
On Benchmarking Frequent Itemset Mining Algorithms

from Measurement to Analysis

Balázs Rácz
Computer and Automation
Research Institute of the
Hungarian Academy of

Sciences
Lágymanyosi u. 11., H-1111

Budapest, Hungary

bracz+fp5@math.bme.hu

Ferenc Bodon
Department of Computer
Science and Information

Theory,
Budapest University of

Technology and Economics
Magyar tudósok körútja 2.

H-1117 Budapest, Hungary

bodon@cs.bme.hu

Lars Schmidt-Thieme
Computer Based New Media

Group (CGNM)
Albert-Ludwigs-Universität

Freiburg
Georges-Koehler-Allee,

D-79110 Freiburg, Germany

lst@informatik.uni-
freiburg.de

ABSTRACT
We point out problems of current practices in comparing
Frequent Itemset Mining Implementations, and suggest tech-
niques that can help to avoid the conclusions of measure-
ments being tainted by these problems.

1. INTRODUCTION
Frequent Itemset Mining (FIM) is one of the initial, most

basic problems of Data Mining. It has wide applications
not only in its natural form, but also as a subroutine in
various other problems, the most famous being association
rule mining.

During the past decade, over 100 papers were published
about Frequent Itemset Mining. Some of these brought
novel approaches, while others tuned them with heuristics
and data structure optimizations. There is one common fea-
ture in all the papers: an implementation was benchmarked
and shown to be faster/better (in memory usage or disk
access) than... some other (publicly available) implementa-
tion, on some mining tasks (datasets and support threshold
levels). While based on this approach everybody claimed
that their algorithm is the fastest/best on the field, this can
obviously be not true.

This called for the ‘Frequent Itemset Mining Implementa-
tions’ (FIMI) workshops[4] held in conjunction with ICDM03
and ICDM04, where members of the community were invited
and encouraged to send their implementation. A benchmark
was run over all submitted implementations and a wide set
of publicly available input data. This raised the evaluation
of FIM algorithms to a new level, thus fortunately holding
back the flood of proudly presented papers.

Detailed understanding of the problem Frequent Itemset
Mining, neither of existing algorithms and approaches is not

necessary to read this paper. Nevertheless, we give some
pointers to the readers who are not familiar with the field
[3, 4].

The rest of the paper is organized as follows: In Sec-
tion 2 we discuss problems and benchmarking issues of the
FIMI contests. Section 3 introduces programming tech-
niques, including the proposal of a unified, highly optimized
I/O framework. In Section 4 we present issues concerning
the actual measurement, machine dependance, and selection
of performance metric. We also show sample analysis dia-
grams for selected FIM implementations. In Appendix A a
short introduction is given to modern computing hardware,
which may be necessary to understand some details of Sec-
tion 4.

2. ON FIMI CONTESTS
There is an important difference between traditional data

mining contests and Frequent Itemset Mining evaluation.
In tranditional contests, there are two important measures:
the quality of the algorithm, i.e., how good the output of
the algorithm is (like prediction quality), and the running
time of the implementation. As in case of the FIM problem
the task is mathematically defined and solvable, i.e., there
is one correct output, the quality is measured only in terms
of resource usage: mostly running time and also memory
usage.

Problem 1. We are interested in the quality of algorithms,
but we can only measure implementations.

This is an issue of all fields of Computer Science where the-
oretical considerations, such as asymptotical running time
analysis can yield only very loose bounds on actual perfor-
mance.

Problem 2. If we gave our algorithms and ideas to a
very talented and experienced low-level programmer, that could
completely re-draw the current FIMI rankings.

Problem 3. Seemingly unimportant implementation de-
tails can hide all algorithmic features when benchmarking.
These details are often unnoticed even by the author and
almost never published.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OSDM’05, August 21, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-210-0/05/08 ...$5.00.

36

Such differences can be explained by hardware reasons, for
example some implementations of the same algorithms may
be better served by the memory hierarchy than others. See
Figure 1 for an illustration of 10-fold difference in running
times.

The history of FIM algorithms is a very good example of
people not knowing what to aim for. The initial hypoth-
esis was that I/O size is the factor that primarily deter-
mines performance (this resulted in the level-wise apriori-
like algorithms). In the meantime focus was moved to re-
ducing the number of false candidates (resulted in different
hashing techniques). This hypothesis was also obsoleted by
the stunning performance of depth-first mining algorithms
like eclat and FP-growth, known to generate more candi-
dates than their predecessors. The question comes natu-
rally: What determines the performance of current algo-
rithms/implementations?

Problem 4. FIM implementations are complete ‘suites’
of a basic algorithm and several algorithmic/implementational
optimizations. Comparing such complete ‘suites’ tells us
what is fast, but does not tell us why.

Recommendation 1. The suites should be programmed in
a way that the optimization features can be turned on/off,
and several possible underlying data structures are plug-
gable. Running benchmarks over these options would give
us an insight on what counts and what doesn’t.

Problem 5. All ‘dense’ mining tasks’ run time is domi-
nated by I/O.

The effect can be as tremendous that 75–90% of the total
running time is spent in rendering the mined frequent item-
sets to text. The total output size is often on the order of
several hundred megabytes of even gigabytes.

Problem 6. On ‘dense’ datasets FIMI benchmarks are
measuring the ability of submitters to code a fast integer-to-
string conversion function.

Still, a data mining program has no real relevance if it does
not output its result. Furthermore, several optimizations
could be employed if it is known that the output is discarded
– this would harm the fairness of comparison and make our
conclusions irrelevant to practical purposes.

Recommendation 2. When comparing benchmark result
of different FIM implementations, as much of the code should
be identical, as possible.

Problem 7. The run time differences between different
contestants are often very small.

This is due to the nature of the mining tasks: except of
very low support threshold test cases, the run time is on the
order of a second, or even a fraction of a second.

Problem 8. Run time of a particular executable on a
particular input is not a number but rather a distribution,
i.e., it varies from run to run.

This is true even when we provide an environment as clean
as (from a user’s point) possible: disable hyperthreading,
use single-user mode, disable all services (including network
services, and all non-vital system services), disable the GUI

of the operating system, and of course not run any other
programs multitasking. It is strange to see, that though al-
most none of the above requirements can be satisfied under
Microsoft Windows OS, still many authors use it as a bench-
marking environment. Although the effects may be hidden
by the low precision of the OS timer, anyway.

Recommendation 3. ‘Winner takes all’ evaluation of a min-
ing task on a FIMI benchmark is unfair.

Problem 9. Traditional run-time (+memory need) bench-
marks do not tell us whether an implementation is better
than an other in algorithmic aspects, or implementational
(hardware-friendliness) aspects.

Problem 10. Traditional benchmarks do not show whether
on a slightly different hardware architecture (like AMD vs.
Intel) the conclusions would still hold or not.

Recommendation 4. Traditional benchmarks should be ex-
ecuted either on virtual machines, or extended with some
monitoring of hardware friendliness, most importantly the
efficiency of memory hierarchy (caches), and branch predic-
tion.

In the following sections we take the recommendations
one-by-one and show our analysis system that employs them
without sacrificing performance and applicability.

3. PROGRAMMING TECHNIQUES
Due to personal attitudes or in order to reach marginal

performance improvement some competitive FIM algorithms
are coded in plain C. The C language only partially supports
modularization, hence these codes are very difficult to read,
but more importantly, the modification by other researchers
is error-prone and laborious. This is not a problem when a
code is embedded into a system as a black-box, where FIM
is regarded to be an elementary function. Nevertheless, if
we want to analyze, understand the performance gains and
losses, and reuse a code, then non-flexibility and the proce-
dural approach is a serious obstacle.

In a perfect FPM world anybody who figures out a new so-
lution to a certain subtask of an algorithm, should be able
to embed it without duplication or considerable modifica-
tion into the best code of the algorithm. In other words,
the codes should be modular, i.e., they should fulfill object-
oriented requirements. It may sound surprising but even
a single algorithm can be programmed in an OO manner,
where data structures and/or even functions that work on
data structures are represented by different classes. For ex-
ample, in our testbed the APRIORI class has separate sub-
classes (1.) for representing a data structure, (2.) for de-
termining the frequent items and pairs, (3.) generating can-
didates, (4.) removing infrequent candidates from the data
structure, (5.) caching the transactions. The subclasses fur-
ther use other classes, for example the trie data structure
uses a class that stores the edges, which can be a simple
linked list, an indexed array (with or without offset reduc-
tion), a hybrid/double representation and so on. Each class
conforms to an interface, and if anybody has a good idea
that only applies to a certain part of the algorithm, then
it is possible to exchange only the respective part of the
code, given that the functional description and the interface
is followed.

37

 0.01

 0.1

 1

 10

 100

 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e
(s

ec
on

ds
, l

og
−

sc
al

e)

min_supp

kosarak.dat

td−fpgrowth−classic
td−fpgrowth−compact

 0

 50

 100

 150

 200

 250

 300

 350

td−fpgrowth−classictd−fpgrowth−compact

G
C

lo
ck

tic
ks

all uops on kosarak at 2475

3 uops/tick
2 uops/tick
1 uop/tick

stall

The two implementations of TD-FP-Growth[10] share 90% of
the code. The variant titled ‘classic’ uses separately allocated
nodes and pointers as links. The ‘compact’ variant uses an array
of nodes and integers as links, ensured that nodes of the same
item occupy an interval of the array.
The bottom diagram shows the total number of clockticks used
by the programs on a single mining task, and (with different col-
ors/patterns) the distribution of how many instructions were ex-
ecuted per clocktick. It is clearly seen that the two implementa-
tions use roughly the same number of instructions, but the classic
node-based one stalls the processor 10 times more than the array-
based. These stalls are caused by the memory access pattern: as
memory accesses are scattered, a huge amount of cache misses de-
lay execution. In the first case, memory access is contiguous, and
the hardware prefetch mechanism loads the required data into the
cache before its needed, thus no delay occurs on execution.

Figure 1: Example of difference caused by seemingly

unimportant implementational details.

Object oriented approach greatly supports Recommenda-
tion 2 and 1 because every part of the code can be reused or
separately exchanged and analyzed. If interfaces are strictly
kept, code segments could be easily be changed, and we
would also better understand why a certain optimization,
that is described on algorithmic level, performs different on
different implementations of the same algorithm. Although
function substitution can be solved by using macros in plain
C as well, this solution has many disadvantages (referred to
as messy, error-prone, inelegant, etc by the programmer’s
community) and should be avoided in building a library for

FPM.
The advantages of object-oriented approach are beyond

dispute, and are required by the FPM community. Opening
the black-boxes would make it possible to acquire a better
understanding about the algorithms and the performance
improvement techniques. Doing this, however, is not triv-
ial, and most believe that the answer is no to the following
question: Can we preserve efficiency while rewriting codes
so that they fulfill the object-oriented requirements?

The answer being no can easily be justified, if we want
to rewrite our code in the classic object-oriented way, i.e
by declaring virtual those functions that we want to be ex-
changeable. Figure 2 illustrates this with a small example.

class Alg{
virtual void f(args){ ... }

void g(){
...

f(values);

...

}
};

class SpecAlg : public Alg{
void f(args){ ... }

};

int main(){
Alg* alg;

if(cond)

alg = new Alg(...);

else

alg = new SpecAlg(...);

...

}

Figure 2: OO programming with virtual function

There are two reasons for the running-time increase of
this solution over the classic C implementation. First, the
function call and argument passing to function f requires
operations on the stack. Second, calling a virtual function
means doing an indirect call, which does not only require a
pointer dereference, but is also inefficient to be executed on
modern processors. Furthermore, this approach greatly re-
duces the compiler optimization possibilities. Consequently,
this kind of rewriting does not result in a code that is able to
compete with the classic C counterparts. Fortunately, there
exists another solution.

All drawbacks of the virtual functions can be avoided by
using templates and inline functions. Figure 2 illustrates
how we can keep object-oriented features and avoid virtual
functions at the same time.

The compiler will actually generate two Alg classes that
have nothing to with each other, and use no virtual func-
tions. With the help of inline functions we avoid parame-
ter passing and let the compiler do proper code optimiza-
tion. Using this technique we can do everything that object-
oriented programming requires (i.e. abstraction, data en-
capsulation, polymorphism, inheritance).

38

class AlgBase{
void f(args);

};
inline void AlgBase::f(args){ ... }

class SpecAlg {
void f(args);

};
inline void SpecAlg::f(args){ ... }

template <class T>

class Alg : public T{
void g(){
...

f(values);

...

}
};

int main(){
if(cond)

{
Alg<Algbase> alg(...);

...

}
else

{
Alg<SpecAlg> alg(...);

...

}
}

Figure 3: OO programming with templates and in-

line

The aforementioned technique has some further advan-
tages and also minor drawbacks. For example, one can de-
clare a boolean template argument, and it acts as a compile-
time constant (equivalent to the much less elegant #define),
thus any branches on that expression will be optimized away.
A slight disadvantage is that the template construct results
in a code bloat: all functions (with template arguments)
will be compiled separately for all actually used instantia-
tions (template parameter combinations). Furthermore, im-
plementing template-based modularity needs careful design,
and in some rare cases (such as circular references of classes)
a very good understanding of the C++ programming lan-
guage is necessary.

3.1 Our IO framework
As many of the authors have noticed that time spent in

output routines can dominate the total running time, the
FIMI contributions are rich in IO routines and tricks to
speed up outputting: buffering, string representation caching,
fast integer to string conversion, calling low-level buffer ma-
nipulating methods, etc. As we already mentioned the com-
parisons would be more fair, if all implementations used the
same IO routines, ideally the fastest one. In our FIM envi-
ronment we aimed to develop an IO framework that is as fast
and as flexible as possible. Our goal was not only to provide
a fast IO framework, but we also wished to maintain the

possibility of exchanging any part of it, and therefore to be
able to conduct a comprehensive set of experiments. As an
example for exchangeability consider file handling in C++
which can be done in three ways: using a file descriptor and
low-level OS support routines, a FILE* and the standard C
I/O library, or the iostream library. In our framework the
file representation is a template parameter of the class that
is responsible for reading in a transaction or writing out an
itemset, and the representation is wrapped by a class that
exports a unified interface. As the wrapper function is in-
lined, this does not give any overhead compared to simply
incorporating the underlying file representation method into
the output class.

The most important part of the IO framework is the cached
depth-first decoder class. Its basic idea was already used in
[8] (and we suppose in [9] as well) but probably due to its
technical aspect it was not described in detail in any pa-
per. Our experiments showed that when the output is huge
(for example in the case of database connect with low sup-
port threshold) then rendering the item identifiers to string
and writing them out takes considerable part of the running
time. Improving this task has more impact on running time
than many algorithmic features.

The functionality of the cached depth-first decoder class
is very simple. It maintains a stack of items, whose content,
together with a support value, can be written to the file.
Items can only be placed to and removed from the top of
the stack. For the sake of efficiency a character buffer and a
second (parallel) stack that stores positions of this buffer are
maintained behind the scenery. When inserting an item, its
string representation is copied to the position of the buffer
given by the top element of the second stack, and the new
last position is pushed on top of it. This way writing out
two itemsets of size � that differ only in their last item needs
only two conversions from integer to string instead of 2�.

Even this can be saved if the string representations of the
frequent items are generated and stored before the decoder
class is used. Since most FIM algorithms recode the items so
that only frequent items are considered and the new codes
are contiguous starting from zero or one, the lookup of the
string representation of an item is done in constant time
and requires insignificant memory compared to the memory
need of the algorithm itself.

Please note, that this depth-first output class not only
suites depth-first algorithms (eclat [11], fp-growth [6], etc.
and their variants [5]) but also many other algorithms as
well. For example APRIORI is a breadth-first algorithm,
nevertheless outputting the result is done with a recursive
traversal of a tree in a depth-first manner, no matter if the
frequent itemsets are written out in candidate generation,
infrequent candidate removal phase or at the end of the al-
gorithm.

Figure 4 shows the experiments of our output tester. It
generates all subset of a set of a given size, and calls the
decoder class to write out the actual subset. The inverse
codes of the items were generated with a random number
generator. The tested routines are as follows:

• normal-simple is the classic method, it renders each
itemset and each item separately to string. (However,
the int-to-string conversion routine is the optimized
one, not the very slow but generic C-library routine.)

• normal-cache renders each itemset separately, but caches

39

 0.1

 1

 10

 100

 19 20 21 22 23 24 25 26

T
im

e
(s

ec
on

ds
, l

og
−

sc
al

e)

size of the itemset

decoder−test

df−buffered
df−cache

normal−cache
normal−simple

Figure 4: Performance of different output routines.

.

the item identifiers’ string representation.

• df-buffered uses the depth-first method and reuses the
string representation of the previous itemset, but when
it appends the new item to the end of the line buffer,
it renders it from int to string.

• df-cache is the implementation described above, i.e., it
reuses the previous line in a depth-first approach, and
uses the cached string representation of the upcoming
integer.

The results show of the cached depth-first decoder. Gen-
erating an output of size 4GB (at set size 25) requires about
10 seconds. There is about a 10-fold running time difference
between the original and our optimized method.

Our I/O framework contains routines for other common
tasks for frequent itemset mining, such as determining item
(or frequent pair) frequencies, filtering infrequent items, re-
coding item identifiers in frequency ascending or descending
order, and inverting that recoding. Our example implemen-
tations of the next section use this library and thus only the
really algorithm-specific part of the code is different. This
enables a fair comparison on all datasets.

4. BENCHMARKING TECHNIQUES
First let us enumerate some desiderata about the bench-

marking environment:

1. The benchmark should be stable, and reproducible.
Ideally it should have no variation, surely not on the
same hardware.

2. The benchmark numbers should reflect the actual

performance. The benchmark should be a fairly ac-
curate model of actual hardware.

3. The benchmark should be hardware-independent,
in the sense that it should be stable against the slight
variation of the underlying hardware architecture, like
changing the processor manufacturer or model.

It is easy to see that any two requirements of the above
have serious conflicts and contradictions.

It is clear that different hardware has different perfor-
mance. The problem is that performance is not linear, thus
it is not possible to normalize the measured values with a
single performance indicator of the used hardware, and re-
sult in a unified performance metric.

Problem 11. Different algorithms/implementations may
stress different aspects of the hardware. A different piece of
hardware may be more advanced in one aspect, while provide
lower performance in another aspect. Thus it is not possible
to migrate a benchmark ranking from a particular hardware
to another.

Recommendation 5. Along benchmark results one should
always describe the exact hardware used to measure the per-
formance metrics.

Recommendation 6. Benchmark results should not form
a single number based on a ranking is calculated or a graph
is plotted. Instead, it should give us a slight idea about
which hardware resources are stressed, so that we can ex-
trapolate the performance indicators onto different hardware
platform.

Of course this introduces extra complexity into reading
benchmark results. But this is required, performance is

not as simple as ‘run time in seconds’.

4.1 Selection of benchmark platform
Basically there are three available platforms to do precise

measurements including the hardware-friendliness metrics:
Virtual machine. We define an abstract machine of
similar power like our current processors. (Knuth did this
with defining the Mix in his famous work[7].) Then we de-
fine a cost for each operation also depending on the current
state of the hardware (program execution history). This
cost function should be as close to actual hardware per-
formance, as possible. We then re-code (or compile) our
FIM implementations for this processor and execute it on a
proper simulator that counts the total cost and performance
metrics.

There are many problems with this approach: definition of
the instruction set severely influences implementation per-
formance. The benchmark results will highly depend on the
choice of cost function (and possibly its parameters if it is
a parameterized cost function). Furthermore, all FIM im-
plementations will have to be recoded or re-compiled for the
new architecture. During this re-coding or re-compilation we
have to re-invent all the optimization techniques that were
(with a huge effort) developed for existing architectures by
compiler writers. Thus there will be an additional factor,
the quality of the very low-level implementation. Due to
these problems, we think using a virtual machine is for the
time being out of question for FIMI benchmarks.
Instrumentation. This is a technique that runs an
actual executable program on a simulated processor. Each
operation is separately checked and executed in the clean
environment. Performance-related events can be collected
and detailed, or with a proper cost function, it can be trans-
formed to a simple ’run-time’-like aggregated performance
metric.

The advantage of instrumentation is, that the environ-
ment is completely clean, the results are deterministic and
reproducible. Furthermore, the parameters of the architec-
ture (such as cache size) are arbitrarily tunable. However,

40

the results depend heavily on the correctness of the simula-
tion (how well the simulated processor resembles the actual
one, especially in resource availability), and even more on
the choice of the event weighting/cost function. There is
one more, huge disadvantage: the instrumentation frame-
work (the simulation of the processor) is very slow, up to
100-fold increase is usual compared to the native run time
of the program. This means, that even to perform a fairly
straightforward benchmark suite supercomputing capacity
is needed.
Run-time measurement. This employs special fea-
tures of the current processors, which allow the performance
of the processor to be monitored real-time. This is done by
hardware performance counters that can be programmed
to count specific performance-related events. The actual
event to be counted, with the available and usable counter
configurations are hardware dependent, and described by
the processor manufacturer. However, the event set always
includes in some form the efficiency of different architectural
parts of the processor, and the possible causes of execution
stalls, such as branch mispredictions, cache misses, instruc-
tion dependency stalls, etc. The usage of these counters are
supported by performance optimizer software released by
the processor manufacturer (like AMD CodeAnalystTM Per-
formance Analyzer[1], or Intel VTuneTM Performance Ana-
lyzers[2]), or open source software (like PerfMon for linux,
or the hardware-independent PAPI). Depending on the ver-
satility and number of available counters and the events to
be measured, more that a single run may be necessary to
take all measurements.

The framework we release with an open source license uses
the third method, the performance counters of Intel Pen-
tium 4 and Xeon processors under Linux OS. It can be run
completely user-space, only the PerfCtr patch is required to
be installed on the running kernel. However, to avoid other
running programs taint the benchmarks, the precautions de-
scribed after Problem 8 should be adhered to as much as
possible.

4.2 Sample analysis and visualization
In this subsection we give sample figures from our bench-

mark system, and show how the results can be interpreted.
We do not go into detailed analysis neither in depth (algo-
rithm and feature selection), nor in breadth (mining task
selection), as the focus of this paper is benchmarking. We
fully utilize the proposed method in an upcoming work that
aims a complete in-depth analysis.

All measurements were taken on a workstation with In-
tel Pentium 4 2.8 Ghz processor (family 15, model 2, step-
ping 9) with 512 KB L2 cache, hyperthreading disabled, and
2 GB of dual-channel FSB800 main memory. The system
runs a stripped-down installation of SuSE Linux 9.3, ker-
nel 2.6.11.4-20a (SuSE version) with PerfCtr-2.6.15 patch
installed.

The sample evaluation uses the dataset BMS-POS. The
classic run-time diagram of the analyzed implementations
is shown as Figure 5. Note that the metric shown is actu-
ally a calculated metric. We measure the number of (user-
time) clockticks spent executing the current program with
the PerfCtr framework. Thus the figures should be precise
independently of the resolution of the OS timer. To get
a run time in seconds, we simply normalized the resulting
values with the nominal speed of the processor, 2.8 billion

 1

 10

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e
(s

ec
on

ds
, l

og
−

sc
al

e)

min_supp

BMS−POS.dat

apriori−noprune
eclat−cover

eclat−diffsets
nonordfp−classic−td

nonordfp−dense
nonordfp−sparse

Figure 5: Run time of the example implementations

on dataset BMS-POS.

clockticks/second.
Much more detailed information is available on Figure 6.

While it corresponds only to one particular mining task (in
this case dataset BMS-POS at support threshold of 1000), it
gives us some idea about why one implementation is faster
than the other. The exact numbers are listed in the Full
Execution Profile on Figure 7. The following causes of per-
formance difference should be noted:

• nonordfp-classic-td executes slightly less instructions
than the winner, nonordfp-sparse. However, its perfor-
mance is severely hindered by a large amount of cache
misses which stall the execution unit. This shows the
performance penalty of using a classic node-based rep-
resentation with linked lists, against a compact array-
based representation and linear scan. The non-memory
related stalls are on the same order of magnitude.

• nonordfp-dense trails behind nonordfp-sparse approxi-
mately for the same reasons. Furthermore, the effect
is slightly (but not considerably) enhanced by an in-
crease in the actual number of executed instructions.

• Also the same effect can be observed when comparing
eclat-diffset to apriori-noprune. While eclat practi-
cally never waits for memory, apriori has a huge penalty
on cache misses.

• It is important to note that in case of the two eclat

variants, the prefetch efficiency hides practically all ef-
fects of memory latency. This is due to the nature
of the algorithm: eclat operates by calculating inter-
sections (eclat-cover) or differences (eclat-diffset) of
long sorted arrays. Sequential memory access has a
huge advantage over scattered one.

• Nevertheless, eclat is not performing very well, be-
cause it has another huge disadvantage: the merge rou-
tine contains a large amount of conditional branches,
which are extremely badly predictable. (These data-
dependent branches are almost 50-50% random in the
two directions.) This results in a stunning ¿100% over-
head of bogus instructions, those instructions that were

41

executed on mispredicted branches and were rolled
back.

• The comparison of eclat-cover and eclat-diffset gives
some really interesting results. Traditionally it is be-
lieved that diffsets are well suited to dense datasets,
and covers to sparse datasets, because the respective
representation gives shorter lists to merge. However,
in the displayed case, eclat-cover and eclat-diffset

require roughly the same amount of memory accesses
(30% difference at most, depending on which metric
we look at), while in the run time we see over 2-fold
increase. The amount of memory accesses hint that
the total length of the lists to be merged/intersected
is the same. The implementation using covers loses
particularly on two points:

1. The inner loop is more complex, or has to be ex-
ecuted more times in case of covers than diffsets
(this is shown by the increased number of non-
bogus instructions).

2. There are much more data-dependent conditional
branches which are badly predictable in the eval-
uated cover-implementation than the diffset-im-
plementation. eclat-cover has over a billion mis-
predicted branches as opposed to any of the fp-
growth implementations which has roughly 40 mil-
lion.

5. CONCLUSION
We showed several problems regarding the current prac-

tices of evaluating Frequent Itemset Mining algorithms/im-
plementations.

To work around these problems, our contribution is a so-
phisticated benchmark environment and an initial library
for common procedures in Frequent Itemset Mining includ-
ing an efficient I/O framework. This library, along with im-
plementation modularization techniques pointed out in this
paper could reach fair and in-depth comparison, and even-
tually help us get a better insight not only on what is fast
for a FIM task, but also why.

It is important to note that the problems and possible so-
lution techniques are not strongly connected to the task of
Frequent Itemset Mining and mostly apply to other fields of
applied algorithmic nature, thereby making our work rele-
vant to a wider audience than the community of Frequent
Pattern Mining.

6. REFERENCES
[1] AMD CodeAnalystTM Performance Analyzer.

http://www.amd.com/us-en/Processors/DevelopWithAMD/

0,,30 2252 3604,00.html.

[2] Intel VTune Performance Analyzers.
http://www.intel.com/software/products/vtune/.

[3] Bart Goethals. Survey on frequent pattern mining.
Technical report, Helsinki Institute for Information
Technology, 2003.

[4] Bart Goethals and Mohammed J. Zaki. Advances in
frequent itemset mining implementations:
Introduction to fimi03. In Bart Goethals and
Mohammed J. Zaki, editors, Proceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining

 0

 10

 20

 30

 40

 50

 60

nonordfp−classic−td

apriori−noprune
eclat−diffset

nonordfp−dense
nonordfp−sparse

eclat−cover

G
C

lo
ck

tic
ks

all uops on BMS−POS at 1000

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

Instructions on how to read this diagram:
The height of the wide bars centered around the ticks show the
actual run-time (the total clockticks used by the program). The
colors/patterns of these bars show how well the program utilized
these clockticks: the top-most part shows the amount of clockticks
during which three u-ops were executed, while the bottom-most
part shows the time during which the program execution was
stalled for some reason (i.e., no operations were executed during
that clocktick).
The narrow bars centered around the ticks show the total num-
ber of u-ops that were executed. The bar is divided into two, the
upper part show the bogus u-ops, those u-ops that were specu-
latively executed on a mispredicted branch, and thus were rolled
back. The ratio of the lower-to-upper part of this bar shows the
branch prediction inefficiency.

The narrow bars beside the wide ones show the front-side bus

activity, the total number of clockticks during whose at least one

read/write operation was pending (i.e., data transfer time includ-

ing memory latency). The upper part of these bars show the time

consumed by prefetch reads (when the processor speculatively

transfers data from the memory into the cache for further avail-

ability), while the lower part shows actual reads or writes. The

main difference is that the delivery of data during actual reads

and writes presumably stalls the execution pipeline (these are the

cache misses). If the ratio of prefetch (top part) to actual wait

(bottom part) is high, then a huge amount of cache misses are

avoided by the prefetch mechanism, thus achieving a considerable

performance gain.

Figure 6: Complex hardware-friendliness diagram of

implementations.

42

FULL EXECUTION PROFILE
nonordfp nonordfp nonordfp apriori eclat eclat

dense sparse classic-td noprune cover diffset

Time
tsc avg 13,946,344,480 9,316,631,548 23,625,371,534 24,418,796,557 39,713,892,504 15,371,783,716
+- 67,047,032 13,729,232 6,967,722 88,581,299 340,152,728 203,764,648

Execution
Instructions nbogus 5,413,034,086 3,479,408,110 2,782,247,626 12,287,347,990 20,340,660,748 10,265,793,425
Instructions bogus 1,255,528,294 1,320,346,512 1,535,708,709 4,315,850,408 28,792,606,997 8,553,364,068
uops nbogus 6,448,306,722 4,799,136,145 4,139,347,343 17,049,735,428 21,936,853,711 12,134,065,896
uops bogus 1,511,087,197 1,657,126,546 2,077,069,010 5,839,449,756 30,660,104,045 10,071,911,323
uop from TC build 4,316,441 5,555,662 4,998,851 5,408,185 395,994 3,817,971
uop from TC deliver 8,367,199,104 7,030,056,441 8,439,051,063 25,461,603,334 58,919,083,775 24,748,570,113
uop from ROM 213,755,506 327,188,333 213,407,122 434,048,470 121,036,777 120,934,817

FSB/Memory events
Count of writes 79,566,256 11,341,904 68,774,846 49,640,164 6,812,220 6,522,120
Count of reads (incl. prefetch 168,317,318 39,971,942 251,711,898 146,056,832 100,708,228 112,688,598
Count of r+w+prefetch 246,784,892 51,862,510 320,483,650 198,141,084 107,297,474 119,180,260
Ticks of r+w+prefetch pending 9,333,003,274 2,458,365,028 15,571,190,166 9,318,981,140 5,424,657,616 5,624,807,160
Count of r+w 134,141,834 30,610,382 188,385,644 111,049,656 12,066,130 11,226,952
Ticks of r+w pending 7,947,664,718 2,244,115,972 14,536,000,500 8,239,955,570 970,765,866 900,680,634
store operations (nbogus) 524,358,888 701,508,105 647,941,634 2,569,378,903 455,990,928 344,428,466
load operations (nbogus) 1,379,447,092 1,646,228,087 1,301,423,517 5,118,315,577 4,422,871,852 3,140,679,837
128bit mmx operations 123,298,382 5,068,819 37,679 0 0 0

Branches
Function calls 13,896,223 16,792,119 13,878,730 134,797,905 5,860,583 5,602,314
Indirect branches 16,747,576 21,078,499 16,725,092 140,985,437 7,545,318 7,443,164
Total conditional branches 1,345,731,870 420,551,853 477,601,235 2,118,233,826 6,991,388,257 3,719,260,359
Mispred cond branches 34,929,891 36,802,712 40,132,062 141,613,646 1,088,360,184 321,259,792
Mispred noncond branches (?) 319,223 453,523 298,023 380,772 2,369 4,861

Stall causes
MemoryOrderBuffer load (pcs) 830,309,349 202,608,169 5,560,914,552 785,927,299 39,497,734 37,816,201
Lack of store buffer 3,139,504,337 1,444,306,416 885,554,235 2,820,176,466 68,776,266 67,397,197
Memory cancel 2,364,288,764 869,214,080 801,985,760 361,524,915 56,222,156 56,156,928
Split memory access 28,628 28,641 28,637 5,759 871 900
WC buffer evictions 161,435,891 290,548,591 308,327,051 384,695,637 50,740,548 50,014,831
L1 read miss 172,012,034 178,449,046 250,334,607 369,703,235 360,009,247 182,271,597
L2 read miss 57,447,430 32,716,944 129,914,412 76,089,398 25,436,079 25,290,465

Execution histogram
TickOf uop stall 10,021,440,271 6,240,622,748 20,671,650,354 13,917,119,211 14,801,445,447 5,414,343,311
TickOf uop 1 1,371,043,060 1,023,246,833 859,892,764 2,858,956,464 7,830,923,868 2,458,339,586
TickOf uop 2 1,011,261,551 736,536,448 931,457,183 2,736,975,862 6,418,788,673 2,317,353,459
TickOf uop 3 1,520,275,270 1,323,090,135 1,159,475,923 4,908,240,355 10,668,342,420 5,103,006,616
TickOf nbogus uop stall 10,688,282,384 6,927,514,440 21,520,910,519 16,423,833,026 28,349,705,419 9,709,376,650
TickOf nbogus uop 1 1,206,548,172 891,827,770 736,711,385 2,430,209,501 4,627,072,599 1,607,600,195
TickOf nbogus uop 2 845,852,944 605,173,766 691,985,048 2,082,264,477 2,918,477,521 1,401,800,070
TickOf nbogus uop 3 1,183,336,652 898,980,188 672,869,272 3,484,984,888 3,824,244,869 2,574,266,057
Percent uop stall 71,972 66,935 87,508 56,987 37,264 35,404
Percent uop 1 9,846 10,975 3,640 11,706 19,715 16,074
Percent uop 2 7,262 7,899 3,943 11,207 16,160 15,153
Percent uop 3 10,918 14,191 4,908 20,098 26,859 33,368
Percent nbogus uop stall 76,761 74,302 91,103 67,252 71,374 63,489
Percent nbogus uop 1 8,665 9,565 3,118 9,951 11,649 10,512
Percent nbogus uop 2 6,074 6,490 2,929 8,526 7,347 9,166
Percent nbogus uop 3 8,498 9,642 2,848 14,270 9,628 16,832

Figure 7: Sample execution profile for BMS-POS dataset at support threshold of 1000.
.

43

Implementations (FIMI’03), volume 90 of CEUR
Workshop Proceedings, Melbourne, Florida, USA, 19.
November 2003.

[5] Gosta Grahne and Jianfei Zhu. Efficiently using
prefix-trees in mining frequent itemsets. In Bart
Goethals and Mohammed J. Zaki, editors, Proceedings
of the IEEE ICDM Workshop on Frequent Itemset
Mining Implementations (FIMI’03), volume 90 of
CEUR Workshop Proceedings, Melbourne, Florida,
USA, 19. November 2003.

[6] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent
patterns without candidate generation. In Proceedings
of the 2000 ACM SIGMOD international conference
on Management of data, pages 1–12. ACM Press,
2000.

[7] Donald E. Knuth. The Art of Computer Programming.
Addison-Wesley, 1968.

[8] Balázs Rácz. nonordfp: An FP-growth variation
without rebuilding the FP-tree. In Bart Goethals,
Mohammed J. Zaki, and Roberto Bayardo, editors,
Proceedings of the IEEE ICDM Workshop on Frequent
Itemset Mining Implementations (FIMI’04), volume
126 of CEUR Workshop Proceedings, Brighton, UK, 1.
November 2004.

[9] Takeaki Uno, Masashi Kiyomi, and Hiroki Arimura.
Lcm ver. 2: Efficient mining algorithms for
frequent/closed/maximal itemsets. In Bart Goethals,
Mohammed J. Zaki, and Roberto Bayardo, editors,
Proceedings of the IEEE ICDM Workshop on Frequent
Itemset Mining Implementations (FIMI’04), volume
126 of CEUR Workshop Proceedings, Brighton, UK, 1.
November 2004.

[10] Ke Wang, Liu Tang, Jiawei Han, and Junqiang Liu.
Top down fp-growth for association rule mining. In
PAKDD ’02: Proceedings of the 6th Pacific-Asia
Conference on Advances in Knowledge Discovery and
Data Mining, pages 334–340, London, UK, 2002.
Springer-Verlag.

[11] Mohammed Javeed Zaki, Srinivasan Parthasarathy,
Mitsunori Ogihara, and Wei Li. New algorithms for
fast discovery of association rules. In David
Heckerman, Heikki Mannila, Daryl Pregibon,
Ramasamy Uthurusamy, and Menlo Park, editors,
Proceedings of the 3rd International Conference on
Knowledge Discovery and Data Mining, pages
283–296. AAAI Press, 12–15 1997.

APPENDIX

A. SHORT INTRODUCTION TO MODERN
PROCESSOR HARDWARE

This section is to give a very short introduction into those
properties of modern computing hardware which any pro-
grammer optimizing for performance should be aware of.

It is not true that modern processors can execute an in-
struction (or several instructions) in a single clocktick. The
circuits needed to execute an instruction are very deep and
complex, but only simple and shallow circuits are able to
reach clockspeeds of several GHz. Instruction execution is
thus divided into several clockticks (12 for AMD Athlon and
20 for Intel Pentium 4), but to keep the hardware utilized,
each of these pipeline stages can be processing a different

instruction at a particular clocktick. So although as much
as 20 clocks might be needed for a particular instruction to
finish execution, still (theoretically) in every clocktick an in-
struction could be finished, giving an average throughput of
1 instruction per clocktick. Furthermore, the pipeline stages
are designed so and execution units are multiplied so that
theoretically on average more than one instruction can be
executed per clocktick.

This pipelined architecture of processors raises several is-
sues, some of which programmers should be aware of, while
others should be taken into account by compilers.
Complex instruction set. x86 processors belong to
the category of CISC (complex instruction set computer).
This means that the elementary instruction the processor
can execute can include many operations, like loading a data
element from memory, adding another data element to it,
and storing back the result into the same memory address.
These complex instructions would require more advanced
treatment from processors than simple ones. To simplify
processor design, instructions are decomposed into one or
more μ-operations (or u-ops) and these u-ops are fed into
the execution pipeline. Different kind of u-ops use differ-
ent execution hardware and can be executed concurrently
(categories are like: loads, stores, integer arithmetics, float-
ing point/multimedia arithmetics); some units may even
be multiplied, like two or even three independent integer
ALU/processor.
Data dependency. If there is an instruction in the
program that depends on the output of a previous instruc-
tion, then its execution cannot begin until that previous
instruction is finished.
Branch prediction. When the program reaches a
conditional branch, the direction of control flow cannot be
known until the branch condition is evaluated. Thus there
can be no instructions fed to the pipeline until the condition
instruction finishes its execution. This results in wasted pro-
cessor resources. To enable maximum instruction through-
put, processor hardware predicts the condition outcome,
and feeds the instructions of the respective branch into the
pipeline. However, these instructions will not be commit-
ted to the architectural state until the branch condition is
evaluated, and if the prediction turns out to be false, these
instructions are rolled back, and the pipeline begins with
executing the instruction on the correct branch. Branch
prediction is based on the previous encounters of the same
branch, thus typical branches like loop conditions can be
well predicted, as they usually branch towards the inside of
a loop, and a misprediction occurs only at the relatively rare
condition of exiting that loop.

Another factor that has considerable effects on execution
performance is the efficiency of memory hierarchy. The
basic problem is that processor speeds have increased much
faster than main memory access speeds. The difference is so
much that today up to 100 clockticks are necessary to load a
value from the main memory. Furthermore, memory access
is effective only in relatively long bursts of reads and writes.
To minimize the latency and data transfer speed effects, pro-
cessors incorporate relatively small but very fast memories
that cache the contents of the main memory. There are at
least two levels of such cache, reading a data element from
the first level (L1) cache takes usually one clocktick, while
reading a data element from the second level (L2) cache may
take a few clockticks. Typical sizes of these caches are as fol-

44

lows: few ten KB for L1 cache (16–32 KB in Intel Pentium
4, 64–128 KB in AMD processors), while 512 KB–2 MB for
L2 cache. Non-mainstream (value market) processors may
have considerably smaller caches.

When a data that is loaded was recently used, there is
a high chance of finding it in the cache memory. However,
when the program has to process a large amount of data
(sequentially), then almost all data accesses will be cache
misses, thus the execution engine will wait for the memory,
then process the data segment it got, then issue the next
memory read request, wait for the memory, etc. The mem-
ory interface and the execution units will be alternately idle.
To overcome this, the prefetch mechanism was introduced
to make the memory interface and execution unit concur-
rently busy. Prefetch operates by loading the data for the
next iteration of the processing loop in advance into the fast
cache memory so that it will be instantly available when
requested by the execution engine. This is implemented in
hardware for well predictable memory reads (namely sequen-
tial reads), while the programmer has to take care for it in
non-sequential memory accesses.
Out of order execution. When an instruction cur-
rently in the execution pipeline requires data from the mem-
ory that is not found in the cache, it has to wait until the
data is loaded from main memory. To keep the execution
units of the processor busy, the processor looks ahead for
other instructions that have all necessary input data avail-
able so that their execution can proceed. Thus only the
instructions that depend either on the unavailable data or
the result of such instructions are hindered in execution.

Summary. We say that the processor (or the execu-
tion pipeline) is stalled when there is no instruction whose
execution could proceed. This can be caused by various rea-
sons: instructions may depend on the completion of another
instruction (by using its output data as input); instructions
may require data from main memory that is not available
in the fast cache memory, thus they have to wait until the
memory access cycle completes; there may have been a mis-
predicted conditional branch when the speculatively exe-
cuted instructions had to be flushed from the pipeline; or
there may be another resource constraint (lack of some sort
of temporary buffers, like store buffers, register renaming
buffers, etc.). Execution speed of an algorithm (instruction
flow) does not only depend on the number of instructions
it contains, but also on the count and severity of the stalls
that the particular instruction flow causes on the hardware
used.

45

