- trace, happy(claire, W).
| ?- happy(P, W). 1 1 Call: happy(claire,_520) ?
P = kate, W = mon ? ; 2 2 Call: hot(_520) ?
P = claire ? ; 2 2 Exit: hot(_520) ?
P = john, W = wed ? ; 3 2 Call: swimming(claire,_520) ?
no 3 2 Exit: swimming(claire,_520) ?
| ?- happy(claire, W). 1 1 Exit: happy(claire,_520) ?
true ? ; true ? ;
no no

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 28 / 335

Declarative Programming with Prolog Prolog with Simple Data Structures

The procedure box of a predicate with multiple clauses

happy(P, D) :- wd(mon). gl(peter, mon). hot(_).
wd(D), gl(P, D). wd(tue). gl(claire, sat).

happy(P, D) :- wd(wed). gl(john, wed).
hot(D), sw(P, D). wd(thu).

wd(fri). sw(graham, sat).
sw(john, wed).

wd(D)

Call

Fail

Exit

Redo

happy(P,D)

hot(D)

gl(P,D)

sw(P,D)

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 29 / 335

Declarative Programming with Prolog Prolog with Simple Data Structures

Another Procedural Model for Prolog: Goal Reduction

Executing the original “happy” example with the goal reduction model

happy(P, D) :- % (happy1) | hot(mon). % (hot1)
hot(D), | hot(wed). % (hot2)
swimming(P, D). | hot(fri). % (hot3)

swimming(kate, tue). % (sw1)
swimming(claire, thu). % (sw2)
swimming(claire, wed). % (sw3)
swimming(claire, mon). % (sw4)
swimming(john, mon). % (sw5)
swimming(john, sat). % (sw6)

 happy(P, W)

W=mon

hot(W), swimming(P, W).

(hot1)
(hot3)(hot2)

W=wed
W=fri

swimming(P, mon). swimming(P, wed). swimming(P, fri).

(sw4) (sw5) (sw3)
P=claire P=john

P=claire

(happy1)

.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 30 / 335

Declarative Programming with Prolog Prolog with Simple Data Structures

The Goal-Reduction Model for Prolog Execution

The main idea of the goal-reduction model
The execution state: a query, i.e. a sequence of goals
The execution consists of two kinds of steps:

reduction step: query + a clause→ a new query (Q + Cli → NQ)
backtracking step (when a failure, i.e. a dead end is reached):
continue at the most recent choice point

A choice point stores 〈Q, i 〉 i.e. the query Q before the reduction
and the counter i of the matched clause

Created at each reduction step except when Cli is the last
Backtracking: go to the query of the most recent choice point
and try further matching clauses, i.e. start with clause Cli+1

Prolog search tree: a graphical representation of execution using the
reduction model

The nodes of the tree are traversed using depth-first search
The Prolog execution engine has to store the choice points on the
path from the root to the current node of the search tree – this the
choice point stack.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 31 / 335

Declarative Programming with Prolog Prolog with Simple Data Structures

The reduction model – more details

Reduction step: reduce a query Q to a new query NQ using a program
clause Cli :

Copy clause Cli , i.e. systematically replace all variables by new
ones, giving H :- B
Split query Q into a first goal Q0 and a residual query RQ
Unify the goal Q0 and the head H resulting in a substitution σ

If the goal and head are not unifiable then the reduction step fails
Return the new query NQ = (B,RQ)σ (i.e. append the clause body
and the residual query and apply σ to it)

To execute a query Q, reduce with each applicable clause, top-to-bottom
If the reduction of a query Q with a clause Cli is successful and results in
a query NQ

create a choice point which stores 〈Q, i 〉, unless Cli is the last clause
If NQ is empty, exit with success, otherwise execute NQ

If no successful reduction is found, backtracking occurs:
if the most recent choice point contains 〈Q, i 〉 then go back to query
Q and continue trying to reduce it using the clauses after Cli .
if there are no choice points, exit the whole execution with failure

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 32 / 335

Declarative Programming with Prolog Compound Data Structures in Prolog

Contents

1 Declarative Programming with Prolog
Declarative and imperative programming
Propositional Prolog
Prolog with Simple Data Structures
Compound Data Structures in Prolog
Lists
Prolog implementation – a brief overview
Prolog execution – definitions
Prolog syntax
Syntactic sugar: operators
Further control constructs
BIPs 1 – meta-preds, all solutions, dynamic preds
BIPs 2 – higher order programming, loops, modules
Efficient programming in Prolog

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 33 / 335

Declarative Programming with Prolog Compound Data Structures in Prolog

The notion of Prolog term revisited

Prolog is a dynamically typed language
The taxonomy of Prolog terms – corresponding built-in predicates (BIPs)

XXXX

!!! aaa

!!! HH

�� aaa

��

Term

float

var nonvar

atomic compound

number atom

integer

var(X) X is a variable
nonvar(X) X is not a variable
atomic(X) X is a constant (atom or number)
compound(X) X is a compound
number(X) X is a number
atom(X) X is an atom
float(X) X is a floating point number
integer(X) X is an integer

Variables, e.g. X, Parent, X2, _var, _, _123

A variable is initially uninstantiated, it can be instantiated once during
unification to an arbitrary Prolog term (including another variable)

Constants
numbers: integer or float, eg. 1, -2.3, 3.0e10
atoms, i.e. symbolic constants, e.g. ’Peter’, has_son, +, <<, []

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 34 / 335

Declarative Programming with Prolog Compound Data Structures in Prolog

Composite data structures in Prolog

Compound terms in Prolog (sometimes called records or a structures)
base (canonical) form: 〈name 〉(〈arg1 〉, . . .)

the 〈name 〉 is an atom,
the 〈argi 〉 arguments are arbitrary Prolog terms
examples: leaf(1), person(william,smith,2003,1,22), <(X,Y),
is(X, +(Y,1))

non-canonical form, syntactically sweetened.
Operators, e.g. X is Y+1 ≡ is(X, +(Y,1))
List notation, e.g. [1,2] ≡ .(1,.(2,[]))
The BIP write_canonical(X) writes out X in canonical form
| ?- write_canonical(1+2*3). =⇒ +(1,*(2,3))
| ?- write_canonical([1,2]). =⇒ ’.’(1,’.’(2,[]))

Compound terms are often represented as trees
<name> +
/ | \ / \

/ | \ 1 *
<arg1> ... <argN> / \

2 3
Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 35 / 335

Declarative Programming with Prolog Compound Data Structures in Prolog

Our first compound data structure – binary tree

A binary tree data structure can be defined as being
either a node (node) which contains two subtrees (left,right);
or a leaf (leaf) which contains an integer

Define binary tree structures in C and Prolog:

% Declaration of a C structure
enum treetype Node, Leaf;
struct tree {

enum treetype type;
union {
struct { struct tree *left;

struct tree *right;
} node;

struct { int value;
} leaf;

} u;
};

% is_tree(T): T is a binary tree
is_tree(leaf(V)) :- integer(V).
is_tree(node(Left,Right)) :-

is_tree(Left),
is_tree(Right).

% Data type description,
% borrowed from Mercury.
% Appears as a comment.
% :- type tree --->
% node(tree, tree)
% | leaf(int).

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 36 / 335

Declarative Programming with Prolog Compound Data Structures in Prolog

Calculating the sum of numbers in the leaves of a binary tree

Calculating the sum of the leaves of a binary tree:
if the tree is a node, add the sums of the two subtrees
if the tree is a leaf, return the integer in the leaf

% C function (declarative)
int tree_sum(struct tree *tree) {

switch(tree->type) {
case Leaf:
return tree->u.leaf.value;
case Node:
return
tree_sum(tree->u.node.left) +
tree_sum(tree->u.node.right);
}

}

% Prolog procedure
% tree_sum(+T, -S):
% The sum of the leaves
% of tree T is S.
tree_sum(leaf(Value), Value).
tree_sum(node(Left,Right), S) :-

tree_sum(Left, S1),
tree_sum(Right, S2),
S is S1+S2.

X is Expr is a built-in predicate:
evaluates arithmetic expression Expr, and unifies the result with X.
I/O mode notation: +: input (bound), -: output (unbound var.), ?: arbitrary.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 37 / 335

Declarative Programming with Prolog Compound Data Structures in Prolog

Sum of Binary Trees

A Prolog sample run:
% sicstus
SICStus 4.2.1 (x86-linux-glibc2.5): (...)
| ?- consult(tree).
% consulting /home/szeredi/examples/tree.pl...
% consulted /home/szeredi/examples/tree.pl in module user, (...)
yes
| ?- tree_sum(node(leaf(5),

node(leaf(3), leaf(2))), Sum).
Sum = 10 ? ;
no
| ?- tree_sum(Tree, 10).
Tree = leaf(10) ? ;
! Instantiation error in argument 2 of is/2
! goal: 10 is _73+_74
| ?- halt.
%

The cause of the error:
the built-in arithmetic is one-way: the goal 10 is S1+S2 causes an error!

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 38 / 335

Declarative Programming with Prolog Compound Data Structures in Prolog

Tree summation working both ways (ADVANCED)

If we use an “addition table” instead of the built-in addition, and are
careful about infinite recursion, then we get a bi-directional tree_sum/2
predicate:
% tree_sum(?Tree, ?Sum): The sum of the leaves of Tree is Sum.
tree_sum(leaf(Value), Value).
tree_sum(node(Left, Right), S) :-

plus(S1, S2, S), tree_sum(Left, S1), tree_sum(Right, S2).

plus(1, 1, 2). plus(1, 2, 3). plus(1, 3, 4).
plus(2, 1, 3). plus(2, 2, 4). plus(3, 1, 4).

| ?- tree_sum(T, 3).
T = leaf(3) ? ;
T = node(leaf(1),leaf(2)) ? ;
T = node(leaf(1),node(leaf(1),leaf(1))) ? ;
T = node(leaf(2),leaf(1)) ? ;
T = node(node(leaf(1),leaf(1)),leaf(1)) ? ;
no
| ?- tree_sum(node(leaf(2),leaf(1)), S).
S = 3 ? ; no

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 39 / 335

Declarative Programming with Prolog Lists

Contents

1 Declarative Programming with Prolog
Declarative and imperative programming
Propositional Prolog
Prolog with Simple Data Structures
Compound Data Structures in Prolog
Lists
Prolog implementation – a brief overview
Prolog execution – definitions
Prolog syntax
Syntactic sugar: operators
Further control constructs
BIPs 1 – meta-preds, all solutions, dynamic preds
BIPs 2 – higher order programming, loops, modules
Efficient programming in Prolog

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 40 / 335

Declarative Programming with Prolog Lists

Lists in Prolog

The Prolog list
The empty list is the [] atom. A non-empty list is a compound
’.’(Head,Tail) where

Head is the first element of the list, while
Tail is the list composed of the remaining elements.

Lists can be written in simplified form (“syntactic sugar”).
The implementation of lists is optimised: it is more space- and
time-efficient than for other compound structures.

% list_of_numbers(L): L is a list of numbers.
list_of_numbers(.(E,L)) :-

number(E), list_of_numbers(L).
list_of_numbers([]).

| ?- listing(list_of_numbers).
list_of_numbers([A|B]) :-

number(A), list_of_numbers(B).
list_of_numbers([]).

| ?- list_of_numbers([1,2]). % [1,2] == .(1,.(2,[])) == [1|[2|[]]]
yes

| ?- list_of_numbers([1,a,f(2)]).
no

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 41 / 335

Declarative Programming with Prolog Lists

Various ways for writing lists

Options for writing a list of N elements:
canonical form : .(Elem1,.(Elem2,...,.(ElemN,[])...))
an equivalent list notation: [Elem1,Elem2,...,ElemN]

The tree structure of lists and their implementation

•

Elem1 •

Elem2

•

ElemN []

-

-

Elem2 Tail2

Tail1Elem1 .(Elem1, Tail1)

ElemN

. . .

NULL []

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 42 / 335

Declarative Programming with Prolog Lists

The list notation – more syntactic sugar

[Head|Tail] ≡ .(Head, Tail)

As a generalisation of the above:
[E1,E2,...,EN|Tail] ≡ [E1|[E2|...,EN|Tail]...]

When the tail is []: [E1,E2,...,EN] ≡ [E1,E2,...,EN|[]]

Examples:

| ?- [1,2] = [X|Y]. ⇒ X = 1, Y = [2] ?

| ?- [1,2] = [X,Y]. ⇒ X = 1, Y = 2 ?

| ?- [1,2,3] = [X|Y]. ⇒ X = 1, Y = [2,3] ?

| ?- [1,2,3] = [X,Y]. ⇒ no

| ?- [1,2,3,4] = [X,Y|Z]. ⇒ X = 1, Y = 2, Z = [3,4] ?

| ?- L = [1|_], L = [_,2|_]. ⇒ L = [1,2|_A] ? % open ended

| ?- L = .(1,[2,3|[]]). ⇒ L = [1,2,3] ?

| ?- L = [1,2|.(3,[])]. ⇒ L = [1,2,3] ?

| ?- [X|[3-Y/X|Y]]= .(A, [A-B,6]). ⇒ A=3, B=[6]/3, X=3, Y=[6] ?

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 43 / 335

Declarative Programming with Prolog Lists

Concatenating lists – append/3

append(L1, L2, L3) is meant to express the following relation:
the concatenation of lists L1 and L2 is L3; or, in other words:
list L3 consists of the elements of L1 followed by those of L2.

We will use the ⊕ sign to denote list concatenation
The predicate append/3 is built-in in SICStus Prolog 4, but it could2 be
defined in Prolog as:

% append(L1, L2, L3): L3 = L1⊕L2,
% i.e. the concatenation of L1 and L2 is L3.
append([], L, L). % The conc. of [] and L is L.
append([X|L1], L2, [X|L3]) :- % The conc. of [X|L1] and L2 is [X|L3] if

append(L1, L2, L3). % the conc. of L1 and L2 is L3.

Try reading the meaning of the second clause backwards:
If the concatenation of L1 and L2 is L3
then the concatenation of [X|L1] and L2 is [X|L3].

2Built-in predicates cannot be redefined, so one would have to use another name,
e.g. app.
Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 44 / 335

Declarative Programming with Prolog Lists

Predicate append/3 – procedural reading

% append(L1, L2, L3): The concatenation of L1 and L2 is L3.
append([], L, L).
append([X|L1], L2, [X|L3]) :-

append(L1, L2, L3).

Assume all three arguments are input (given lists), i.e. the I/O mode is
append(+,+,+). To execute append(A, B, C), i.e. to check that A ⊕ B = C:

If A is an empty list (A = []) and B = C then return success.
If A is a non-empty list (A = [X|L1]), and C has the same head as A
(C = [X|L3]), then proceed to check if (A’s tail ⊕ B) = (C’s tail), i.e.
execute append(L1, B, L3).
Otherwise fail.

Assume mode append(+,+,-) – the third arg. is output (uninst. variable).
To construct A ⊕ B in C, i.e. to execute append(A, B, C):

If A is an empty list (A = []), then set C = B and return success.
If A is a non-empty list (A = [X|L1]), then set C’s head to that of A
(C = [X|L3]), then construct (A’s tail ⊕ B), making this the tail of C,
i.e. execute append(L1, B, L3).

append(+L,_,_) completes in ∼ n reduction steps when L has length n
Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 45 / 335

Declarative Programming with Prolog Lists

Open ended lists, and their use in append

A list is open ended iff it is an unbound variable, or its tail is open ended
A list is closed or proper iff sooner or later an [] appears as the tail
For example, [X,1,Y] is a proper list, [X,1|Y] is open ended.

append([], L, L). (cl1)
append([X|L1], L2, [X|L3]) :- append(L1, L2, L3). (cl2)

| ?- append([1,2], [4,5], C). (1)

Head of clause (cl1) does not unify. Unify goal (1) with the head of (cl2):
unify [1,2]=[1| [2]] with [X|L1] → X = 1, L1 = [2];
unify [4,5] with L2 → L2 = [4,5];
unify C with [X|L3] = [1|L3] → C = [1|L3]

Proceed to execute append([2], [4,5], L3). (2)
Head of clause (cl1) does not unify. Unify goal (2) with the head of (cl2):
[2]=[2|[]] = [X′|L1′] → X′ = 2, L1′ = []; L2′ = [4,5]; L3 = [2|L3′].
Proceed to execute append([], [4,5], L3′). (3)
Unify (3) with (cl1): L3′ = [4,5]. Thus C = [1|L3], L3 = [2|L3′], L3′ =
[4,5], hence C = [1,2,4,5].

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 46 / 335

Declarative Programming with Prolog Lists

Tail recursion optimisation

Tail recursion optimisation (TRO), or more generally last call optimisation
(LCO) is applicable if

the goal in question is the last to be executed in a clause body, and
there are no choice points in the given clause body.

LCO is applicable to the recursive call of append/3:
% append(L1, L2, L3): The concatenation of L1 and L2 is L3.
append([], L, L).
append([X|L1], L2, [X|L3]) :- append(L1, L2, L3).

This feature relies on open ended lists:
It is possible to build a list node before building its tail
Imperatively, this corresponds to passing to append a pointer which
points to the location where the resulting list should be stored

Open ended lists are possible because unbound variables are first class
objects, i.e. unbound variables are allowed inside data structures.
(This type of variable is often called the logic variable).

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 47 / 335

Declarative Programming with Prolog Lists

Splitting lists using append/3

PPPPPP

�
�
�
��

A
A
A
AA
�
�
�
��

A
A
A
AA
�
�
�
��

A
A
A
AA
�
�
�
��

A
A
A
AA

?- append(A, B, [1,2,3,4]).
A=[]

B=[1,2,3,4] A=[1|A1]

A=[],B=[1,2,3,4]
?- append(A1, B, [2,3,4]).

A1=[2|A2]

?- append(A2, B, [3,4]).

B=[3,4]

B=[4]

A2=[]

A3=[]

B=[2,3,4]
A1=[]

A3=[4|A4]

?- append(A3, B, [4]).

?- append(A4, B, []).

A2=[3|A3]
A=[1], B=[2,3,4]

A=[1,2],B=[3,4]

A=[1,2,3],B=[4]

A4=[]
B=[]

A=[1,2,3,4],B=[]

% append(L1, L2, L3):
% L1 ⊕ L2 = L3.
append([], L, L).
append([X|L1], L2, [X|L3]) :-

append(L1, L2, L3).

| ?- append(A, B, [1,2,3,4]).
A = [], B = [1,2,3,4] ? ;
A = [1], B = [2,3,4] ? ;
A = [1,2], B = [3,4] ? ;
A = [1,2,3], B = [4] ? ;
A = [1,2,3,4], B = [] ? ;
no

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 48 / 335

Declarative Programming with Prolog Lists

append/3 – what other I/O modes are possible?

Discussed so far: check – append(+,+,+), concatenate – append(+,+,-),
split – append(-,-,+)

Variations on splitting: “subtract” front – append(+,-,+),
subtract back – append(-,+,+)

| ?- append([1,2], L, [1,2,3,4,5]). =⇒ L = [3,4,5] ? ; no
| ?- append(L, [4,5], [1,2,3,4,5]). =⇒ L = [1,2,3] ? ; no

Append a yet unknown, or open ended, list – append(+,-,-)
No problem, creates an open ended list!
| ?- append([a,b], Tail, L). =⇒ L = [a,b|Tail] ? ; no
| ?- append([a,b], [c|T], L). =⇒ L = [a,b,c|T] ? ; no

The search space becomes infinite, if the first and the third arguments
are both open ended – modes append(-,+,-) and append(-,-,-)

| ?- append([1|X], [a,b], Y). =⇒
X = [], Y = [1,a,b] ? ;
X = [_A], Y = [1,_A,a,b] ? ;
X = [_A,_B], Y = [1,_A,_B,a,b] ? ; ad infinitum

The recursive depth of executing append(L1,L2,L3) ≤ min(len(L1), len(L3))

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 49 / 335

Declarative Programming with Prolog Lists

Reversing lists

Naive solution (quadratic in the length of the list)
% nrev(L, R): List R is the reverse of list L.
nrev([], []).
nrev([X|L], R) :-

nrev(L, RL),
append(RL, [X], R).

A solution which is linear in the length of the list
% reverse(R, L): List R is the reverse of list L.
reverse(R, L) :- revapp(L, [], R).

% revapp(L1, L2, R): The reverse of L1 prepended to L2 gives R.
revapp([], R, R).
revapp([X|L1], L2, R) :-

revapp(L1, [X|L2], R).

In SICStus 4 append/3 is a BIP, reverse/2 is in library lists

To load the library place this directive in your program file:
:- use_module(library(lists)).

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 50 / 335

Declarative Programming with Prolog Lists

append and revapp — building lists forth and back (ADVANCED)

Prolog

append([], L, L).
append([X|L1], L2, [X|L3]) :-

append(L1, L2, L3).

revapp([], L, L).
revapp([X|L1], L2, L3) :-

revapp(L1, [X|L2], L3).

C++

struct link { link *next;
char elem;
link(char e): elem(e) {} };

typedef link *list;

list append(list L1, list L2)
{ list L3, *lp = &L3;

for (list p=L1; p; p=p->next)
{ list newl = new link(p->elem);

*lp = newl; lp = &newl->next;
}
*lp = L2; return L3;

}

list revapp(list L1, list L2)
{ list l = L2;
for (list p=L1; p; p=p->next)
{ list newl = new link(p->elem);
newl->next = l; l = newl;

}
return l;

}
Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 51 / 335

Declarative Programming with Prolog Lists

Variations on append 1. — Appending three lists (ADVANCED)

Recall: append/3 has finite search space, if its 1st or 3rd arg. is proper.
append(L,_,_) completes in ∼ n reduction steps when L has length n
Let us define append(L1,L2,L3,L123): L1 ⊕ L2 ⊕ L3 = L123. First attempt:
append(L1, L2, L3, L123) :-

append(L1, L2, L12), append(L12, L3, L123).

Inefficient: append([1,...,100],[1,2,3],[1], L) – 203 and not 103 steps. . .
Not suitable for splitting lists – creates infinite choice points

An efficient version, suitable for splitting a given list to three parts:
% L1 ⊕ L2 ⊕ L3 = L123,
% where either both L1 and L2, or L123 are proper lists.
append(L1, L2, L3, L123) :-

append(L1, L23, L123), append(L2, L3, L23).

L3 can be open ended or proper, it does not matter
Recall that the first append/3 call produces an open ended list:
| ?- append([1,2], L23, L). =⇒ L = [1,2|L23]

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 52 / 335

Declarative Programming with Prolog Lists

Searching for patterns in lists using append/3 (ADVANCED)

Elements occuring in pairs
% in_pair(+List, ?E, ?I): E is an element of List equal to its
% right neighbour, occurring at position I (numbered from 1).
in_pair(L, E, I) :-

append(Before, [E,E|_], L),
length(Before, I0)3, I is I0+1.

| ?- in_pair([1,8,8,3,4,4], E, I). =⇒ E = 8, I = 2 ? ;
=⇒ E = 4, I = 5 ? ; no

Stuttering sublists
% stutter(L, D): D is a nonempty sublist of L immediately
% followed by an identical sublist.
stutter(L, D, I) :-

append(_Before, Tail, L),
D = [_|_],
append(D, D, _, Tail). % Using append/4 from prev. slide

%/*OR*/ append(D, End, Tail), append(D, _, End).
| ?- stutter([2,2,1,2,2,1], D, I).

=⇒ D = [2] ? ; D = [2,2,1] ? ; D = [2] ? ; no
3BIP length(?List, ?Len): List is a list of length Len

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 53 / 335

Declarative Programming with Prolog Lists

Finding list elements – BIP member/2

% member(E, L): E is an element of list L
member(Elem, [Elem|_]).
member(Elem, [_|Tail]) :-

member(Elem, Tail).

Mode member(+,+) – checking membership
| ?- member(2, [2,1,2]). =⇒ yes BUT
| ?- member(2, [2,1,2]), X=X. =⇒ true ? ; true ? ; no

Mode member(-,+) – enumerating list elements:
| ?- member(X, [1,2,3]). =⇒ X = 1 ? ; X = 2 ? ; X = 3 ? ; no
| ?- member(X, [1,2,1]). =⇒ X = 1 ? ; X = 2 ? ; X = 1 ? ; no

Finding common elements of lists – with both above modes:
| ?- member(X, [1,2,3]),

member(X, [5,4,3,2,3]). =⇒ X = 2 ? ; X = 3 ? ; X = 3 ? ; no

Mode member(-,+) – making a term an element of a list (infinite choice):
| ?- member(1, L). =⇒ L = [1|_A] ? ; L = [_A,1|_B] ? ;

L = [_A,_B,1|_C] ? ; ...

The search space of member/2 is finite, if the 2nd argument is proper.
Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 54 / 335

Declarative Programming with Prolog Lists

Generalization of member: select/3 – defined in library lists

% select(E, List, Rest): Removing E from List results in list Rest.
select(E, [E|Rest], Rest). % The head is removed, the tail remains.
select(E, [X|Tail], [X|Rest]):- % The head remains,

select(E, Tail, Rest). % the element is removed from the Tail.

Possible uses:

| ?- select(1, [2,1,3,1], L). % Remove a given element
L = [2,3,1] ? ; L = [2,1,3] ? ; no

| ?- select(X, [1,2,3], L). % Remove an arbitrary element
L=[2,3], X=1 ? ; L=[1,3], X=2 ? ; L=[1,2], X=3 ? ; no

| ?- select(3, L, [1,2]). % Insert a given element!
L = [3,1,2] ? ; L = [1,3,2] ? ; L = [1,2,3] ? ; no

| ?- select(3, [2|L], [1,2,7,3,2,1,8,9,4]).
no % Can one remove 3 from [2|L]

% to obtain [1,...]?
| ?- select(1, [X,2,X,3], L).

L = [2,1,3], X = 1 ? ; L = [1,2,3], X = 1 ? ; no

The search space of select/3 is finite, if the 2nd or the 3rd arg. is proper.
Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 55 / 335

Declarative Programming with Prolog Lists

Permutation of lists (ADVANCED)

permutation(List, Perm): the permutation of List is list Perm
permutation([], []).
permutation(List, [First|Perm]) :-

select(First, List, Rest),
permutation(Rest, Perm).

Possible uses:
| ?- permutation([1,2], L). mode (+,-)

L = [1,2] ? ; L = [2,1] ? ; no
| ?- permutation([a,b,c], L).

L = [a,b,c] ? ; L = [a,c,b] ? ; L = [b,a,c] ? ;
L = [b,c,a] ? ; L = [c,a,b] ? ; L = [c,b,a] ? ;
no

| ?- permutation(L, [1,2]). mode (-,+)
L = [1,2] ? ; infinite loop

If the first argument in permutation/2 is unbound, then the search space
of the select call is infinite!
The variant of permutation/2 in library lists works for both modes.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 56 / 335

Declarative Programming with Prolog Prolog implementation – a brief overview

Contents

1 Declarative Programming with Prolog
Declarative and imperative programming
Propositional Prolog
Prolog with Simple Data Structures
Compound Data Structures in Prolog
Lists
Prolog implementation – a brief overview
Prolog execution – definitions
Prolog syntax
Syntactic sugar: operators
Further control constructs
BIPs 1 – meta-preds, all solutions, dynamic preds
BIPs 2 – higher order programming, loops, modules
Efficient programming in Prolog

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 57 / 335

Declarative Programming with Prolog Prolog implementation – a brief overview

Prolog implementation – some milestones

1973: Marseille Prolog (A. Colmerauer et al.)
interpreter in Fortran language
term representation: structure-sharing
stack structure: single stack (freed upon backtracking)

1977: DEC-10 Prolog (D. H. D. Warren)
compiler in Prolog and assembly (+ interpreter in Prolog)
term representation: structure-sharing
stack structure: three stacks (all freed upon backtracking)

global stack: global variables (inside terms), garbage collected
local (main) stack: procedures, choicepoints, variables,
freed upon deterministic exit
trail: variable substitutions, (possibly freed after cut)

1983: WAM – Warren Abstract Machine (D. H. D. Warren)
abstract machine for executing Prolog programs
term representation: structure-copying
three stacks as in DEC-10 Prolog, global stack stores the structures
WAM-based modern Prolog systems include SICStus, SWI, GNU
Prolog

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 58 / 335

Declarative Programming with Prolog Prolog implementation – a brief overview

Term representation (ADVANCED)

Prolog compound term storage – the two main approaches

structure-sharing structure-copying
Memory requirement O(number of variables) O(compound size)
Building time constant O(compound size)
Argument access time higher lower

Building a compound: unify a free var. and a compound in program text
Important: the unification of a free variable with a compound already
stored in a variable has constant cost! (Except for occurs check.)
Example: the time and space cost of replicate(n, L) is O(n) with
structure-sharing, O(n2) with structure-copying.
prefix_n(L, [1,2,3,...,n|L]).

replicate(0, []).
replicate(N, L) :-

N > 0, prefix_n(L0, L), N1 is N-1, replicate(N1, L0).

Still, in practice, structure-copying proved to be more efficient.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 59 / 335

Declarative Programming with Prolog Prolog implementation – a brief overview

WAM: Storage of Prolog terms (LBT – low bit tagging scheme)

Prolog object global/local stack global stack only

Unbound variable: own addr REF

Reference to other variable: addr of var REF

Atom (symb. constant): atom table index CONA

Integer: integer value CONI

List: addr LIST

addr: head term
tail term

Compound: addr STRU

addr: functor table index
argument term

...

The SICStus 3 release used high bit tagging (upper 4 bits), thus the size
of the stacks was limited to 256 MBs. SICStus 4 uses the LBT scheme.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 60 / 335

Declarative Programming with Prolog Prolog implementation – a brief overview

WAM: Further details (ADVANCED)

Handling of variables
Unification of two variables: the younger variable (the one creater
later) becomes a reference to the older
Dereferencing: following and resolving a chain of references until an
unbound variable or a non-REF object is reached
Uninstantiated variable ≡ self reference⇒ easier dereferencing

Backtracking
Conditional variable: uninstantiated variable, older than the newest
choicepoint
When substituting a conditional variable, its address is stored on the
trail
At backtrack, variable substitutions are undone using the trail, then
the trail is truncated

For further details on the WAM see the wiki page:
http://en.wikipedia.org/wiki/Warren_abstract_machine
Reference [2] is Hassan Aït-Kaci’s downloadable tutorial: “Warren’s
Abstract Machine: A Tutorial Reconstruction”

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 61 / 335

http://en.wikipedia.org/wiki/Warren_abstract_machine

Declarative Programming with Prolog Prolog execution – definitions

Contents

1 Declarative Programming with Prolog
Declarative and imperative programming
Propositional Prolog
Prolog with Simple Data Structures
Compound Data Structures in Prolog
Lists
Prolog implementation – a brief overview
Prolog execution – definitions
Prolog syntax
Syntactic sugar: operators
Further control constructs
BIPs 1 – meta-preds, all solutions, dynamic preds
BIPs 2 – higher order programming, loops, modules
Efficient programming in Prolog

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 62 / 335

Declarative Programming with Prolog Prolog execution – definitions

The Unification Algorithm

The unification algorithm takes (canonical) terms A and B as input.
It returns the most general unifier of A and B, σ = mgu(A,B), or failure.
In practice, the substitution σ has to be applied to the query at hand.
The (practical) unification algorithm:

1 If A and B are identical variables or constants, then return success.
2 Else, if A is a variable, then substitute A← B and return success.
3 Else, if B is a variable, then substitute B ← A and return success.

(Steps 2 and 3 can be executed in arbitrary order, i.e. when both A
and B are variables, one of them is substituted by the other)

4 Else, if A and B are compounds with the same name and arity,
and their arguments are A1,. . . ,AN and B1,. . . ,BN resp.,
then for i = 1, . . . ,N do

Perform (recursively) the unification alg. for Ai and Bi ;
If the recursive invocation fails, return failure;

If the above loop completes, return success.
5 In all other cases return failure (A and B are not unifiable)

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 63 / 335

Declarative Programming with Prolog Prolog execution – definitions

The Occurs Check in unification (ADVANCED)

Can one unify X and f(Y,g(X))?
Mathematically: no, X cannot be bound to a compound containing X
Theoretically, step 2 (and 3) of the unification alg. should include an
“occurs check”: before binding A← B check that no A occurs in B,
The (costly) check is almost always useless =⇒ not used by default.

No occurs check =⇒ so-called cyclic terms may be created, e.g.
| ?- X = s(1,X). =⇒ X = s(1,s(1,s(1,s(1,s(...))))) ? ; no

Unification with occurs check is available as a standard BIP:
| ?- unify_with_occurs_check(X, s(1,X)). =⇒ no

Some Prologs (eg. SICStus) support the unification and other operations
on cyclic terms
| ?- X = s(X), Y = s(s(Y)), X = Y. =⇒

X = s(s(s(s(s(...))))), Y = s(s(s(s(s(...))))) ?

(Other Prologs may go to infinite loop on this example.)

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 64 / 335

Declarative Programming with Prolog Prolog execution – definitions

The Unification Algorithm – mathematical formulation

Preliminaries
A substitution is a function σ which maps variables to arbitrary Prolog
terms. Xσ denotes σ applied to variable X

Example: σ = {X←a, Y←s(b,B), Z←C}, Dom(σ) = {X, Y, Z}, e.g. Xσ = a

The substitution function can be naturally extended:
Tσ: σ applied to an arbitrary term T : all occurrences in T of variables
in Dom(σ) are simultaneously substituted according to sigma
Example: f(g(Z,h),A,Y)σ = f(g(C,h),A,s(b,B))

Composition of substitutions:
σ ⊗ θ is a substitution obtained by first performing σ and then θ

Subst. σ ⊗ θ maps variables x ∈ Dom(σ) to (xσ)θ, while variables
y ∈ Dom(θ)\Dom(σ) to yθ (Dom(σ ⊗ θ) = Dom(σ)

⋃
Dom(θ)):

σ⊗θ = {x ← (xσ)θ | x ∈ Dom(σ)}
⋃
{ y ← yθ | y ∈ Dom(θ)\Dom(σ)}

For example, θ = {X←b, B←d}
σ ⊗ θ = {X←a, Y←s(b,d), Z←C, B←d}

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 65 / 335

Declarative Programming with Prolog Prolog execution – definitions

The Unification Algorithm – mathematical formulation

The unification algorithm takes (canonical) terms A and B as input.
It returns the most general unifier of A and B, σ = mgu(A,B), or failure.

1 If A and B are identical variables or constants,
then return σ = {} (empty substitution).

2 Else, if A is a variable, then return σ = {A← B}
3 Else, if B is a variable, then return σ = {B ← A}

(the order of steps 2 and 3 is arbitrary, they may involve an occurs
check)

4 Else, if A and B are compounds with the same name and arity,
and their arguments are A1,. . . ,AN and B1,. . . ,BN resp.,
then initialise σ = {} and for i = 1, . . . ,N do

Perform (recursively) the unification alg. for Aiσ and Biσ;
If the recursive invocation fails, return failure,
otherwise set σ = σ ⊗mgu(Ai ,Bi)

If the above loop completes, return σ
5 In all other cases return failure (A and B are not unifiable)

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 66 / 335

Declarative Programming with Prolog Prolog execution – definitions

The goal reduction execution algorithm

The definition of reduction step
Reduce a query Q to a new query NQ using a program clause Cli :

Split query Q into a first goal Q0 and a residual query RQ
Copy clause Cli , i.e. introduce new variables, and split the copy to a
head H and body B
Unify the goal Q0 and the head H

If the unification fails, exit the reduction step with failure
If the unification succeeds with a substitution σ, return the new
query NQ = (B,RQ)σ
(i.e. apply σ to both the body and the residual query)

reduce a query Q to a new query NQ by executing a built-in goal
(when the first goal is a built-in procedure call):

Split query Q into a built-in goal Q0 and a residual query RQ
Execute the BIP Q0

If the BIP fails then exit the reduction step with failure
If the BIP succeeds with a substitution σ then
return the new query NQ = RQσ

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 67 / 335

Declarative Programming with Prolog Prolog execution – definitions

The Goal Reduction Algorithm for Prolog execution

The algorithm uses a variable QU, storing a query, a variable I which is a
clause counter; and a stack consisting of pairs of the form <QU,I>

1 (Initialisation:) The stack is initalised to empty, QU := query
2 (BIP:) If the first call of QU is built-in then perform a reduction step,

a. If it fails⇒ step 6.
b. If it is succeeds, QU := the result of reduction step,⇒ step 5.

3 (Non built-in procedure – initialise a clause counter) I := 1.
4 (Reduction step:) Select the list of clauses applicable to the first call of

QU.4 Assume the list has N elements.
a. If I > N⇒ step 6.
b. perform a reduction step between the Ith clause of the list and QU.
c. If this fails, then I := I+1,⇒ step 4 a.
d. If I < N (non-last clause), then push <QU,I> on the stack.
e. QU := the query returned by the reduction step

5 (Success:) If QU is nonempty⇒ step 2, otherwise exit with success.
6 (Failure:) If the stack is empty, then exit with failure.
7 (Backtrack:) Pop <QU,I> from the stack, I := I+1, and⇒ step 4.
4If there is no indexing, then this list will contain all clauses of the predicate.

With indexing this will be an appropriate subset of all clauses.
Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 68 / 335

Declarative Programming with Prolog Prolog execution – definitions

Indexing

What is indexing?
quick selection of clauses matching a particular call;
using a compile-time grouping of the clauses of the predicate.

Most Prolog systems, including SICStus, use only the main (i.e.
outermost) functor of the first argument for indexing:

C/0, if the argument is a constant C (atom or number);
R/N, if the argument is a compound with name R and arity N;
undefined, if the argument is a variable.

Implementing indexing:
At compile-time: for each main functor, the compiler builds the list of
matching clauses.
At run-time: the Prolog engine selects the relevant clause list using
the call argument, if it is instantiated. By using hashing, this selection
is done in practically constant time.
Important: if the selected list contains a single clause, no choice
point is created.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 69 / 335

Declarative Programming with Prolog Prolog execution – definitions

An example of indexing

A sample program to illustrate indexing.
p(0, a). /* (1) */
p(X, t) :- q(X). /* (2) */
p(s(0), b). /* (3) */
p(s(1), c). /* (4) */
p(9, z). /* (5) */

q(1).
q(2).

For the p(A, B) call, the compiler builds a switch selecting the list of
applicable clauses:

if A is a variable: (1) (2) (3) (4) (5)
if A = 0: (1) (2)
if the main functor of A is s/1: (2) (3) (4)
if A = 9: (2) (5)
in all other cases: (2)

Example calls:
p(1, Y) does not create a choice point.
p(s(1), Y) creates a choice point, but removes it and exits without
leaving a choice point.
p(s(0), Y) exits leaving a choice point.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 70 / 335

Declarative Programming with Prolog Prolog execution – definitions

Indexing – further details

If there are clauses where the first arguments have the same functor, an
auxiliary predicate can help. E.g., by transforming p/2 to q/2 one avoids
choice points for goals of the form q(Ground5, Y)

p(0, a).
p(s(0), b).
p(s(1), c).
p(9, z).

q(0, a).
q(s(X), Y) :-

q_aux(X, Y).
q(9, z).

q_aux(0, b).
q_aux(1, c).

Indexing does not deal with arithmetic comparisons.
E.g., N = 0 and N > 0 are not recognised as mutually exclusive.

Indexing and lists
Putting the (input) list in the first argument makes indexing work.
Indexing distinguishes between [] and [...|...] (resp. functors:
’[]’/0 and ’.’/2).
For proper lists, the order of the two clauses is not relevant
By putting the clause for [] first, one avoids an infinite loop when the
predicate is called with an open ended list (but an infinite choice may
still remain).

5A term is called ground if it contains no variable.
Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 71 / 335

Declarative Programming with Prolog Prolog execution – definitions

Indexing list handling predicates: examples (ADVANCED)

append/3 creates no choice points if the first argument is a proper list.
append([], L, L).
append([X|L1], L2, [X|L3]) :- append(L1, L2, L3).

The trivial implementation of last/2 leaves a choice point behind.
% last(L, E): The last element of L is E.
last([E], E).
last([_|L], E) :- last(L, E).

The variant last2/2 uses a helper predicate, creates no choice points:
last2([X|L], E) :- last2(L, X, E).

% last2(L, X, E): The last element of [X|L] is E.
last2([], E, E).
last2([X|L], _, E) :- last2(L, X, E).

A variant of member/2 with no choice point left at the last element:
member(E, [H|T]) :- member_(T, H, E).

% member_(L, X, E): E is an element of [X|L].
member_(_, E, E).
member_([H|T], _, E) :- member_(T, H, E).

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 72 / 335

Declarative Programming with Prolog Prolog syntax

Contents

1 Declarative Programming with Prolog
Declarative and imperative programming
Propositional Prolog
Prolog with Simple Data Structures
Compound Data Structures in Prolog
Lists
Prolog implementation – a brief overview
Prolog execution – definitions
Prolog syntax
Syntactic sugar: operators
Further control constructs
BIPs 1 – meta-preds, all solutions, dynamic preds
BIPs 2 – higher order programming, loops, modules
Efficient programming in Prolog

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 73 / 335

Declarative Programming with Prolog Prolog syntax

Summary – syntax of Prolog predicates, clauses

Example

% A predicate with two clauses, the functor is: tree_sum/2
tree_sum(leaf(Val), Val). % clause 1, fact
tree_sum(node(Left,Right), S) :- % head \

tree_sum(Left, S1), % goal \ |
tree_sum(Right, S2), % goal | body | clause 2, rule
S is S1+S2. % goal / /

Syntax
〈program 〉 ::= 〈predicate 〉 . . .
〈predicate 〉 ::= 〈 clause 〉 . . . {with the same functor}
〈 clause 〉 ::= 〈 fact 〉. |

〈 rule 〉. {clause functor = head functor}
〈 fact 〉 ::= 〈head 〉
〈 rule 〉 ::= 〈head 〉:-〈body 〉
〈body 〉 ::= 〈goal 〉, . . .
〈goal 〉 ::= 〈 term 〉
〈head 〉 ::= 〈 term 〉

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 74 / 335

Declarative Programming with Prolog Prolog syntax

Prolog terms

Example – a clause head as a term
% tree_sum(node(Left,Right), S) % compound term, has the
% ________ ________________ _ % functor tree_sum/2
% | | |
% compound name \ argument, variable
% \ - argument, compound term

Syntax
〈 term 〉 ::= 〈 variable 〉 | {has no functor}

〈 constant 〉 | {〈 constant 〉/0}
〈 comp. term 〉 | {〈 comp. name 〉/〈arity 〉}
. . . syntax extensions . . . {lists, operators}

〈 constant 〉 ::= 〈atom 〉 | {symbolic constant}
〈number 〉

〈number 〉 ::= 〈 integer 〉 |
〈 float 〉

〈 comp. term 〉 ::= 〈 comp. name 〉 (〈argument 〉, . . .)
〈 comp. name 〉 ::= 〈atom 〉
〈argument 〉 ::= 〈 term 〉
Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 75 / 335

Declarative Programming with Prolog Prolog syntax

Lexical elements

Examples

% variable: Fact FACT _fact X2 _2 _
% atom: fact ≡ ’fact’ ’István’ [] ; ’,’ += ** \= ≡ ’\\=’
% number: 0 -123 10.0 -12.1e8
% not an atom: !=, Istvan
% not a number: 1e8 1.e2

Syntax
〈 variable 〉 ::= 〈 capital letter 〉〈alphanum 〉. . . |

_ 〈alphanum 〉. . .
〈atom 〉 ::= ’〈quoted char 〉. . . ’ |

〈 lower case letter 〉〈alphanum 〉. . . |
〈 sticky char 〉. . . | ! | ; | [] | {}

〈 integer 〉 ::= {signed or unsigned sequence of digits }
〈 float 〉 ::= { a sequence of digits with a compulsory decimal point

in between, with an optional exponent}
〈quoted char 〉 ::= {any non ’ and non \ character} | \ 〈escape sequence 〉
〈alphanum 〉 ::= 〈 lower case letter 〉 | 〈upper case letter 〉 | 〈digit 〉 | _
〈 sticky char 〉 ::= + | - | * | / | \ | $ | ^ | < | > | = | ‘ | ~ | : | . | ? | @ | # | &
Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 76 / 335

Declarative Programming with Prolog Prolog syntax

Comments and layout in Prolog

Comments
From a % character till the end of line
From the string /* till the next */

Layout (spaces, newlines, tabs, comments) can be used freely, except:
No layout allowed between the name of a compound and the “(”
If a prefix operator (see later) is followed by “(”, these have to be
separated by layout
Clause terminator (.): a stand-alone full stop (i.e., one not preceded
by a sticky char), followed by layout

The recommended formatting of Prolog programs:
Write the clauses of a predicate continuously, with no empty lines
between
Precede each predicate by an empty line and a head comment
% predicate_name(A1, ..., An): A declarative sentence (statement)
% describing the relationship between terms A1, ..., An

Write the head of the clause at the beginning of a line, and prefix
each goal in the body with an indentation of a few (8 recommended)
spaces.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 77 / 335

Declarative Programming with Prolog Syntactic sugar: operators

Contents

1 Declarative Programming with Prolog
Declarative and imperative programming
Propositional Prolog
Prolog with Simple Data Structures
Compound Data Structures in Prolog
Lists
Prolog implementation – a brief overview
Prolog execution – definitions
Prolog syntax
Syntactic sugar: operators
Further control constructs
BIPs 1 – meta-preds, all solutions, dynamic preds
BIPs 2 – higher order programming, loops, modules
Efficient programming in Prolog

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 78 / 335

Declarative Programming with Prolog Syntactic sugar: operators

Introducing operators

Example: S is -S1+S2 is equivalent to: is(S, +(-(S1),S2))
Syntax of terms using operators
〈 comp. term 〉 ::=

〈 comp. name 〉 (〈argument 〉, . . .) {so far we had this}
| 〈argument 〉 〈operator name 〉 〈argument 〉 {infix term}
| 〈operator name 〉 〈argument 〉 {prefix term}
| 〈argument 〉 〈operator name 〉 {postfix term}
| (〈 term 〉) {parenthesised term}

〈operator name 〉 ::= 〈 comp. name 〉 {if declared as an operator}
The built-in predicate for defining operators:
op(Priority, Type, Op) or op(Priority, Type, [Op1,Op2,...]):

Priority: an integer between 1–1200 – smaller priorities bind tighter
Type determines the placement of the operator and the associativity:
infix: yfx, xfy, xfx; prefix: fy, fx; postfix: yf, xf
Op or Opi : an arbitrary atom
The call of the BIP op/3 is normally placed in a directive, executed
immediately when the program file is loaded, e.g.:
:- op(800, xfx, [has_tree_sum]). leaf(V) has_tree_sum V.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 79 / 335

Declarative Programming with Prolog Syntactic sugar: operators

Characteristics of operators

Operator properties implied by the operator type

Type Class Interpretation
left-assoc. right-assoc. non-assoc.
yfx xfy xfx infix X f Y ≡ f(X, Y)

fy fx prefix f X ≡ f(X)
yf xf postfix X f ≡ f(X)

Parentheses implied by operator priorities and associativities
a/b+c*d ≡ (a/b)+(c*d) as the priority of / and * (400) is less than
the priority of + (500) smaller priority = stronger binding
a+b+c ≡ (a+b)+c as operator + has type yfx, thus it is left-associative, i.e. it
binds to the left, the leftmost operator is parenthesised first

(the position of y wrt. f shows the direction of associativity)
a^b^c ≡ a^(b^c) as ^ has type xfy, therefore it is right-associative
a=b=c =⇒ syntax error, as = has type xfx, it is non-associative
the above also applies to different operators of same type and priority:
a+b-c+d ≡ ((a+b)-c)+d

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 80 / 335

Declarative Programming with Prolog Syntactic sugar: operators

Standard built-in operators

Standard operators

1200 xfx :- -->
1200 fx :- ?-
1100 xfy ;
1050 xfy ->
1000 xfy ’,’

900 fy \+
700 xfx < = \= =..

=:= =< == \==
=\= > >= is
@< @=< @> @>=

500 yfx + - /\ \/
400 yfx * / // rem

mod << >>
200 xfx **
200 xfy ^
200 fy - \

Further built-in operators
of SICStus Prolog

1150 fx mode public dynamic
volatile discontiguous
initialization multifile
meta_predicate block

1100 xfy do
900 fy spy nospy
550 xfy :
500 yfx \
200 fy +

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 81 / 335

Declarative Programming with Prolog Syntactic sugar: operators

Adding parentheses to expressions with operators – general rules

Let term T = X op1 Y op2 Z, where op1 and op2 have priority n1 and n2:
if n1 > n2 then T ≡ X op1 (Y op2 Z);
if n1 < n2 then T ≡ (X op1 Y) op2 Z;
if n1 = n2 and op1 is right-assoc (xfy), then T ≡ X op1 (Y op2 Z);
otherwise,
if n1 = n2 and op2 is left-assoc. (yfx), then T ≡ (X op1 Y) op2 Z;
otherwise T contains a syntax error

An interesting example: :- op(500, xfy, +^).
| ?- :- write((1 +^ 2) + 3), nl. ⇒ (1+^2)+3
| ?- :- write(1 +^ (2 + 3)), nl. ⇒ 1+^2+3

thus: in such a conflict, the associativity of the first operator “wins”.
Base rule: an operator of priority n accepts an (unparenthesised) term T

on the x side, if the priority of the outermost operator of T ≤ n − 1
on the y side, if the priority of the outermost operator of T ≤ n

This rule is also applicable to prefix and postfix operators
Explicit parentheses overrule all the above

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 82 / 335

Declarative Programming with Prolog Syntactic sugar: operators

Operators – additional comments

The twofold role of the “comma”
it separates the arguments of a compound term
an xfy op. of priority 1000, e.g.: (p:-a,b,c)≡:-(p,’,’(a,’,’(b,c)))

Disambiguation: if the outermost operator of a compound argument has
priority ≥ 1000, then it should be enclosed in parentheses
| ?- write_canonical((a,b,c)). ⇒ ’,’(a,’,’(b,c))
| ?- write_canonical(a,b,c). ⇒ ! write_canonical/3 does not exist

Note: an unquoted comma (,) is an operator, but not a valid atom
Can an atom be an operator with multiple types simultaneously?

not for types from the same class, e.g. xfy and xfx
but otherwise, yes, e.g. built-in ops + and - have types yfx and fy

To make parsing simpler, the Prolog standard stipulates that
an operator used as an operand has to be parenthesised: Cmp = (>)
an operator cannot be declared both infix and postfix

These restrictions are not compulsory in many Prolog systems.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 83 / 335

Declarative Programming with Prolog Syntactic sugar: operators

Use of operators

What are operators good for?
to allow usual arithmetic expressions, such as in X is (Y+3) mod 4
symbolic processing of expressions (such as symbolic derivation)
for writing the clauses themselves (:- and ’,’ are both operators)

clauses can be passed as arguments to meta-predicates:
asserta((p(X):-q(X),r(X)))

to make clause heads and procedure calls more readable:
:- op(800, xfx, in).
X in L :- member(X, L).

to make data structures more readable:
:- op(100, xfx, [.]).
acid(sulphur, h.2-s-o.4).

Why are operators bad?
The pool of operators is a single global resource. This can cause
problems in a larger project.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 84 / 335

Declarative Programming with Prolog Syntactic sugar: operators

Arithmetic in Prolog

Operators make it possible to write arithmetic expressions the usual way,
as we do in mathematics or in other programming languages.
BIP is expects an arithmetic expression on its right side (argument 2),
evaluates it, and unifies the result with the argument on the left side.
BIPs =:= (<, >, =<, >=, =\=) expect arithmetic expressions on both sides,
evaluate these, and succeed if the first value is arithmetically equal to
(less than, greater than, . . . , not equal to) the second value.
Examples:
| ?- X = 1+2, write(X), write_canonical(X), Y is X.
⇒ 1+2 +(1,2) =⇒ X = 1+2, Y = 3 ? ; no
| ?- X = 4, Y is X/2, Y =:= 2. =⇒ X = 4, Y = 2.0 ? ; no
| ?- X = 4, Y is X/2, Y = 2. =⇒ no

Terms composed of arithmetic operators (+,-,. . .) are compound terms.
Only the arithmetic BIPs evaluate these as arithmetic expressions!
Prolog terms are symbolic by default, arithmetic evaluation is the
“exception”.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 85 / 335

Declarative Programming with Prolog Syntactic sugar: operators

Classical symbolic processing: symbolic derivation

Write a Prolog predicate which calculates the derivative of a formula built
from numbers and the atom x using some arithmetic operators.

% deriv(Formula, D): D is the derivative of Formula with respect to x.
deriv(x, 1).
deriv(C, 0) :- number(C).
deriv(U+V, DU+DV) :- deriv(U, DU), deriv(V, DV).
deriv(U-V, DU-DV) :- deriv(U, DU), deriv(V, DV).
deriv(U*V, DU*V + U*DV) :- deriv(U, DU), deriv(V, DV).

| ?- deriv(x*x+x, D). =⇒ D = 1*x+x*1+1 ? ; no

| ?- deriv((x+1)*(x+1), D).
=⇒ D = (1+0)*(x+1)+(x+1)*(1+0) ? ; no

| ?- deriv(I, 1*x+x*1+1). =⇒ I = x*x+x ? ; no

| ?- deriv(I, 0). =⇒ no

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 86 / 335

Declarative Programming with Prolog Syntactic sugar: operators

An example: the substitution value of a polynomial

Polynomial: a Prolog term built from numbers and the atom ‘x’, using the
operators ‘+’ and ‘*’ .
The task: calculate the value of a polynomial for a given value of x .
% value_of(Poly, X, V): V is the value of the polynomial Poly,
% for the substitution x=X
value_of(x, X, X).
value_of(Poly, _, V) :- number(Poly), V = Poly.
value_of(P1+P2, X, V) :-

value_of(P1, X, V1),
value_of(P2, X, V2),
V is V1+V2.

value_of(P1*P2, X, V) :-
value_of(P1, X, V1),
value_of(P2, X, V2),
V is V1*V2.

| ?- value_of((x+1)*x+x+2*(x+x+3), 2, V). =⇒ V = 22 ?

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 87 / 335

Declarative Programming with Prolog Further control constructs

Contents

1 Declarative Programming with Prolog
Declarative and imperative programming
Propositional Prolog
Prolog with Simple Data Structures
Compound Data Structures in Prolog
Lists
Prolog implementation – a brief overview
Prolog execution – definitions
Prolog syntax
Syntactic sugar: operators
Further control constructs
BIPs 1 – meta-preds, all solutions, dynamic preds
BIPs 2 – higher order programming, loops, modules
Efficient programming in Prolog

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 88 / 335

